簡易檢索 / 詳目顯示

研究生: 林宣融
Lin, Hsuan-Jung
論文名稱: 應用於立方衛星之無動力展開機構模擬分析與實驗
Simulation and Experiment of an Unpowered Deployable Mechanism for CubeSat Applications
指導教授: 梁育瑞
Liang, Yu-Jui
學位類別: 碩士
Master
系所名稱: 工學院 - 太空系統工程研究所
Institute of Space Systems Engineering
論文出版年: 2026
畢業學年度: 113
語文別: 中文
論文頁數: 99
中文關鍵詞: 立方衛星展開機構SolidWorksANSYS有限元素分析模態分析隨機振動分析振動測試
外文關鍵詞: CubeSat, Deployment Mechanism, SolidWorks, ANSYS, Finite Element Analysis, Modal Analysis, Random Vibration Analysis, Vibration Test
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對立方衛星的應用情景,設計並以模擬與實驗驗證一款具備無動力展開功能之展開機構。其管杆設計靈感源自NASA之Deployable Composite Booms(DCB)實驗,主體採用截面為唇形之碳纖維強化聚合物(Carbon Fiber Reinforced Polymer, CFRP)管材,具備高彎曲(Bending)與扭轉(Torsion)剛性。本機構利用儲存於材料內部之彈性能完成展開,無需任何主動驅動元件,藉由燒線機構控制展開時機,實現低功耗、低質量與高可靠度之結構部署。為確保本機構於發射過程中之結構完整性與任務安全性,本研究依據SpaceX所公布之Falcon Payload User's Guide 環境要求,執行模態分析與隨機振動分析兩項模擬,以預測其在動態環境下的結構行為與自然頻率分布。分析模型採用三種不同程度的幾何簡化策略,並針對粗細網格進行比較,探討簡化模型對頻率與加速度響應之影響。模擬結果顯示,本機構於三軸方向第一模態自然頻率均高於下限標準,且隨機振動應力反應均落於材料容許範圍內,結構安全裕度也滿足發射要求。進一步與實際振動實驗數據比對後發現,儘管模擬與實驗結果間存在一定落差,但整體自然頻率與振型分布具有一定程度的關聯性,足以作為設計初期之結構評估依據。本研究最終驗證了無動力展開機構的強度足以滿足發射商需求,也確認了簡化模型於立方衛星結構設計初期的重要性,並針對模態預測與隨機振動行為提供分析流程與誤差探討,為未來發展應用於立方衛星的無動力展開機構提供可行參考。

    This study presents the design and validation of a passive deployment mechanism for CubeSats, inspired by NASA's Deployable Composite Booms (DCB). The mechanism uses a CFRP boom with a lip-shaped cross-section to achieve high bending and torsional stiffness. Deployment is triggered via a burn wire system, utilizing stored elastic energy without active actuators, offering a lightweight and reliable solution.
    To ensure structural safety under launch conditions, modal and random vibration analyses were performed based on the SpaceX Falcon Payload User's Guide. Six geometric simplification strategies and mesh resolutions were compared. Results showed that the first natural frequencies exceeded the required limits and stress responses were within material tolerance. While some discrepancies with experimental results were noted, key trends aligned, validating the use of simplified models in early design stages.

    摘要 I ABSTRACT II 致謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 一、緒論 1 1.1 研究源起 1 1.2 立方衛星與展開機構 2 1.3 研究目的 6 二、文獻回顧 7 2.1 無動力展開機構背景簡介 7 2.2 概念來源 9 2.3 簡化模型 12 2.4 有限元素分析 12 三、模型設計與研究方法 14 3.1 模型結構設計 14 3.2 模型簡化 17 3.3 邊界條件設定 20 3.4 有限元素法網格建立 22 3.5 模態分析模擬 26 3.6 隨機振動分析模擬 27 3.7 模態分析實驗 30 3.8 隨機振動分析實驗 31 3.9 展開功能測試 32 四、研究結果 33 4.1 完整模型 33 4.1.1 Mesh 2(粗網格) 33 4.1.2 Mesh 7(細網格) 39 4.1.3 小結 44 4.2 微簡化模型 44 4.2.1 Mesh 2(粗網格) 44 4.2.2 Mesh 7(細網格) 50 4.2.3 小結 55 4.3 大幅簡化模型 55 4.3.1 Mesh 2(粗網格) 55 4.3.2 Mesh 7(細網格) 61 4.3.3 小結 66 4.4實驗 66 4.4.1 模態分析實驗 67 4.4.2 隨機振動分析實驗 71 4.4.3 展開功能測試 73 4.5 影響結果的因素 74 五、結論與未來發展 75 5.1 結論 75 5.2 應用與發展 76 六、參考文獻 78

    [1] "CubeSat Design Specification(1U – 12U) REV 14.1," 2022.
    [2] J. F. Sauder, C. A. Gebara, and M. Arya, "A survey of cubesat deployable structures: the first decade," in AIAA Scitech 2021 Forum, 2021, p. 1704.
    [3] J. Russell and N. Kilkenny. "ALBus hopes to increase power availability for CubeSats." National Aeronautics and Space Administration. https://www.nasa.gov/general/albus-hopes-to-increase-power-availability-for-cubesats/ (accessed May 23, 2025).
    [4] NASA. "Deployable Composite Booms (DCB)." National Aeronautics and Space Administration. https://www.nasa.gov/centers-and-facilities/langley/deployable-composite-booms-dcb/ (accessed May 22, 2025).
    [5] J. M. Fernandez, "Advanced deployable shell-based composite booms for small satellite structural applications including solar sails," in International Symposium on Solar Sailing 2017, 2017, no. NF1676L-25486.
    [6] J. A. Firth and M. R. Pankow, "Minimal unpowered strain-energy deployment mechanism for rollable spacecraft booms: ground test," Journal of Spacecraft and Rockets, vol. 57, no. 2, pp. 346-353, 2020.
    [7] C. Sickinger, L. Herbeck, and E. Breitbach, "Structural engineering on deployable CFRP booms for a solar propelled sailcraft," Acta Astronautica, vol. 58, no. 4, pp. 185-196, 2006.
    [8] S. D. Horner, W. K. Wilkie, J. M. Fernandez, P. L. Brown, and J. L. Fishman, "Advanced Composite Solar Sail System: Demonstrating Deployable Composite Solar Sails for Future Deep Space Small Spacecraft," 2019.
    [9] S. Meyer, M. Hillebrandt, M. Straubel, and C. Huhne, "Design of the De-Orbit Sail Boom Deployment Unit," in 13th European Conference on Spacecraft Structures, Materials & Environmental Testing, 2014, vol. 727, p. 179.
    [10] J. M. Fernandez and A. J. Lee, "Bistable collapsible tubular mast booms," in International Conference on Advanced Lightweight Structures and Reflector Antennas, 2018, no. NF1676L-30217.
    [11] K. Ikeya et al., "Significance of 3U CubeSat OrigamiSat-1 for space demonstration of multifunctional deployable membrane," Acta Astronautica, vol. 173, pp. 363-377, 2020.
    [12] H. Nakanishi et al., "Development of nano-satellite OrigamiSat-1 with highly functional deployable membrane," in 4th International Symposium on Solar Sailing, 2017: Japan Space Forum Tokyo, Japan, pp. 2-5.
    [13] A. Elshaal, W. F. A. W. Aasim, M. Okasha, E. Sulaeman, and A. H. Jallad, "Evaluation of Finite Element Analysis Techniques for CubeSat Structure: A Comparative Study on Alainsat-1," in IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium, 2023: IEEE, pp. 372-375.
    [14] L. d. B. P. S. d. Sá, "Modelling and Validation of Finite Element Structural Analysis of ISTSat-1," 2021.
    [15] J. Plumb. "Finite Element Analysis – Predicting the Real World." Cambridge Design Technology. (accessed May 26, 2025).
    [16] M. Graba and A. Grycz, "Application of finite element method in industrial design, example of an electric motorcycle design project," Open Engineering, vol. 14, no. 1, p. 20220569, 2024.
    [17] A. Ampatzoglou and V. Kostopoulos, "Design, analysis, optimization, manufacturing, and testing of a 2U CubeSat," International Journal of Aerospace Engineering, vol. 2018, no. 1, p. 9724263, 2018.
    [18] V. M. Chau and H. B. Vo, "Structural dynamics analysis of 3-U CubeSat," Applied Mechanics and Materials, vol. 894, pp. 164-170, 2019.
    [19] S. M. Furger, "Analysis and mitigation of the cubesat dynamic environment," California Polytechnic State University, 2013.
    [20] C. Järmyr Eriksson, "Finite Element Analysis of Stresses in the MIST CubeSat due to Dynamic Loads During Launch," ed, 2021.
    [21] J. S. Milne Jr and D. S. Kaufman, "General environmental verification specification," in 21st Aerospace Testing Seminar, 2003.
    [22] "GENERAL ENVIRONMENTAL VERIFICATION STANDARD (GEVS) For GSFC Flight Programs and Projects," 2013.
    [23] "Falcon Payload User's Guide Version 8," 2025.
    [24] P. Rivera, E. Elghandour, and X. Wu, "Numerical analysis study to validate experimental vibration results of CubeSats," International Journal of Sustainable Materials and Structural Systems, vol. 5, no. 4, pp. 285-313, 2021.
    [25] J. Herrera-Arroyave, B. Bermúdez-Reyes, J. Ferrer-Pérez, and A. Colín, "CubeSat system structural design," in 67th International Astronautical Congress. Guadalajara, Mexico, 2016, pp. 1-5.
    [26] G. I. Barsoum, H. H. Ibrahim, and M. A. Fawzy, "Static and random vibration analyses of a university CubeSat project," in Journal of Physics: Conference Series, 2019, vol. 1264, no. 1: IOP Publishing, p. 012019.
    [27] A. Israr, "Vibration and modal analysis of low earth orbit satellite," Shock and vibration, vol. 2014, no. 1, p. 740102, 2014.
    [28] A. Elshaal, M. Okasha, E. Sulaeman, A. H. Jallad, W. F. Aizat, and A. B. Alzubaidi, "Structural Analysis of AlAinSat-1 CubeSat," The Egyptian Journal of Remote Sensing and Space Sciences, vol. 27, no. 3, pp. 532-546, 2024.
    [29] E. W. Grafarend, Linear and nonlinear models: fixed effects, random effects, and mixed models. de Gruyter, 2006.
    [30] 黃健生. "安全界限,安全裕度." 力學名詞辭典. https://pedia.cloud.edu.tw/Entry/Detail/?title=%E5%AE%89%E5%85%A8%E7%95%8C%E9%99%90%EF%BC%8C%E5%AE%89%E5%85%A8%E8%A3%95%E5%BA%A6&search=%E5%85%A8 (accessed April 28, 2025).
    [31] AnsysWorkbench, "Engineering data, materials selection, aluminum alloy Wrought T6 AA6061," 2023.
    [32] D. J. Kessler, N. L. Johnson, J. Liou, and M. Matney, "The kessler syndrome: implications to future space operations," Advances in the Astronautical Sciences, vol. 137, no. 8, p. 2010, 2010.
    [33] J. Drmola and T. Hubik, "Kessler syndrome: System dynamics model," Space Policy, vol. 44, pp. 29-39, 2018.
    [34] C. Palla and J. Kingston, "Forecast analysis on satellites that need de-orbit technologies: future scenarios for passive de-orbit devices," CEAS Space Journal, vol. 8, pp. 191-200, 2016.

    QR CODE