簡易檢索 / 詳目顯示

研究生: 陳伯義
Chen, Po-I
論文名稱: 波浪與繫纜浮式結構物交互作用之研究
Study on the Interaction of Waves and A Floating Structure with Tethered Cables
指導教授: 李兆芳
Lee, Jaw-Fang
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 127
中文關鍵詞: 浮式結構物懸垂錨碇線性化相對應變有限元素法Morison 方程式
外文關鍵詞: floating structure, catenary moorings, linear related strain, finite element method
相關次數: 點閱:73下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對具繫纜之浮式結構與波浪互相作用的問題進行解析,分別為(1)波浪與自由浮式結構物互相作用的問題、(2)波浪與彈簧錨碇浮式結構物互相作用的問題以及(3)波浪與纜繩錨碇浮式結構物互相作用的問題。對波浪與自由浮式結構物互相作用的問題,考慮波浪、浮式結構物於頻率領域之完整互相作用問題,結構的運動、波浪場包含衝動(surge)、浮動(heave)以及翻轉(pitch)等三個運動自由度,以Sarpakaya and Isaacson (1981)的求解概念將問題分解為散射問題與三個方向的單位振幅結構物運動之輻射問題,最後利用結構物運動方程式合併求解整個問題。理論求解散射問題以及結構物水平方向運動和垂直方向運動之輻射問題,在文獻中已有完整敘述,本研究主要為提出單位振幅結構物轉動之輻射問題的理論解析解,然後合併散射問題與三個自由度的輻射問題來描述結構物運動,利用本研究的解析解計算浮式結構物之運動,與波浪的反射係數,與Ijima (1972)的數值計算結果比較,顯示很好的一致性。對波浪與彈簧錨碇浮式結構物互相作用的問題,文中考慮波浪、浮式結構物、受波浪流阻力的彈簧於頻率領域之完整互相作用問題,結構的運動、波浪場與作用於彈簧的Morison波力均包含三個運動自由度,而Morison波力為一非性線項,本研究以Lorentz’s hypothesis of equivalent work來將此項線性化,將彈簧的Morison波力與繫留力以及作用於浮式結構物的波力利用結構物運動方程式合併求解整個問題,本研究的解析解計算纜繩無阻力作用的波浪反射係數與Ijima (1972)的計算結果顯示很好的一致性,纜繩受阻力的計算上,隨摩擦力係數的增加在共振頻率處會發生更大的能量損失,且慣性力係數對能量損失的改變輕微,而結構物的運動振幅於共振頻率處隨阻力的增加而減小。對波浪與纜繩錨碇浮式結構物互相作用的問題,本研究將纜繩分成有限個單元彈性體,且其運動方程式以Hamilton虛功法表示,考慮纜繩單元為小變形,將線性相對應變代入,則可得線性化的彈性單元運動方程式,以元素的概念引入,則可得纜繩有限元素法的質量矩陣、剛度矩陣與外力矩陣,其中外力包含纜繩的Morison波力與繫留力,利用繫纜點的邊界條件、合併浮式結構物與纜繩的運動方程聯立求解,本研究與Sannasiraj et al. (1998)的實驗結果相互比較顯示有良好的一致性,在轉動的自然頻率處,轉動對於水平運動會產生影響,波浪對纜繩的阻力在垂直運動與轉動的自然頻率處具有的影響,且對於轉動方向的運動,其能量的消散有顯著的效益。

    This study developed an analytical solution in the frequency domain that considers the interactions among waves, floating structures, and mooring lines. The proposed solution was applied to investigate a problem involving a moored floating structure subjected to incident waves. The floating structure was considered as moving with three degrees of freedom, namely surge, heave, and roll. The mooring lines were simplified as springs, and the springs were assumed to be subjected to a Morison-type wave force. In the proposed solution, the wave field is first expressed as a problem involving a superposition of scattering and radiation waves. The wave field to be solved is expressed in terms of unknown structural motions, and wave forces acting on the floating structure and mooring springs are expressed in terms of the unknown wave fields. The solution to the coupling problem is obtained by solving the equations of motion of the floating structure with moorings. The proposed solution was simplified for evaluating cases without moorings, and its results are consistent with those of a solution in the literature. The presented solution was also used to investigate the effects of the mooring springs with added wave forces on wave fields and structural motions. The resonant amplitudes associated with the structure’s motion decreased, and the peaks of resonant frequencies shifted slightly toward lower frequencies. The added mass and radiation damping coefficients versus dimensionless wave frequencies are also presented.

    摘要 ......... I 目錄 ........ XIII 圖目錄 ........ XV 第一章 緒論 ........ 1 1.1 前言................ 1 1.2 前人研究 ............... 2 1.3 本文研究方法 .............. 6 1.4 本文內容 ............... 8 第二章 波浪與自由浮式結構物互相作用之理論解析 .... 9 2.1 問題描述 ............... 9 2.2 單位振幅翻轉之輻射問題 ........... 11 2.3 結構物運動方程式 ............ 16 2.4 結構物的附加質量與輻射阻尼 .......... 21 2.5 計算結果與討論 .............. 23 第三章 波浪與彈簧錨碇之浮式結構物互相作用之理論解析 ... 39 3.1 問題描述 ............... 39 3.2 邊界值問題 ............... 40 3.3 浮式結構物之繫留力 ............ 44 3.4 彈簧受力之Morison 方程式 ........... 46 3.5 結構物運動方程式 ............ 48 3.6 計算結果與討論 ............. 52 第四章 波浪與纜繩錨碇之浮式結構物互相作用之解析 ... 63 4.1 問題描述 ............... 63 4.2 繫纜與浮式結構物的平衡位置 ........... 65 XIV 4.3 纜繩運動方程式 ............. 69 第五章 結論與建議 ...... 104 5.1 波浪與自由浮式結構物互相作用之理論解析 ........ 104 5.2 波浪與彈簧錨碇之浮式結構物互相作用之理論解析 ..... 104 5.3 波浪與纜繩錨碇之浮式結構物互相作用之解析 ....... 105 附錄A 積分量值與積分常數 ...... 112 附錄B 均勻荷重之纜繩懸垂方程式 ...... 114 附錄C 纜繩元素的幾何關係式 ...... 117 附錄D 纜繩元素的彈性關係 ...... 119 附錄E 結構物與纜繩之係數矩陣表示式 ..... 120 附錄F 繫纜之計算條件 ....... 125

    1. Abul-Azm, A.G. and Gesraha, M.R., “Approximation to the hydrodynamics of floating pontoons under oblique waves,” Ocean Engineering, Vol. 27, No. 4, pp. 365-384, 2000.
    2. Black, J.L., Bray, M.C.G. and Mei, C.C., “Radiation and scattering of water waves by rigid bodies,” Journal of Fluid Mechanics, Vol. 46, Part.1, pp. 151-164, 1971.
    3. Chen X. H., Studies on dynamic interaction between deep-water floating structures and their mooring/tendon systems, Ph. D. Dissertation, Texas A&M University, 2002.
    4. Drimer, N.,Agnon, Y. and Stiassnie, M., “A simplified analytical model for a floating breakwater in water of finite depth,” Applied Ocean Research, Vol. 14, pp. 33-41, 1992.
    5. Garrison, C.J. “Dynamic response of floating bodies,” OTC2067, pp. 365-378, 1974.
    6. Huang, M.C., “Finite element analysis of wave interference effects between large structures,” Ph.D. Thesis, Oregon State University, Oregon, 1982.
    7. Ijima, T., Tabuchi, Y. and Yumura, Y., “Scattering of surface waves and the motions of a rectangular body by waves in finite water depth,” Proceedings of Japan Society of Civil Engineers, No. 202, pp. 33-48, June, 1972.
    8. Ijima, T., Yamamoto, T. and Yoshida, A., “Dynamics of elastically moored floating objects,” Applied Ocean Research, Vol. 2, No. 2, pp. 85-92, 1980.
    9. Jain, R. K., A simple method of calculating the equivalent stiffnesses in mooring cables, Applied Ocean Research, Vol. 2, No.3, pp139-142, 1980
    10. Kim B. W., Sung H. G., Kim J. H., Hong S.Y. “Comparison of linear spring and nonlinear FEM methods in dynamic coupled analysis of floating structure and mooring system, ” Journal of Fluids and Structures, Vol. 42, pp. 205-227, 2013.
    11. Koutandos, E., Prinos, P. and Gironella, X.“Floating breakwaters under regular and irregular wave forcing:reflection and transmission characteristics, ” Journal of Hydraulic Research, Vol. 43, No. 2, pp. 174-188, 2005.
    12. Lee, C.P. and Lee, J.F., “Wave-induced surge motion of a tension leg structure,” Ocean Engineering, Vol. 20, No. 2, pp. 171-186, 1993.
    13. Lee, C.P., , “Dragged Surge Motion of A Tension Leg Structure,” Ocean Engineering, Vol. 21, No.3, pp. 311 ~ 328, 1994.
    14. Lee, J.F., “On the heave radiation of a rectangular structure,” Ocean Engineering, Vol. 22, No. 1, pp. 19-34, 1995.
    15 Lee Jeongwoo and Cho Woncheol “Hydrodynamic analysis of wave interactions with a moored floating breakwater using the element-free Galerkin method, ” Canadian Journal of Civil Engineering , Vol. 30(4), pp. 720-733, 2003.
    16. Lee H. H., Wang P. W. and Lee C.P. “Dragged surge motion of tension leg platforms and strained elastic tethers,”Ocean Engineering, Vol. 26, pp. 575 ~ 594, 1999.
    17. Lee, H. H., and Wang, P. W., “Analytical Solution on the Surge Motion of Tension Leg Twin-Platform Structural System,” Ocean Engineering, Vol. 27, pp. 393 ~ 415, 2000.
    18. Lee, H. H. and Wang, W. S., “On the Dragged Surge Vibration of a Twin TLP System with Multi-Interactions of Wave and Structures,” Journal of Sound and Vibration , Vol. 263, No. 4, pp. 743 ~ 774, 2003.
    19. Lee, H. H. and Wang, W. S., “The Dragged Surge Motion of Tension-Leg Type Fish Cage System Subjected to Multi-Interactions among Wave and Structures,” IEEE Journal of Oceanic Engineering, Vol. 30, No. 1, pp. 59 ~ 78, 2005.
    20. Leonard, J. W., and Nath, J. H., Comparison of finite element and lumped parameter Method for oceanic cable, Engineering Structures, Vol. 3, pp 153-167, 1981
    21. Loukogeorgaki, E. and Angelides, D. C. “Stiffness of mooring lines and performance of floating breakwater in three dimensions,” Journal of Applied Ocean Research, Vol. 27, pp. 187-208, 2005.
    22. Loukogeorgaki, E., Vasileiou, M. and Rapanta, E. “3D experimental and numerical investigation of the performance of a modular floating structure,” Proceedings of the Twentyfifth International Ocean and Polar Engineering Conference, Hawaii, HI, pp. 1548-1555, 2015.
    23. Mei, C.C., “The applied dynamics of ocean surface waves,” John Wiley& Sons, Inc., New York, 1983.
    24. Mavrakos, S.A., “Hydrodynamic characteristics of floating toroidal bodies,” Ocean Engineering, Vol. 24, No. 4, pp. 381-399, 1997.
    25. Ogawa Y., Fundamental analysis of deep sea mooring line in static equilibrium, Applied Ocean Research, Vol. 6, No.3, pp140-147, 1984
    26. Rahman, M. A., Mizutani, N. and Kawasaki,K., “Numerical modeling of dynamic responses and mooring forces of submerged f loat ing breakwater,” Journal of Coastal Engineering, Vol. 53, pp. 799-815, 2006.
    27. Rajesh, Kannah T. and Natarajan, R. “Experimental study on the hydrodynamics of a floating production, storage, and offloading system, ” Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, Vol. 132, No. 1, pp. 66-70., 2006.
    28. Rosalesa, M.B. and Filipich, C.P., “Full modeling of the mooring non-linearity in a two-dimensional floating structure, ” International Journal of Non-Linear Mechanics, Vol. 41, pp. 1-17, 2006.
    29. Sannasiraj, S.A., Sundar V. and Sundaravadivelu, R., “Mooring forces and motion responses of pontoon-type floating breakwaters,” Ocean Engineering, Vol. 25, No. 1, pp. 27-48, 1998.
    30. Sarkar A. and Taylor R. E. “Effects of mooring line drag damping on response statistics of vessels excited by first and second-order wave forces,” Ocean Engineering, Vol. 27, pp. 667 ~ 686, 2000.
    31. Sarpkaya, T. and Isaacson, M., “Mechanics of wave forces on offshore structures,” Van Nostrand Reihold Co., 1981.
    32. Sollitt, C. K. and Cross, R. H.,. “Wave Transmission through Permeable Breakwaters,” Proc. 13th ICCE, Vol. 3, pp. 1827 ~ 1846, 1972.
    33. Wang K., Er G. K. and Iu V. P. “Nonlinear dynamical analysis of moored floating structures, ” International Journal of Non-Linear Mechanics, Vol. 98, pp. 189-197, 2018.
    34. Webster, R. L. and Palo, P. A., Experience in the development of a general-purpose mooring analysis capability, Proceedings of Ocean Structural Dynamic Symposium, Oregon State University, Corvallis, Oregon, pp 421-435, 1986
    35. Weng, W. K. and Chou, C. R., “Analysis of Responses of Floating Dual Pontoon Structure,” China Ocean Engineering, Vol. 20, No. 1, pp.91 ~ 104, 2007.
    36. Williams, A.N., Huang, Z., and Lee, H.S., “Floating pontoon breakwaters,” Ocean Engineering, Vol. 27, No. 3, pp. 221-240, 2000.
    37. Zheng Y.H., You, Y.G., and Shen, Y.M., “On the Radiation and Diffraction of Water Waves by a Rectangular Buoy,” Coastal Engineering, Vol. 31, pp. 1063-1082, 2004.
    38. Zheng Y.H., Shen, Y.M., You, Y.G. Wu, B.J. and Liu, R. “Scattering of Linear Water Waves by a Fixed and Infinitely Long Rectangular Structure Parallel to a Vertical Wall in Oblique Seas,” Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, Vol. 132, No. 2, pp. 106-113., 2006
    39. Yamamoto, T., Yoshida, A. and Ijima, T. “Dynamics of elastically moored floating objects,” In Dynamics Anylysis of Offshore Structures, pp. 106-113., 1980
    40. 黃材成、唐宏結、林志煌 「箱網養殖單點式錨碇系統分析」,第26屆海洋工程研討會論文集,第517-525頁,2004.

    下載圖示 校內:2022-09-04公開
    校外:2022-09-04公開
    QR CODE