簡易檢索 / 詳目顯示

研究生: 許守昇
Hsu, Shou-Sheng
論文名稱: 製備電紡複合薄膜及定量描述其機械性質
Preparation and Mechanical Characterization of Electrospun Composite Membranes
指導教授: 胡晉嘉
Hu, Jin-Jia
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 54
中文關鍵詞: 電紡絲雙軸力學測試纖維順向性複合材料
外文關鍵詞: electrospinning, biaxial mechanical testing, fiber alignment, composite materials
相關次數: 點閱:119下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從過去我們製備組織工程血管支架的經驗中,我們發現電紡纖維薄膜的機械性質取決於纖維的方向與纖維角度的分佈。為了能夠更深入了解纖維的方向與纖維角度的分佈對薄膜的機械性質的影響,在本研究中,我們分別使用了三種材料(PU, PCL, PLA),並且探討三種不同纖維排列程度(Random、中度纖維順向性、高度纖維順向性)與兩種角度(30度與45度)分佈在三種材料之電紡薄膜的力學性質。為滿足上述需求,我們利用旋轉滾筒收集紡絲,製備內含不同順向性纖維之薄膜。並將內含中、高度順向性之薄膜在特定角度下相疊以製備具特定方向之薄膜。另一方面,就電紡絲技術進行複合材料而言,有兩種複合方式,分別為混合溶液電紡(blend electrospinning)與共同電紡(co-electrospinning),在本研究中,我們將使用剛性較為接近的兩種材料(聚己內酯, 聚乳酸)以兩種不同複合方式複合,並探討其機械性質之差異。在力學測試的部份,我們利用雙軸測試薄膜力學性質。結果顯示,當纖維順向性越大,薄膜之兩軸所呈現的力學性質差異越大。內含兩股纖維與x軸夾角為45度薄膜之兩軸力學性質會相同,而內含兩股高度纖維順向性並且纖維與x軸夾角為45度薄膜其剛度會高於中度纖維順向性並且纖維與x軸夾角為45度薄膜。在複合材料的部分,兩種複合形式間有著很大的力學性質差異,在相同的成分比例下,混合溶液電紡薄膜的力學性質比共同電紡更接近聚乳酸。

    Previous studies showed that the mechanical properties of electrospun membranes depend on fiber orientations and fiber alignment. In order to better understand the effect of the fiber orientations and fiber alignment on the mechanical properties of the membranes, we used three materials (PU, PCL, and PLA) to fabricate the electrospun membranes. On the other hand, there are two methods of making composite membranes by the electrospinning, namely blend electrospinning and co-electrospinning. In this study, we used two materials (PCL and PLA) to fabricate composite membranes and examine the differences between the two methods. We collected the electrospun fibers on a grounded rotating drum with varying speeds to prepare membranes with varying fiber alignments. By stacking two membranes with aligned fibers, we made membrane with special direction. We used biaxial mechanical testing to examine the mechanical properties. The results showed that when the fibers were better aligned, the difference in stiffness between the two-axis of the membrane were greater. However, the membrane of the two-axis mechanical properties in off-axis fiber angles, 30° was the same. The stiffness of membranes with highly aligned fibers with off-axis fiber angles, 45° is higher than that of membranes the moderately aligned fibers with off-axis fiber angles, 45°. The composite membranes made by the methods had significantly different mechanical properties even with the same composite ratio. The mechanical properties of the composite membrane made by blend electrospinning were closer to PLA than the composite membrane made by co-electrospinning membranes.

    目錄 摘要 ii Abstract iii 1.1 電紡絲技術 1 1.1.1 電紡絲過程(electrospinning process) 2 1.1.2 電紡絲操作參數 3 1.1.3 電紡絲收集方式 4 1.2 研究目的 6 2.1 電紡絲材料 8 2.1.1 高分子聚合物 8 2.1.2 溶劑 8 2.2 電紡絲設備 8 2.3 雙軸力學測試儀器 9 2.4 實驗方法 10 2.4.1 單一材料 10 2.4.2 複合材料 14 2.4.2.1 電紡溶液配製 14 2.4.2.2 電紡參數設定 14 2.4.2.3 雙軸力學測試 15 2.4.2.4 共同電紡(co-electrospinning)螢光染色 15 2.4.3 本構方程式 15 第三章 實驗結果 20 3.1 單一材料 20 3.2 複合材料 27 3.3 本構方程式 29 第四章 討論 47 4.1 單一材料 47 4.2 複合材料 49 第五章 結論 51 參考文獻 52

    參考文獻
    1. Rayleigh, X.L., On the equilibrium of liquid conducting masses charged with electricity. London, Edinburgh, and Dublin Phil, 1882. Mag. 44, 184, 6.
    2. Formhals, A., US Patent. 1934. 1, 975, 504,.
    3. Reneker, D.H. and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996. 7(3): p. 216-223.
    4. Murugan, R. and S. Ramakrishna, Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Engineering, 2007. 13(8): p. 1845-1866.
    5. 徐嘉鴻, 以電紡絲法製備生物可分解性聚羥基丁酸酯纖維膜. 化學工程學系, 國立成功大學, 2005.
    6. Jiang, H., et al., Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules, 2004. 5(2): p. 326-33.
    7. Ki, C.S., et al., Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer, 2005. 46(14): p. 5094-5102.
    8. Zong, X.H., et al., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002. 43(16): p. 4403-4412.
    9. Demir, M.M., et al., Electrospinning of polyurethane fibers. Polymer, 2002. 43(11): p. 3303-3309.
    10. Kim, H.S., et al., Morphological characterization of electrospun nano-fibrous membranes of biodegradable poly(L-lactide) and poly(lactide-co-glycolide). Macromolecular Symposia, 2005. 224: p. 145-154.
    11. Wannatong, L., A. Sirivat, and P. Supaphol, Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polymer International, 2004. 53(11): p. 1851-1859.
    12. Yuan, X.Y., et al., Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International, 2004. 53(11): p. 1704-1710.
    13. Zuo, W.W., et al., Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polymer Engineering and Science, 2005. 45(5): p. 704-709.
    14. Geng, X.Y., O.H. Kwon, and J.H. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005. 26(27): p. 5427-5432.
    15. Zhao, Z.Z., et al., Preparation and properties of electrospun poly(vinylidene fluoride) membranes. Journal of Applied Polymer Science, 2005. 97(2): p. 466-474.
    16. 王盈淇, 溫度效應對電紡絲製備高分子纖維之影響. 化學工程學系, 國立成功大學2004.
    17. Fong, H., I. Chun, and D.H. Reneker, Beaded nanofibers formed during electrospinning. Polymer, 1999. 40(16): p. 4585-4592.
    18. Teo, W.E. and S. Ramakrishna, A review on electrospinning design and nanofibre assemblies. Nanotechnology, 2006. 17(14): p. R89-R106.
    19. Riboldi, S.A., et al., Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials, 2005. 26(22): p. 4606-4615.
    20. Wu, H.J., et al., Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. Journal of Materials Science-Materials in Medicine, 2010. 21(12): p. 3207-3215.
    21. Hu, J.J., et al., Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach. J Mech Behav Biomed Mater, 2012. 13: p. 140-55.
    22. Hu, J.J., et al., Development of fibroblast-seeded collagen gels under planar biaxial mechanical constraints: a biomechanical study. Biomech Model Mechanobiol, 2012.
    23. Adkins, A.E.G.a.J.E., Large Elastic Deformations. Oxford: Clarendon Press, 1970.
    24. Fung, Y.C., K. Fronek, and P. Patitucci, Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression. American Journal of Physiology, 1979. 237(5): p. H620-H631.
    25. Federico, S., et al., Convex Fung-type potentials for biological tissues. Meccanica, 2008. 43(3): p. 279-288.
    26. Sun, W. and M.S. Sacks, Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomechanics and Modeling in Mechanobiology, 2005. 4(2-3): p. 190-199.
    27. Holzapfel, G.A., T.C. Gasser, and R.W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity, 2000. 61(1-3): p. 1-48.
    28. Lanir, Y., Constitutive-Equations for Fibrous Connective Tissues. Journal of Biomechanics, 1983. 16(1): p. 1-12.
    29. Kidoaki, S., I.K. Kwon, and T. Matsuda, Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials, 2005. 26(1): p. 37-46.
    30. Kwon, I.K., S. Kidoaki, and T. Matsuda, Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials, 2005. 26(18): p. 3929-3939.
    31. Matsuda, T., et al., Mechano-active scaffold design of small-diameter artificial graft made of electrospun segmented polyurethane fabrics. Journal of Biomedical Materials Research Part A, 2005. 73A(1): p. 125-131.
    32. McKee, M.G., et al., Electrospinning of linear and highly branched segmented poly(urethane urea)s. Polymer, 2005. 46(7): p. 2011-2015.
    33. Zong, X.H., et al., Control of structure, morphology and property in electrospun poly (glycolide-co-lactide) non-woven membranes via post-draw treatments. Polymer, 2003. 44(17): p. 4959-4967.
    34. Zong, X.H., et al., Structure and morphology changes during in vitro degradation of electrospun poly(glycolide-co-lactide) nanofiber membrane. Biomacromolecules, 2003. 4(2): p. 416-423.
    35. Courtney, T., et al., Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials, 2006. 27(19): p. 3631-8.
    36. Yang, F., et al., Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005. 26(15): p. 2603-10.
    37. Lee, K.H., et al., Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends. Journal of Polymer Science Part B-Polymer Physics, 2003. 41(11): p. 1256-1262.
    38. Ding, B., et al., Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer, 2004. 45(6): p. 1895-1902.
    39. Haroosh, H., et al., Electrospun PLA : PCL/ halloysite nanotube nanocomposites
    fibers for drug delivery. 2011: p. 847-858.
    40. Baker, B.M., et al., Fabrication and modeling of dynamic multipolymer nanofibrous scaffolds. J Biomech Eng, 2009. 131(10): p. 101012.

    下載圖示 校內:2019-01-28公開
    校外:2019-01-28公開
    QR CODE