簡易檢索 / 詳目顯示

研究生: 方彥程
Fang, Yan-cheng
論文名稱: 柴油降解菌應用於土耕法及結合細胞固定化技術降解水中柴油之研究
The Application of Diesel-Degrading Bacteria on Ex-situ Landfarming and Immobilized Cell Technique for Diesel-Contaminated Soil and Groundwater Remediation
指導教授: 黃良銘
Whang, Liang-ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 115
中文關鍵詞: 細胞固定化技術生物界面活性劑離場土耕法柴油柴油分解菌生物復育
外文關鍵詞: diesel-degrading bacteria, diesel, bioremediation, immobilized cell technique, biosurfactant, ex-situ landfarming
相關次數: 點閱:130下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來國內外漏油事件頻傳,造成嚴重的土壤及地下水油品污染,在整治方法中,生物復育因其低成本、對環境衝擊較小且可有效達到復育成果,逐漸成為土壤及地下水復育技術的趨勢。本研究以柴油為目標污染物,應用柴油降解菌於受柴油污染的土壤與地下水,本實驗分為兩部份,一為應用柴油降解菌與生物界面活性劑於離場土耕法土壤生物復育,以小型土壤反應槽模擬離場土耕法生物復育,探討額外添加柴油分解菌及生物界面活性劑對柴油降解的影響,另有一控制組作為比較,另一為應用細胞固定化技術進行地下水整治,此為未來應用於土壤管柱生物滲透性反應牆的前驅實驗,主要探討柴油降解菌在經包埋後對柴油降解的效果及其再使用性和壽命。
    土壤批次實驗中,採用兩種不同菌群,皆以不同植菌量及添加生物界面活性劑與否作為實驗因子,經操作80天後,各組柴油去除率皆介於76~87%,240天可以去除90~98%柴油,而控制組在240天後僅去除78%柴油,各實驗組的第一階段降解速率常數介於-0.0185~-0.0304day-1,而控制組僅0.005day-1,經分子生物技術監測發現,實驗組在復育階段均具豐富的柴油降解菌相,反觀控制組柴油降解菌種多樣性雖有增加,但在後期卻有逐漸消失的現象,這為造成復育效果差別的主要原因,而實驗中探討的菌量多寡及是否添加20mg/kg dry soil生物界面活性劑,並沒有造成柴油降解效果的差別。
    在應用細胞固定化顆粒降解水中柴油實驗裡,發現活性碳有助於顆粒內菌體的釋放,而較強顆粒強度會限制菌體釋出,而在單一菌株測試中以CC-JG39及CC-BC11具較佳的降解效果,分別為250小時殘留13%柴油及330小時殘留20%柴油,且分別具-0.0223hr-1及-0.0127hr-1第一階段降解速率常數, CC-RS1、CC-CF3及CC-DSM444-62則沒有明顯降解效果,而採用混菌在第一個批次實驗中並無明顯提升的柴油降解的現象,在經重複實驗後發現顆粒可以被重複地使用來降解柴油,且顆粒結構能保持完整、不崩解,有利於未來應用於土壤管柱模擬現地滲透性反應牆。

    Oil leaking from storage tanks happens frequently, and causes serious soil and groundwater contamination. Among remediation techniques, bioremediation of petroleum hydrocarbons has been proposed as an effective, economic, and environmentally friendly technology and been applied extensively recently. This study applied diesel-degrading bacteria on diesel-contaminated soil and groundwater bioremediation and was devided into two parts. One applied bioaugmentation and biosurfactants (rhamnolipid) for enhanced ex-situ bioremediation of diesel-contaminated soil and investigated the potential application of with series of bench-scale experiments. Another applied diesel-degrading bacteria on immobilized cell technique for degrading diesel in water and investigated degradation effect and if the beads can be used repeated. We hope it can be used on permeable reactive barrier in the future.
    In soil bioremediation experiments, we adopted two diesel-degrading bacteria consortias. Bacteria concentration and biosurfactant addition were two factors investigated. After 80 and 240 days, experimental groups removed 76~87% and 90~98% diesel repectively. However, control removed only 78% diesel after 240 days operation. Degradation rate constants in experimental groups were between -0.0185 day-1 and -0.0304day-1 and larger than control one -0.005 day-1. By the way, molecular methods such as microarray hybridization, T-RFLP and DGGE were used to monitor the microbial population dynamics of augmented diesel-degrading bacteria in tested bio-piles. The results showed that bioaugmentation can increase the microbial diversity of diesel-degrading bacteria and cause the diffirence between experimental groups and control. There was no significant diffirence after adding diffirent bacteria concentration and biosurfactant.
    In diesel-contaminated water bioremediation, we found that active carbon can help release bacteria from gel beads to outside liquid and also found that the higher strength of gel beads will restrict bacteria move. Among five diesel-degrading bacteria, CC-JG39 and CC-BC11 had good effect to degrade diesel after immobilized. There were 13% residual diesel of CC-JG39 and 20% residual diesel of CC-BC11 after 250 and 330 hours respectively. Degradation rate constant of CC-JG39 and CC-BC11 were -0.0223hr-1 and -0.0127hr-1 respectively. CC-RS1, CC-CF3 and CC-DSM444-62 did not have good effect to degrade diesel, although CC-DSM444-62 had good diesel- degrading ability in suspended condition. When we entraped CC-JG39 and CC-BC11 individually and then mixed gel beads, mixed bacteria had no significant effect to increase degradation. After repeated batch, we found that gel beads can degrade diesel repeatedly and maintain their structure. This result gave us confidence to apply gel beads on permeable reactive barrier in the future.

    摘要 III Abstract V 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIV 第一章 前言 1 第二章 文獻回顧 3 2-1台灣土壤與地下水受石油碳氫化合物污染現況 3 2-2石油組成與柴油特性 7 2-2-1 石油產品分類 7 2-2-2 柴油的物理與化學特性 8 2-2-3 柴油的組成 9 2-2-4 柴油之毒性 11 2-3 石油碳氫化合物汙染土壤與地下水之傳輸現象 11 2-4 受石油碳氫化合物污染土壤生物復育技術 13 2-4-1 土壤生物復育整治概念 13 2-4-2 生物復育優、缺點 16 2-4-3 生物復育影響因子 16 2-4-4 生物復育技術 23 2-5固定化技術 28 2-5-1 固定化技術之發展演進(陳, 2000) 28 2-5-2 固定化方法分類 28 2-6 細胞固定化技術 31 第三章 實驗設備與方法 33 3-1受柴油污染土壤之生物復育試驗 33 3-1-1實驗設備 33 3-1-2 柴油降解菌 34 3-1-3 生物界面活性劑(rhamnolipid) 34 3-2細胞固定化技術應用於水中柴油降解之批次實驗 35 3-2-1優勢柴油降解菌前處理 35 3-2-2細胞固定化顆粒製作 36 3-2-3實驗設備 37 3-2-4 柴油降解菌 38 3-2-5 培養基與緩衝溶液 38 3-3研究材料 39 3-3-1各種培養基 39 3-3-2柴油 40 3-4 土壤、水質及氣體組成分析方法 40 3-4-1 土壤分析 40 3-4-2 土壤菌數測定-平盤計數法(plate count) 41 3-4-3 土壤中柴油總碳氫化合物 42 3-4-4 揮發性懸浮固體物(MLVSS) 42 3-4-5 水中柴油總碳氫化合物 43 3-4-6 矽膠淨化法 43 3-4-7 氣體組成分析 43 3-5 分子生物技術 44 3-5-1 總DNA萃取 44 3-5-2 聚合酶酵素連鎖反應 (Polymerase Chain Reaction, PCR) 45 3-5-3 變性梯度明膠電泳(Denaturing gradient gel electrophoresis, DGGE) (Fischer and Lerman, 1979) 46 3-5-4 尾端修飾限制片段長度多型性(T-RFLP) 48 3-5-5 微矩陣分析法(microarray) 49 第四章 結果與討論 50 4-1 受柴油污染土壤之好氧生物復育試驗 50 4-1-1 Consortia 1對柴油生物復育的影響 51 4-1-2 Consortia 2對柴油生物復育的影響 59 4-1-3 應用分子生物技術監測生物復育土壤中微生物多樣性及菌群消長 65 4-1-4 受柴油污染土壤之好氧生物復育試驗總結 73 4-2細胞固定化技術應用於水相中柴油降解之批次實驗 75 4-2-1 空白組水中殘留柴油及不植菌顆粒空白組對柴油吸附實驗 76 4-2-2 胞埋顆粒中添加活性碳及不同顆粒強度對柴油生物降解的影響 77 4-2-2-1 包埋顆粒中添加活碳對柴油生物降解的影響 78 4-2-2-2 不同顆粒強度對柴油生物降解的影響 84 4-2-2-3 小結 88 4-2-3 包埋不同菌株對柴油生物降解的影響 90 4-2-3-1 不同菌株在懸浮液中對柴油生物降解的效果 90 4-2-3-2不同菌株包埋後對柴油生物降解的效果 93 4-2-3-3小結 99 4-2-4 混菌以不同包埋方式後對柴油生物降解的效果 100 4-2-5 以CC-JG39進行重複批次實驗 104 4-2-6細胞固定化技術應用於水相中柴油降解之批次實驗總結 105 第五章 結論與建議 108 5-1 結論 108 5-1-1受柴油污染土壤之生物復育試驗 108 5-1-2細胞固定化技術應用於水中柴油降解之批次實驗 108 5-2 建議 109 第六章 參考文獻 110

    中國石油公司訓練所,石油產品及其應用(上、下冊),蘭潭彩色印刷股份有限公司(1996)
    周建良,醣脂類生物界面活性劑rhamnolipid發酵基質最適化及生產策略之研究。國立成功大學化學工程系碩士論文(2005)
    張嘉修,謝勤毅,魏毓宏,葉茂淞,利用乳膠固定化Bacillus subtilis 生產油類生物降解之助劑 - Surfactin (2006)
    陳國誠,生物固定化技術與產業應用,茂昌圖書有限公司 (2000)
    曾依蕾,柴油降解菌組合的最佳化。國立成功大學環境工程系碩士論文(2005)
    Aislabie, J., M. McLeod, and R. Fraser Potential for biodegradation
    of hydrocarbons in soil from the Ross Dependency, Antarctica. Appl. Microbiol.Biotechnol. 49:210–214. (1998)
    Banat, I. M. Biosurfactant production and possible uses in microbial
    enhanced oil recovery and oil pollution remediation. Biores. Technol. 51:
    1–12. (1995)
    Barathi, S., Vasudevan, N. Utilization of petroleum hydrocarbons by Pseudomonas fluorescence isolated from a petroleum-contaminated soil. Environ Int. 26:413~416 (2001)
    Billingsley, K. A., S. M. Backus, and O. P. Ward Effect of surfactant
    solubilization on biodegradation of polychlorinated biphenyl congeners by
    Pseudomonas LB400. Appl. Microbiol. Biotechnol. 52:255–260. (1999)
    Callegari J. P. and Francotte C. Physiological behavior of alginate immobilized cells. In: Process Engineering Aspects of Immobilized Cell Systems. The IchemE (Pergamon), Rugby. (1986)
    Cohen, R.M., Mercer, J.W. In: Smoley, C.K. (Ed.), DNAPL Site Evaluation. CRC Press, Florida, USA, 200 pp. (1993)
    Desai, J. D., and I. M. Banat Microbial production of surfactants and
    their commercial potential. Microbiol. Mol. Biol. Rev. 61:47–64. (1997)
    Efroymson, R. A., and M. Alexander Biodegradation by an Arthrobacter
    species of hydrocarbons partitioned into an organic solvent.
    Appl. Environ. Microbiol. 57:1441–1444. (1991)
    Fayad, N. M., and E. Overton A unique biodegradation pattern of
    the oil spilled during the 1991 Gulf War. Mar. Poll. Bull. 30:239–246. (1995)
    Fayad, N. M., R. L. Edora, A. H. El-Mubarak, and A. B. Polankos
    Effectiveness of a bioremediation product in degrading the oil spilled in the
    1991 Arabian gulf war. Bull. Environ. Contam. Toxicol. 49:787–796. (1992)
    F. Fritjof Fagerlund , Auli Niemi, Magnus Ode’n Comparison of relative permeability–fluid saturation–capillary pressure relations in the modelling of non-aqueous phase liquid infiltration in variably saturated, layered media (2006)
    Frankenberger Jr., W.T. The need for a laboratory feasibility study in bioremediation of petroleum hydrocarbons. In:Calabrese, E.J., Kostecki, P.T.(Eds.), Hydrocarbon contaminated soils and groundwater . Lewis, Boca Raton, FL, pp.237~293 (1992)
    Huesemann, M. H. Predictive model for estimating the extent of
    petroleum hydrocarbon biodegradation in contaminated soils. Environ. Sci.
    Technol. 29:7–18. (1995)
    Jonathan D. Van Hamme, Ajay Singh, and Owen P. Ward Recent Advances in Petroleum Microbiology. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, p. 503–549 (2003)
    Ko, S. H., and J. M. Lebeault Effect of a mixed culture on cooxidation
    during the degradation of saturated hydrocarbon mixture.
    J. Appl. Microbiol. 87:72–79. (1999)
    Mulligan, C. N., R. N. Yong, and B. F. Gibbs Surfactant-enhanced
    remediation of contaminated soil: a review. Eng. Geol. 60:371–380. (2001)
    Pankow, J.F., Cherry, J.A. Dense Chlorinated Solvent and Other DNAPLs in Ground Water: History, Behavior and Remediation. Waterloo Press, Ontario, Canada, 260 pp. (1996)
    Pritchard, P. H., J. G. Mueller, J. C. Rogers, F. V. Kremer, and J. A. Glaser Oil spill bioremediation: experiences, lessons and results from the
    Exxon Valdez oil spill in Alaska. Biodegradation 3:315–335. (1992)
    Richard, J. Y., Vogel, T. M. Characterization of a soil bacterial consortium capable of degrading diesel fuel. International Biodeterioration & Biodegradation. 44:93~100 (1999)
    Rosenberg, E., R. Legman, A. Kushmaro, R. Taube, E. Adler, and E. Z.
    Ron Petroleum bioremediation: a multiphase problem. Biodegradation
    3:337–350. (1992)
    Rosenberg, E., and E. Z. Ron High- and low-molecular-mass microbial
    surfactants. Appl. Microbiol. Biotechnol. 52:154–162. (1999)
    Rouse, J. D., D. A. Sabatini, J. M. Suflita, and J. H. Harwell Influence
    of surfactants on microbial degradation of organic compounds. Crit.
    Rev. Microbiol. 24:325–370. (1994)
    Salah Jellali, Hocine Benremita, Paul Muntzer, Olivier Razakarisoa,
    Gerhard Scha‥fer A large-scale experiment on mass transfer of
    trichloroethylene from the unsaturated zone of a sandy aquifer to its interfaces(2003)
    Sandvik, E. I., and J. M. Maerker Application of xanthan gum for
    enhanced oil recovery. ACS Symp. Ser. 45:242–264. (1977)
    Schwille, F. Dense Chlorinated Solvents in Porous and Fractured Media Model Experiments. English Language Edition. Lewis Publishers, Chelsea, MI, 146 pp. (1988)
    Seklemova, E., Pavlova, A., Kovacheva, K. Biostimulation-based
    bioremediation of diesel fuel: field demonstration. Biodegradation12:311~316 (2001)
    Trevor J. T. and Elsas J. D. Use of alginate and other carriers for encapsulation of microbial cells. Microbial release 1, 61D69. (1992)
    U.S. EPA, Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers. EPA-542-R-99-002 (1999)
    U.S. EPA, How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites A Guide for Corrective Action Plan Reviewers. (EPA 510-B-94-003; EPA 510-B-95-007; and EPA 510-R-04-002) (1994)
    U.S. EPA, In-Situ Groundwater Bioremediation. (1995)
    U.S. EPA, Long-term Performance of Permeable Reactive Barriers Using Zero-valent Iron: An Evaluation at Two Sites. (2002)
    Venkateswaran, K., and S. Harayama Sequential enrichment of
    microbial populations exhibiting enhanced biodegradation of crude oil.
    Can. J. Microbiol. 41:767–775. (1995)
    Venosa, A. D., J. R. Haines, W. Nisamaneepong, R. Govind, S. Pradhan,
    and B. Siddique Efficacy of commercial products in enhancing oil
    biodegradation in closed laboratory reactors. J. Ind. Microbiol. 10:13–23. (1992)
    Wang Jianlong, Han Liping, Shi Hanchang, Qian Yi Biodegradation of quinoline by gel immobilized Burkholderia sp. (2001)
    Winter, J. D., J. E. Meyers, and W. R. Deever Process for treating oily
    sludge. U.S. patent no. 5,207,912. (1993)
    Willaert R. G., Baron G. V., and Backer L. Immobilized living cell systems. Modeling and Experimental Methods. John Wiley, Chichester, U.K. (1996)
    W. Kamolpornwijit, L. Liang, O.R. West, G.R. Moline, A.B. Sullivan Preferential flow path development and its influence on long-term PRB performance: column study. (2003)
    Yuste, L., M. E. Corbella, M. J. Turiegano, U. Karlson, A. Puyet, and F.
    Rojo Characterization of bacterial strains able to grow on high
    molecular mass residues from crude oil processing. FEMS Microbiol. Ecol.
    32:69–75. (2000)

    下載圖示 校內:2009-07-17公開
    校外:2009-07-17公開
    QR CODE