| 研究生: |
賴文振 Lai, Wen-Jen |
|---|---|
| 論文名稱: |
核磁共振研究過渡金屬元素二硼化合物 NMR study of transition-metal diborides |
| 指導教授: |
呂欽山
Lue, Chin-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 核磁共振 、二硼化合物 |
| 外文關鍵詞: | NMR, diborides |
| 相關次數: | 點閱:66 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具AlB2晶格結構型態的過渡金屬二硼化合物有高熔點、高硬度、良導熱性、高化學穏定性、低電阻和低密度性質。這些特性具有相當高的應用價值。自從同樣結構的MgB2被發現超導臨界溫度約39K,有相當多的研究重新重視同樣結構的過渡金屬二硼化合物的物理性質。
本研究是以核磁共振(NMR)的技術探討過渡金屬二硼化合物TMB2 (TM= Ti、 Zr、 Hf、 V、 Nb和 Ta)的電子結構。在所有的研究樣品,量測到的硼原子核的NMR鬆弛時間,主要是來自B-2p電子的貢獻。從NMR自旋-晶格鬆弛時間推導所得的B-2p電子的費米能階態密度與理論計算有很好的吻合。此外,在TiB2、ZrB2 和 HfB2中,來自B-2p電子貢獻的費米能階態密度均小於同樣來自B-2p電子貢獻的VB2、NbB2 和 TaB2。本實驗量測結果符合理論計算所推論的化學穩定趨勢。
The AlB2-type transition metal diborides have the properties of high melting point, high hardness, high thermal conductivity, high chemical stability, low electrical resistivity, and low mass density. Those properties are useful for technological applications. Since the isostructural MgB2 was found to have the phenomenon of superconductivity at Tc ~ 39 K, there are a lot of research focusing on the physical character of the isostructural transition metal diborides.
In this investigation, we study the electronic structure of transition metal diborides, TMB2 (TM= Ti, Zr, Hf, V, Nb, and Ta) by nuclear magnetic resonance (NMR) techniques. For all studied samples, the p-orbital relaxation is the dominant mechanism for the observed relaxation at B nuclei. The deduced B-2p Fermi-level density of states (DOS) are in good agreement with theoretical values. In addition, partial B-2p Fermi-level DOS in TiB2, ZrB2, and HfB2 are consistent smaller than in VB2, NbB2, and TaB2. This observation is associated with the trend of chemical stability raised by theoretical calculations.
1 W. Gordon and S. B. Soffer, J. Phys. Chem. Solids 36, 627 (1975).
2 J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).
3 L. Leyarovska and E. Leyarovski, J. Less-Common Met. 67(3), 249 (1979).
4 X. B. Wang, D. C. Tian, and L. L. Wang, J. Phys: Condens. Matter 6, 10185 (1994).
5 C. S. Lue, dissertation of doctor of philosophy, Texas A&M University (1999).
6 賴耿陽, 核磁共振的基礎, 復漢出版社, 第二章 (1991).
7 C. Kittel, Introduction to Solid State Physics 7th ed., John Wiley & Sons, Inc., ch. 16 (1996).
8 T. Asada and K. Terakura, J. Phys. F: Met. Phys. 12, 1387 (1982).
9 W. B. Pearson, A Handbook of Lattice Spacings and Structures of Materials and Alloys, Pergamon, Oxford, (1967); Structure Reports, International Union of Crystallography, Utrecht, 32A 14 (1967).
10 W. Kraus and G. Nolze, Federal Institute for Materials Research and Testing Rudower Chaussee 5, 12489 Berlin, Geramny.
11 A.C. Larson and R.B. Von Dreele, "General Structure Analysis System (GSAS)", Los Alamos National Laboratory Report LAUR 86-748 (2000).
12 P. Villars: Pearson’s Handbook, Crystallographic Data for Intermetallic Phases (ASM International, 1997).
13 A. H. Silver and P. J. Bray, J. Chem. Phys. 32, 288 (1960).
14 A. H. Silver and T. Kushida, J. Chem. Phys. 38, 865 (1963).
15 R. G. Barnes, R. B. Creel, and D. R. Torgeson, J. Chem. Phys. 53, 3762 (1970).
16 H. Kotegawa et al. Physica C 25, 378 (2002).
17 P. P. Singh, Solid State Commun. 125, 323 (2003).
18 I. R. Shein and A. L. Ivanovski, Phys. Solid State 44, 1833 (2002).
19 P. Jili Thomas Joseph and P. P. Singh, Solid State Commun. 121, 467 (2002).
20 Metallic Shifts in NMR, edited by G. C. Carter, L. H. Bennett, and D. J. Kahan, Pergamon, Oxford, (1997).
21 W. H. Jones, Jr., T. P. Graham, and R. G. Barnes, Phys. Rev. B 132, 1898 (1963).
22 G. E. Grechnev, N. V. Ushakova, P. D. Kervalishvili, G. G. Kvachantiradze, and K. S. Kharebov, Low Temp. Phys. 23, 217 (1997).
23 P. Vajeeston, P. Ravindran, C. Ravi, and R. Asokamani, Phys. Rev. B 63, 045115 (2001).