| 研究生: |
李智欣 Li, Zhi-Xin |
|---|---|
| 論文名稱: |
Triangle與TetGen網格產生器
於有限元素程式之使用 The use of Triangle and TetGen mesh generator in finite element code |
| 指導教授: |
何旭彬
Ho, Shi-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 狄勞尼 、網格產生器 、有限元素法 |
| 外文關鍵詞: | mesh generator, Finite element, Delaunay |
| 相關次數: | 點閱:96 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究主要在分析與比較目前各種將二維圖形狄勞尼三角網格化及三維圖形狄勞尼四面體化的各種演算法,並探討各種網格化演算法使用於有限元素分析軟體中的效果。
本文有效地經由所撰寫的Matlab程式碼,將二維三角網格產生器Triangle、三維四面體網格產生器TetGen分別與本研究室自行開發的有限元素法程式結合。透過二維平面應力與三維實體之範例的分析與模擬,最後與商用軟體ANSYS相驗證。由本文的模擬結果與ANSYS的輸出數據相比較後,可發現二者十分相近。
Abstract
The main goal of this research was to compare the algorithms to triangularlize the two dimensional geometry and to tetrahedrilize the three dimensional geometry. The effect of the above algorithms to be used in the finite element calculations was studied.
The two dimensional triangulation mesh generation code Triangle and the three dimensional tetrahedrization mesh generation code TetGen was combined with our finite element code by the use of the Matlab programming language. Two dimensional plane stress and three dimensional solid problems were used as examples to show the effect of our code. When compared with the results from the commercial code ANSYS, the results from our code are similar to the results from ANSYS.
參考文獻
[1] H. Bao, J. Bielak, O. Ghattas, D. R. O'Hallaron, L. F. Kallivokas, J. R. Shewchuk, and J. Xu, Earthquake Ground Motion Modeling on Parallel Computers, Supercomputing '96 (Pittsburgh, Pennsylvania), November 1996.
[2] J. R. Shewchuk, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator, First Workshop on Applied Computational Geometry (Philadelphia, Pennsylvania), pages 124-133, ACM, May 1996.
[3] J. R. Shewchuk, Delaunay Refinement Algorithms for Triangular Mesh Generation, Computational Geometry: Theory and Applications, 22(1-3):21-74, May 2002.
[4] H. Edelsbrunner, Geometry and Topology for Mesh Generation . Cambridge University Press, 2001.
[5] F. P. Preparata and M. I. Shamos, Computational Geometry. Springer-Verlag, New York/Berlin, 1985.
[6] D. T. Lee and B. J. Schachter, Two Algorithms for Constructing a Delaunay Triangulation. International Journal of Computer and Information Sciences, 9(3):219-242,1980.
[7] R. A. Dwyer, A Faster Divide-and-Conquer Algorithm for Constructing Delaunay Triangulations. Algorithmica 2(2):137-151, 1987.
[8] L. P. Chew, Constrained Delaunay Triangulations. Algorithmica 4(1):97-108,1989.
[9] D. T. Lee and A. K. Lin, Generalized Delaunay Triangulation for Planar Graphs. Discrete & Computational Geometry 1:201-217, 1986.
[10] H. Edelsbrunner and T. S. Tan, An Upper Bound for Conforming Delaunay Triangulations. Discrete & Computational Geometry 10(2):197-213, 1993.
[11] D. Cohen-Steiner, Éric Colin de Verdière,and M. Yvinec, Conforming Delaunay Triangluations in 3D. Proceedings of the eighteenth Annual Symposium on Computational Geometry (Barcelona, Spain), Pages 199-208. June 2002.
[12] M. Murphy, D. M. Mount, and C. W. Gable, A Point-Placement Strategy for Conforming Delaunay Tetrahedralizaion. International Journal of Computational Geometry & Applications 11(6):669-682, 2001.
[13] L. P. Chew, Guaranteed-Quality Triangular Meshes. Technical Report TR-89-983, Department of Computer Science, Cornell University, 1989.
[14] L. P. Chew, Guaranteed-Quality Mesh Generation for Convex Surfaces. Proceedings of the Ninth Annual Symposium on Computational Geometry (San Diego, California), pages 274-280. Association for Computing Machinery, May 1993.
[15] J. Ruppert, A Delaunay Refinement Algorithm for Quality Two-Dimensional Mesh Generation. Journal of Algorithms 18(3):548-585, May 1995.
[16] L. P. Chew, Guaranteed-Quality Delaunay Meshing in 3D. Proceedings of the Thirteenth Annual Symposium on Computational Geometry. Association for Computing Machinery, 1997.
[17] G. L. Miller, D. Talmor, S. H. Teng, N. J. Walkington, A Delaunay Based Numerical Method for Three Dimensions: Generations, Formulation, and Partition. In “Proc. 27th Ann. ACM Sympos. Theory Comput.,” 683-692, 1995.
[18] J. R. Shewchuk, Delaunay Refinement Mesh Generation, Ph.D. thesis, School of Computer Science, Carnegie Mellon University, 1997. Available as Technical Report CMU-CS-97137.
[19] J. R. Shewchuk, A Condition Guaranteeing the Existence of Higher-Dimensional Constrained Delaunay Triangulations, Proceedings of the Fourteenth Annual Symposium on Computational Geometry (Minneapolis, Minnesota), pages 76-85, Association for Computing Machinery, June 1998.
[20] D. S. Burnett, Finite Element Analysis : from Concepts to Applications. Addison-Wesley, 1987.
[21] H. Edelsbrunner, N. Shah, Incremental Topological Flipping Works for Regular Triangulations. Algorithmica, 15:223-241, 1996.
[22] B. Joe, Three-Dimensional Triangulations from Local Transformations. SIAM J. Sci. Statist. Comput. 10:718-741, 1989.
[23] B. Joe, Construction of Three-Dimensional Triangulations Using Local Transformations. Computer Aided Geometric Design 8:123-142, 1991.
[24] J. R. Shewchuk, Mesh Generation for Domains with Small Angles, Proceedings of the Sixteenth Annual Symposium on Computational Geometry (Hong Kong), pages 1-10, Association for Computing Machinery, June 2000.