| 研究生: |
呂祈曄 Lyu, Chi-Ye |
|---|---|
| 論文名稱: |
貼附有壓電片之多跨距Timoshenko曲樑承受移動負載之動態分析 Dynamics Analysis of Moving Load on Multi-span Timoshenko Curved Beam Surface-Mounted with Piezoelectric Layer |
| 指導教授: |
王榮泰
Wang, Rong-Tyai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 振動 、曲樑 、壓電材料 、移動負載 、多跨距 |
| 外文關鍵詞: | Curved beam, Timoshenko beam, Piezoelectric, modal analysis, moving load, electric charge |
| 相關次數: | 點閱:110 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討一個貼附有壓電材料多跨距Timoshenko簡支撐曲樑之動態響應,整體結構上層為鋁樑,並在鋁樑下方貼附有壓電材料,每個跨距的弧度皆為 (=1rad)。利用模態法計算出整體結構之自然振動頻率,並探討結構受移動負載之動態響應。
為了解壓電曲樑運動行為,利用應力場、應變場、位移場推導出應變能和動能,並與外力所作之功結合Hamilton’s Principle求得壓電曲樑之運動方程式與邊界條件,再將運動方程式中之雙變數函數拆成時間與角度兩個單變數函數,配合邊界條件,計算出自然振動頻率和對應之模態示意圖,並討論不同參數的影響。
應用模態法分析結果為基礎,在壓電曲樑上施加一移動負載,並利用Runge-Kutta數值分析求解動態方程式,同時計算壓電曲樑之位移大小與壓電片所收集之電荷量,改變壓電片幾何條件…等參數,並施加電阻,探討位移及電荷量變化之情形。
The purpose of this thesis is to explore the dynamic analysis of the Multi-span Timoshenko curved beam with a piezoelectric layer fully mounted below. The governing equations and boundary conditions of the entire beam are derived via the Hamilton’s principle. The natural frequencies and the corresponding sets of mode shape functions are obtained by analytical method. The method of modal analysis is adopted to investigate the dynamic responses of the structure and the electric charge accumulated on the surfaces of the piezoelectric segment caused by a moving load. The effects of traveling velocity of the load and the geometric parameters of the piezoelectric layer on both histories of the displacement of the host beam and the electric charge accumulation on the piezoelectric surfaces are investigated.
There is a critical velocity of the traveling load to cause the absolute maximum deflection of the host beam. Furthermore, there is another critical velocity of the traveling load to induce the absolute maximum electric charge on the surfaces of the piezoelectric segment. A resistor is implemented to connect the top surface and the bottom surface of the piezoelectric layer to suppress the vibration of the beam. Moreover, the effect of span number on histories of the displacement of the structure and the electric charge accumulation on the piezoelectric surfaces also are investigated.
[1] G. E. Martin, “Determination of equivalent-circuit constants of piezoelectric resonators of moderately low-Q by absolute-admittance measurements,” Journal of the Acoustical Society of America, Vol. 26, No. 3, pp. 413-420, 1954.
[2] X. Q. Peng, K. Y. Lam, and G. R. Liu, “Active vibration control of composite beams with piezoelectrics: A finite element model with third order theory,” Journal of Sound and Vibration, Vol. 209, No. 4, pp. 635-649, Jan 29, 1998.
[3] J. J. Dosch, D. J. Inman, and E. Garcia, “A self-sensing piezoelectric actuator for collocated control,” Journal of Intelligent Material Systems and Structures, Vol. 3, No. 1, pp. 166-185, 1992.
[4] A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th ed., New York: Dover Publications, 1944.
[5] J. P. Den Hartog, Mechanical vibration: McGraw-Hill, 1956.
[6] E. Volterra, and J. Morell, “Lowest natural frequency of elastic arc for vibrations outside the plane of initial curvature,” Journal of Applied Mechanics, Vol. 28, No. 4, pp. 624-627, 1961.
[7] M. Petyt, and C. Fleischer, “Free vibration of a curved beam,” Journal of Sound and Vibration, Vol. 18, No. 1, pp. 17-30, 1971.
[8] E. Volterra, and J. H. Gaines, Advanced strength of materials, Englewood Cliffs, N.J.,: Prentice-Hall, 1971.
[9] S. Rao, “Effects of transverse shear and rotatory inertia on the coupled twist-bending vibrations of circular rings,” Journal of Sound and Vibration, Vol. 16, No. 4, pp. 551-566, 1971.
[10] J. M. M. e Silva, and A. P. Urgueira, “Out-of-plane dynamic response of curved beams—An analytical model,” International Journal of Solids and Structures, Vol. 24, No. 3, pp. 271-284, 1988.
[11] D. E. Panayotounakos, and P. S. Theocaris, “Dynamically loaded circular beam on an elastic-foundation,” Journal of Applied Mechanics-Transactions of the ASME, Vol. 47, No. 1, pp. 139-144, 1980.
[12] 朱桓頡, “曲梁之電壓與運動耦合關係,” 成功大學工程科學系學位論文, pp. 1-81, 2013.
[13] C. G. Culver, and D. J. Oestel, “Natural frequencies of multispan curved beams,” Journal of Sound and Vibration, Vol. 10, No. 3, pp. 380-&, 1969.
[14] K. Henchi, M. Fafard, G. Dhatt, and M. Talbot, “Dynamic behaviour of multi-span beams under moving loads,” Journal of Sound and Vibration, Vol. 199, No. 1, pp. 33-50, Jan 9, 1997.
[15] D. Y. Zheng, Y. K. Cheung, F. T. K. Au, and Y. S. Cheng, “Vibration of multi-span non-uniform beams under moving loads by using modified beam vibration functions,” Journal of Sound and Vibration, Vol. 212, No. 3, pp. 455-467, May 7, 1998.
校內:2022-07-27公開