簡易檢索 / 詳目顯示

研究生: 羅佑威
Lo, Yu-Wei
論文名稱: 提昇低溫可撓式太陽能電池效率二氧化鈦緻密層之特性分析研究
Characteristics of TiO2 compact layer for enhancing the conversion efficiency of low-temperature flexible dye-sensitized solar cell
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 102
中文關鍵詞: 可撓式染料敏化太陽能電池二氧化鈦緻密層低溫
外文關鍵詞: Flexible dye sensitized solar cells, TiO2 compact layer, Low temperature
相關次數: 點閱:83下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先研究如何製備低溫二氧化鈦漿料,藉由加入不同分散劑和改變溶劑比例,來找到一個適合用在可撓式染料敏化太陽能電池上的漿料。除此之外,本研究最大的重點是探討不同的濺鍍氣體,在不經熱處理下,所製備不同晶相的二氧化鈦緻密層的性質。同時,我們也將其用於可撓式染料敏化太陽能電池上,探討二氧化鈦緻密層對電池的效用。
    本研究的結果利用穿透式電子顯微鏡(TEM)和X光吸收近邊緣結構(XANES)光譜來分析二氧化鈦緻密層的晶體結構、X光電子能譜儀(XPS)來分析二氧化鈦緻密層的化學鍵結、紫外光-可見光光譜(UV-Visible)來分析二氧化鈦緻密層的穿透率、霍爾量測(Hall measurement)來分析二氧化鈦緻密層的電性。組裝成電池後,量測電池效率和增益行為,並藉由電化學阻抗分析(EIS)來分析電子在二氧化鈦緻密層與電解液介面的傳遞現象。最後,本研究證明二氧化鈦緻密層可以有效提升電池的效率。

    First, the effects of dispersant and solvent are studied in order to find a suitable TiO2 paste which can apply on flexible dye sensitized solar cells (FDSCs). Moreover, the most important part in the study is to research the characteristics of TiO2 compact layers of different crystal structures by using different sputtering gas without any heat treatment. Meanwhile, TiO2 compact layers are used in FDSCs and the cell characteristics are studied.
    The crystal structures are identified by transmission electron microscopy (TEM) and X-ray absorption near-edge structures (XANES) spectroscopy. The chemical bonding is analyzed by X-ray photoelectron spectra (XPS). The transmittance is obtained by UV-Visible spectrum. The electrical characteristics are examined by Hall measurement. Moreover, TiO2 compact layers are used in FDSCs. Cell efficiencies and rectifying behaviors are investigated. The interface of TiO2 compact layer/electrolyte for electron transport are examined by electrochemical impedance spectroscopy(EIS). Finally, we demonstrate that TiO2 compact layers can efficiently increase the performance of FDSCs.

    摘要I AbstractII 致謝III 總目錄IV 表目錄IX 圖目錄X 第一章 緒論1 1.1前言1 1.2研究動機與目標3 第二章 文獻回顧5 2.1染料敏化太陽能電池的發展歷史5 2.2染料敏化太陽能電池的工作原理6 2.3二氧化鈦光電極7 2.4染料9 2.5電解質11 2.6對電極13 2.7可撓式太陽能電池之二氧化鈦光電極製備14 2.8氧化物緻密層16 2.9蕭特基位障(Schottky barrier)和歐姆接觸(Ohmic contact)20 2.10 量子效應(Quantum size effect)- UV-Visible22 2.11染料敏化太陽能電池的分析技術和例子23 2.11.1 J-V曲線23 2.11.2電化學阻抗分析(Electrochemical impedance spectroscopy,EIS)24 2.11.3 光電轉換效率(Incident photon-to-electron conversion efficiency,IPCE28 2.11.4 Intensity modulated photocurrent/Photovoltage spectroscopy(IMPS/IMPS)29 第三章 實驗方法與分析儀器原理32 3.1實驗藥品32 3.2實驗設計與流程33 3.2.1二氧化鈦漿料的製備34 3.2.2濺鍍二氧化鈦緻密層34 3.2.3旋轉塗佈(Spin coating)二氧化鈦光電極37 3.2.4熱處理和染料的吸附37 3.2.5電解液製備38 3.2.6對電極的製備38 3.2.7 DSC電池組裝39 3.3分析技術40 3.3.1 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)40 3.3.2 X光吸收光譜(X-ray absoprtion40 3.3.3 X光光電子光譜儀(X-ray photoelectron spectrometer,XPS)42 3.3.4 霍爾量測(Hall measurement44 3.3.5紫外光-可見光光譜 (UV-visible spectrum44 3.3.6電池J-V分析45 3.3.7電化學阻抗分析(Electrochemical impedance spectroscopy,EIS)46 第四章 結果與討論47 4.1二氧化鈦漿料的製備47 4.1.1分散劑的效應47 4.1.2溶劑的效應51 4.2相同厚度緻密層的分析53 4.2.1 TEM分析53 4.2.2 XANES分析59 4.2.3 XPS分析62 4.2.4 UV-Visible分析66 4.2.5霍爾量測67 4.3不同氣氛環境下濺鍍出來的二氧化緻密層對可撓式DSC的影響69 4.3.1增益行為(Rectifing behavior69 4.3.2 EIS 分析71 4.3.3J-V76 4.4 二氧化鈦緻密層厚度的影響78 A.濺鍍氣體-O278 1.增益行為78 2.UV-Visible78 3.J-V79 A.濺鍍氣體-Ar83 1.增益行為83 2.UV-Visible83 3.J-V84 A.濺鍍氣體-N286 1.增益行為86 2.UV-Visible87 3.J-V87 第五章 結論91 第六章 未來展望92 第七章 參考文獻93

    1.R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam,“40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells”, Applied Physics Letters,2007, 90, 183516
    2.M.A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar Cell Efficiency Tables(Version31)“, Prog. Photovolt: Res. Appl., 2008, 16,6
    3.A. Kay,M. Gratzel,“Dye-Sensitized Core-Shell Nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide” ,Chem. Mater., 2002, 14, 2930-2935
    4.E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, “Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers”,J. Am. Chem. Soc., 2003, 125, 475-482
    5.L. Kavan, M. Grätzel, “Highly efficient semiconductoring TiO2 photoelectrode prepared by aerosol pyrolysis”, ElectrochiAmcitcao, 1995, 40, 643-652
    6.B. Peng, G. Jungmanna, C. Jäger , D. Haarer, H. Schmidt, M. Thelakkat, “Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells”,Coordination Chemistry Reviews 2004,248,1479–1489
    7.S. Ito,P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin,M. Grätzel,“Control of dark current in photoelectrochemical (TiO2/I-–I3-) and dye-sensitized solar cells” ,Chem. Commun., 2005, 4351–4353
    8.Petra J. Cameron and Laurence M. Peter,“Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells”, J. Phys. Chem. B ,2003, 107, 14394-14400
    9.Petra J. Cameron,Laurence M. Peter, Sarmimala Hore,“How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?”,J. Phys. Chem. B, 2005, 109, 930-936
    10.J. Xia, N. Masaki, K. Jiang, S. Yanagida,“Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells”,J. Phys. Chem. B, 2006, 110, 25222-25228
    11.H. Yua, S. Zhanga, H. Zhaoa, G. Willb, P. Liu,“An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells”, Electrochimica Acta,2009, 541319–541324
    12.K. Lee, S. Wu,C. Chen, C. Wu, M. Ikegami,K. Miyoshi, T. Miyasaka, K. Ho,“Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer”,J. Mater. Chem., 2009, 19, 5009–5015
    13.B. O’Regan , M. Gräzel , “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”,Nature, 24,1991, 737-739
    14.C. Chen, M. Wang,J. Li, N. Pootrakulchote, L. Alibabaei,C. Ngoc-le, J. Decoppet, J. Tsai, C. Grätzel,C. Wu,S. M. Zakeeruddin, M. Grätzel,“Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells”,ACS Nano, 2009,3,3103–3109
    15.P. Roy, D. Kim,K. Lee,E. Spieckerb, P. Schmuki,“Counter electrodes for DSC: Application of functional materials as catalysts”,Nanoscale, 2010, 2, 45–59
    16.N.G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells”J. Phys. Chem. B,2000, 104,8989-8994
    17.G. Redmond, D.Fitzmaurice, M. Grätzel,“Visible light sensitization bycis- bis (thioc yanato) bis (2,2‘- bipyridyl-4,4‘-dicarboxylato)ruthenium(II) of a transparent nanocrystalline ZnO film prepared by Sol-Gel techniques” , Chem. Mater. ,1994,6, 686
    18.S. Ferrere, A. Zaban, B.Gregg, “Dye sensitization of nanocrystalline tin oxide by perylene derivatives”A. J. Phys. Chem. B ,1997, 4490
    19.K.Sayama, H.Sugihara, H.Arakawa,“Photoelectrochemical Properties of a porous Nb2O5 electrode sensitized by a ruthenium dye”, Chem. Mater.,1998, 10, 3825
    20.A.Turkovic, Z. C. Orel, “Dye-sensitized solar cell with CeO2 and mix CeO2/SnO2 photoanodes”,Sol. Energy Mater. Sol. Cells.,1997, 45, 275
    21.Y.J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N.G. Park, K. Kim, W. I. Lee,“Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres”, Adv. Mater. 2009, 21, 1–6
    22.D. Chen, F. Huang, Y. Cheng, R. A. Caruso,“Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells”, Adv. Mater. 2009, 21, 2206–2210
    23.X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, C. A. Grimes,“Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications”, Nano Lett.,2008, 8,3781~3786
    24.G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, “High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer”, Chem. Commun., 2009, 2198–2200
    25.A. Mishra, M. K. R. Fischer, P. Bauerle,“Metal-free organic dyes for dye-sensitized solar cells: From structure: Property relationships to design rules”, Angew. Chem. Int. Ed. 2009, 48, 2474 – 2499
    26.B. Li, L. Wang, B. Kang, P. Wang, Y. Qiu, “Review of recent progress in solid-state dye-sensitized solar cells”,Solar Energy Materials & Solar Cells ,2006, 90 549–573
    27.T. N. Murakami a, M. Grätzel“Counter electrodes for DSC: Application of functional materials as catalysts”, Inorganica Chimica Acta,2008, 361, 572–580
    28.T. Yamaguchi, N. Tobe, D. Matsumoto, H. Arakawa,“Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes”, Chem. Commun., 2007, 4767–4769
    29.T. Miyasaka, M. Ikegami, Y. Kijitori,“Photovoltaic Performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania”, Journal of The Electrochemical Society, 154, 2007,A455-A461
    30.D. Zhang, T. Yoshida, H. Minoura, “Low temperature fabrication of efficient porous titania by hydrothermal crystallization at solid/gas interface”,Adv.Mater., 2003, 15, 814~817
    31.D. Zhang, T. Yoshida, T. Oekermann, K. Furuta, H. Minoura, “Room-temperature synthesis of porous nanoparticulate TiO2 Ffilms for flexible dye-sensitized solar cells”,Adv. Funct. Mater. 2006, 16, 1228–1234
    32.N.Park, K.M.Kim, M.G Kang, K.Y Ryu, S.H. Chang, Y. Shin, “Chemical sintering of nanoparticles: A methodology for low-temperature fabrication of dye-sensitized TiO2 films”Adv.Mater., 2005,17,2349~2353
    33.H. Pan, S. H. Ko, N. Misra, C. P. Grigoropoulos, “Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics”,Applied physics letters, 2009, 94,07117
    34.L. Grinis, S. Kotlyar, S. Ruhle, J. Grinblat, A. Zaban,“Conformal nano-sized inorganic coatings on mesoporous TiO2 films for low-temperature dye-sensitized solar cell fabrication” ,Adv. Funct. Mater. , 2009, 19, 1–7
    35.J. Xia, N. Masaki, K. Jiang, S. Yanagida,“Sputtered Nb2O5 as an effective blocking layer at conducting glass and TiO2 interfaces in ionic liquid-based dye-sensitized solar cells” Chem. Commun., 2007, 138–140
    36.T. Kang, S. Moon, K. Kim,“Enhanced photocurrent-voltage characteristics of Ru(II)-dye sensitized TiO2 solar cells with TiO2-WO3 buffer layers prepared by a sol-gel method”, Journal of The Electrochemical Society, 2002,149, E155-E158
    37.J. Xia, N. Masaki, K. Jiang, Y. Wada, S. Yanagida,“Importance of blocking layers at conducting glass/TiO2 interfaces in dye-sensitized ionic-liquid solar cells” Chemistry Letters, 2006, 35, 252~253
    38.H. J. Snaith, M. Grätzel,“The Role of a “Schottky barrier” at an electron-collection electrode in solid-state dye-sensitized solar cells” Adv. Mater., 2006, 18, 1910–1914
    39.B. G. Streetman, S. K. Banerjee,“Solid state electronic devices”,2006, 6th edition
    40.A. L. Linsebigler, G. Lu, J. T. Yates, Jr.,“Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results”, Chem. Rev. ,1995, 95, 735-758
    41.W. Zhang, Y. Li, S. Zhu, F. Wang,“Influence of argon flow rate on TiO2 photocatalyst film deposited by dc reactive magnetron sputtering”, Surface and Coatings Technology,2004, 182 , 192–198
    42.沈育仁,“CdS 量子點敏化劑及高分子/奈米粒子複合膠態電解質在染料敏化太陽能電池應用之研究”,成功大學化工系博士論文,2008
    43.M. E. Orazem, B. Tribolle, Electrochemical Impedance Spectroscopy, John Wiley& Sons, Inc,2008
    44.R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther,“Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions”, Electrochimica Acta,2002, 47,4213~4225
    45.M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda,“Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy”, J. Phys. Chem. B 2006, 110, 13872-13880
    46.Z. Wang, T. Yamaguchi, H. Sugihara, H. Arakawa,“Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films” Langmuir 2005, 21, 4272-4276
    47.Y. Tachibana, K. Hara, K. Sayama, H. Arakawa,“Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells” Chem. Mater. 2002, 14, 2527-2535
    48.J. Kruger, R. Plass, M. Grätzel, P. J. Cameron, L. M. Peter, “Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopy”,J. Phys. Chem. B, 2003, 107, v7536-7539
    49.F. Cao, G. Oskam, G. “Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells”,J. Meyer, P. C. Searson, J. Phys. Chem. ,1996, 100, 17021-17027
    50.G. Schlichthorl, S. Y. Huang, J. Sprague, A. J. Frank, “Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy”,J. Phys. Chem. B 1997, 101, 8141-8155
    51.張裕銘,“室溫合成單晶二氧化鈦奈米線之研究”,成功大學碩士論文,98
    52.D.B. Willams and C.B. Carter, Transmission Electron Microscopy-Basic Diffraction Imaging Spectroscopy, Plenum Press, New York, 1994
    53.楊宗燁,林鴻明,吳泉毅,林中魁,“奈米材料之X光吸收光譜檢測與分析”,物理雙月刊,2001,23,640~646
    54.J.F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, John Wiley & Sons, New York, 2003
    55.R. J. Pugh, L. Bergstrom, Surface colloid chemistry in advanced ceramics processing, Marcel dekker Inc., New York,1994
    56.S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, Pl Liska, P. Pechy, M. Gratzel,“Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells”,Prog. Photovolt: Res. Appl. 2007; 15,603–612
    57.J. Wu, G. Chen, C. Lu, W. Wu ,J. Chen,“Performance and electron transport properties of TiO2 nanocomposite dye-sensitized solar cells” Nanotechnology, 2008, 19 , 105702~10578
    58.J. Wu, M. Hsieh, W. Liao, W. Wu, J. Chen,“Fast-switching photovoltachromic cells with tunable transmittance”,ACS Nano,2009,3,2297~2203
    59.D. Zhang, J. A. Downing, F. J. Knorr, J. L. McHale, “Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion”,J. Phys. Chem. B 2006, 110, 21890-21898
    60.Y. Iida ,S. Ozaki,“Grain growth and phase transformation of titanium oxide during calcination”, J. Am.Ceram. Soc., 1961,44 , 120-127
    61.R. D. Shannon, J. A. Pask,“Kinetics of the anatase-rutile transformation”, J. Am. Ceram. Soc,1965,391~398
    62.F.M.F. de Groot, M.O. Figueired, M.J. Basto, M. Abbate, H. Petersen, and J.C. Fuggle,“X-ray absorption of titanium in minerals”,Phys.Chem. Minerals,1992, 19, 140-147
    63.V.S. Lusvardi a, M.A. Barteau a, J.G. Chen b j. Eng, Jr. b, B. Fruhberger, A. Teplyakov, “An NEXAFS investigation of the reduction and reoxidation of TiO2(001 )”,Surface Science,1998,397, 237-250
    64.L Sonano, M. Abbate, J. Vogel, J C Fuggle, A. Fernfindez, A. R.Gonzfilez-Ehpe,M .Sacchl, J. M. Sanz,“Oxygen 1s X-ray absorption of tetravalent titanium oxides: A comparison of single-particle calculations ” Surf. Sci.,1993, 290, 427
    65.F.M. F. de Groot, M. Gnoni, J.C. Fuggle, J. Ghljsen, G. A.Sawatzky, H. Peterson, Phys Rev B,1989,40, 5715
    66.G. Xiong, R. Shao, T. C. Droubay, A. G. Joly, K. M. Beck, S. A. Chambers, W. P. Hess,“Photoemission electron microscopy of TiO2 anatase filmsembedded with rutile nanocrystals”, Adv. Funct. Mater. 2007, 17, 2133–2138
    67.M. Grätzel,“Perspectives for dye-sensitized nanocrystalline solar cells”, Prog. Photovolt. Res. Appl.,2000, 8, 171~185
    68.P.T. Hsiao, Y.L. Tung, H. Teng, “Electron transport patterns in TiO2 nanocrystalline films of dye-sensitized solar cells”,J. Phys. Chem. C ,2010, 114, 6762–6769

    下載圖示 校內:2013-08-24公開
    校外:2013-08-24公開
    QR CODE