| 研究生: |
施育仁 Shih, Yu-Jen |
|---|---|
| 論文名稱: |
以水熱程序進行向陽絹雲母剝層改質之研究 Delamination and Alteration of Sericite by Hydrothermal Process |
| 指導教授: |
黃紀嚴
Huang, Chi-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 次甲基藍 、水熱程序 、絹雲母 、剝層 、奈米黏土 |
| 外文關鍵詞: | hydrothermal process, sericite, nano clay, methylene blue, delaminate |
| 相關次數: | 點閱:89 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
絹雲母為片狀矽酸鹽礦物,如同白雲母的細微粉末,結構層間距離屬奈米層級(d002≈10Å),由於層間陽離子的強鍵結力,絹雲母在常溫壓下不具任何的膨潤性,使得雲母插層研究現下仍處弱勢。在奈米黏土研究方面,一些具膨脹性黏土已研發出奈米黏土-高分子複合材料,多應用於電子元件的絕緣封裝材,電池材料,汽車零件材料…等。絹雲母若能擴張結構層間距離及增大比表面積進而提供後續有機、無機的插層作業,達到片狀結構的完全剝離,則改質絹雲母將會是一種性質優異的奈米顆粒。
本研究採水熱程序添加高濃度硝酸鋰進行絹雲母層間離子的置換,其目的在於除了高溫高濃度硝酸鋰的反應條件之外,亦希望藉由水熱釜容器的密閉環境在高溫下所提供的壓力(170 ℃,~10 atm)能更有效促使絹雲母層間陽離子的置換。分析方法採用原子吸收光譜(AA)量測層間鉀離子置換量,X-光繞射分析鑑定絹雲母層間距離,次甲基藍吸附法及BET法測定絹雲母比表面積,並以安德力森瓶沉降試驗量測改質前後粒徑縮減的程度。
水熱程序進行絹雲母層間的離子交換,最有效的處理條件可使層間鉀離子置換量達72 %;絹雲母結構晶面間距已由原礦的d002 ≈ 10 Å擴張呈11.8 Å,甚至有21.6 Å的繞射峰出現;比表面積由20 m2/g增大為240 m2/g,陽離子交換能力(CEC) 由5meq/100 g增大為80 meq/100 g,粒徑縮減程度約50 %,顯示改質絹雲母不僅擴張層間距離及增大比表面積,亦從粒徑縮減得證絹雲母片狀結構的剝離。
Sericite is a layered silicates mineral, generally recognized as white fine powders of muscovite in form, with nano-sized layer structure, interlayer spacing of (002) plane is 10 Å. Sericite exhibits a much lower cation exchange capacity at ambient condition because of the bond strength of remaining potassium ions in the interlayer. In researches of nano clay, the successful clay-polymer nanocomposites that applied widely to insulated packages of electronic components, raw materials of batteries and vehicles, etc. were prepared from expandable clay minerals. The altered sericite with ultrahigh specific surface area, partially delaminated by replacing interlayer potassium ions with lager hydration lithium ions, will further the possibilities of organic or inorganic intercalation and fully exfoliation as the presentation of plate nano particles.
The hydrothermal process promotes more interlayer cations exchanged effectively by lithium ions under pressurized condition of the hydrothermal container. The amount of interlayer potassium ions replaced by lithium ions were determined by AAS. X-ray diffraction indicates the d-values of altered sericite. The specific surface area was measured by both methylene blue (MB) and nitrogen adsorption (B.E.T.) experiments. However, particle size distribution would be measured by an Andreasen pipette sedimentation technique.
The X-ray diffraction pattern of hydrothermal altering sericite with about 72 % exchanged interlayer ions shows the expanded d-values of 11.8 Å and 21.6 Å. A drastic increase in properties were observed such as the specific surface area from 20 m2/g to 240 m2/g, the cation exchange capacity (CEC) from 5 meq/100g to 80 meq/100g, as well as 50% size reduction. Layer structures of sericite indeed weakened and delaminated under hydrothermal process which were strongly supported by the results of larger specific surface area and more expanded mica sheet, also size reduction.
1. 經濟部礦業司,”台灣地區雲母之利用需求與流向調查”,台灣礦業 Vol. 47第四期,
pp. 39-55,1995年。
2. 經濟部礦業司,”台灣片狀矽酸鹽礦物之利用開發”,經濟部礦業司八十九年度委辦計
劃,2000年。
3. 趙杏媛,張有瑜,”黏土礦物與黏土礦物分析”,海洋出版社,1990年5月。
4. Katsutoshi Tomita, “Experimental Transformation of 2M Sericite into a
Rectorite-Type Mixed-Layer Mineral by Treatment with Various Salts”, Clays
and Clay Minerals 25, pp. 302-308, 1977.
5. Maged A. Osman, Christoph Moor, Walter R. Caseri, and Ulrich W. Suter,
“Alkali Metals Ion Exchange on Muscovite Mica”, Journal of Colloid and
Interface Science 209, pp. 232-239, 1999.
6. Seung Yeop Lee and Soo Jin Kim, “Delamination Behavior of Silicate Layers by
Adsorption of Cationic Surfactants”, Journal of Colloid and Interface Science
248, pp. 231-238, 2002.
7. Stephen P. Altaner and Norma Vergo, “Sericite from the Silverton caldera,
Colorado: Discussion”, American Mineralogist 73, pp. 1472-1474, 1988.
8. Dennis D. Eberl, Jan Srodon, Mingchou Lee, P. H. Nadeau, H. Roy Northrop,
“Sericite from the Silverton caldern, Colorado: Correlation among structure,
composition , origin, and particle thickness”, American Mineralogist 72, pp.
914-934, 1987.
9. Lorenz P. Meier, Ronald A. Shelden, Walter R. Caseri, and Ulrich W. Suter,
“Polymerization of Styrene with Initiator Ionically Bound to High Surface Area
Mica: Grafting via an Unexpected Mechanism”, Macromolecules 27, pp.
1637-1642, 1994.
10. 詹正雄,”直接混慘法製造聚丙烯/黏土奈米複合材料”,紡織速報 10:7,pp. 29-31,
2002年7月。
11. 彭立祥,”評估「有機黏土/環氧樹脂奈米複合材料在封裝材料」之應用”,強化塑膠
84,pp. 38-48,2001年。
12. 季元貞,”淺談黏土-奈米及高分子複合材料”,紡織速報 9:2=100,pp. 46-50,2001
年2月。
13. 陳忠吾,”奈米黏土/高分子複合材料研發現況”,強化塑膠 91,pp. 16-20,2002年6
月。
14. Maged A. Osman, Walter R. Caseri, and Ulrich W. Suter, “H+/Li+ and H+/K+
Exchange on Delaminated Muscovite Mica”, Journal of colloid and interface
science 198, pp. 157-163, 1998.
15. Ronald A. Shelden, Walter R. Caseri, and Ulrich W. Suter, “Ion Exchange on
Muscovite Mica with Ultrahigh Specific Area”, Journal of colloid and
interface 157, pp. 318-327, 1993.
16. 張郇生,”從雲母來認識黏土礦物—兼論黏土”,地質 13:1,民國82年4月。
17. 王明光,”土壤環境礦物學”,藝軒圖書出版社,2000年1月。
18. 任磊夫,”黏土礦物與黏土岩”,地質出版社,1992年2月。
19. Stephen P. Altaner and Norma Vergo, “Sericite from the Silverton caldera,
Colorado: Discussion”, American Mineralogist 73, pp. 1472-1474, 1988.
20. Dennis D. Eberl, Jan Srodon, Mingchou Lee, P. H. Nadeau, H. Roy Northrop,
“Sericite from the Silverton caldera, Colorado: Reply”, American
Mineralogist 73, pp. 1475-1477, 1988.
21. 彭元興,”微米/奈米級無機材在製漿造紙業的應用”,Vol.5 No.2紙漿技術,2001年。
22. B. Veble, “Introduction to Clay Minerals. Chemistry, origins, uses and
environmental significance”, CHAPMAN & HALL, 1992.
23. Ralph E. Grim, “CLAY MINERALOGY”, McGRAW-HILL BOOK COMPANY, INC. 1953.
24. 郭魁士,”土壤學”,中國書局,1997年。
25. D. S. Orlov, “Soil Chemistry”, A. A. BALKEMA, pp. 96-98, 1992.
26. Drew Myers, “SURFACE, INTERFACES, AND COLLOIDS: principles and
applications”, WILEY-VCH, 1999.
27. 洪崑煌,”土壤化學”,國立編譯館,pp. 34-38,1996年。
28. Maged A. Osman and Ulrich W. Suter, “Dodecyl Pyridinium/Alkali Metals Ion
Exchange on Muscovite Mica”, Journal of Colloid and Interface Science 214,
pp. 400-406, 1999.
29. Garrison Sposito, “The Chemistry of Soils”, OXFORDUNIVERSITY PRESS, pp.
154-156.
30. 吳景雅,”向陽絹雲母之離子交換性質研究”,國立成功大學資源工程學系碩士論文,
2000年。
31. Pham Thi Hang and G. W. Brindley, “Methylene blue adsorption by clay
minerals. Determination of surface areas and cation exchange capacities”,
Clays and caly mineral 18, pp. 203-212. 1970.
32. G. W. Brindley and T. D. Thompson, “Methylene Blue Adsorption by
Montmorillites. Determination of Surface Areas and Exchange Capacities with
Different Initial Cation Surfactants”, Israel Journal of Chemistry. Vol. 8,
pp. 409-415, 1970.
33. Roy K. Taylor. “Cation Exchange in Clays and Mudrocks by Methylene Blue” J.
Chem. Tech. Biotechnol. 1985, 35A, 195-207.
34. John Bensted, “Application of the Methylene Blue Test to Cement Raw
Materials”, J. Chem. Tech. Biotechnol 35A, pp. 181-184, 1985.
35. C. H. Chu and L. J. Johnson, “CATION-EXCHANGE BEHAVIOR OF CLAYS AND
SYNTHETIC ALUMINOSILICA GELS”, Clays and Clay Minerals, Vol. 27, No. 2, pp.
87-90, 1979.
36. Maged A. Osman and Ulrich W. Suter, “Determination of the Cation-Exchange
Capacity of Muscovite Mica ”, Journal of Colloid and Interface Science 224,
pp. 112-115, 2000.
37. G. Hahner, A. Marti, N. D. Spencer, and W. R. Caseri, “Orientation and
Electronic Structure of Methylene Blue on Mica: A Near Edge X-Ray Adsorption
Fine Structure Spectroscopy Study”, J. Chem. Phys, Vol. 104, No. 19, 15 May
1996.
38. Miguel G. Neumann, Fergus Gessner, Carla C. Schmitt, and Rogerio Sartori,
“Influence od the Layer Charge and Clay Particle Size on the interactions
between the Cationic Dye Methylene Blue and Clays in an Aqueous Suspension”,
Journal of Colloid and Interface Science 255, pp. 254-259, 2002.
39. Juraj Bujdak and Peter Komadel, “Interaction of Methylene Blue with Reduced
Charge Montmorillonite”, J. Phys. Chem. B 101, pp. 9065-9068, 1997.
40. Ana P. P. Cione, Miguel G. Neumann, and Fergus Gessner, “Time-Dependent
Spectrophotometric Study of the Interaction of Basic Dyes with Clays”,
Journal of Colloid and Interface Science 198, pp. 106-112, 1998.
41. C. Breen and H. Loughlin, “The composition adsorption of methylene blue on
to Na-montmorillonite from binary solution with n-alklytrimethylammonium
surfactants”, Clay Minerals 29, pp. 775-783, 1994.
42. R. A. Schoonheydt and L. Heughebaert, “Clay Adsorbed Dyes: Methylene Blue on
Laponite”, Clay Minerals 27, pp. 91-100, 1992.
43. Chongrak Kaewprasit, Eric Hequet, Noureddine Abidi, and Jean Paul Gourlot,
“QUALITY MEASUREMENT. Application of Methylene Blue Adsorption to Cotton Fiber
Specific Surface Area Measurement: Part I. Methodology”, Journal of Cotton
Science 2, pp. 164-173, 1998.
44. S. Lowell and Joan E. Shields, “Powder Surface Area and Porosity”, CHAPMAN
AND HALL Ltd, 1984.
45. Giles, C. H., T. H. Macewan, S. N. Nakhwa and D. Simith, “Studies in
Adsorption. Part XI. A System of Classification of Adsorption Isotherms and
its Uses in Diagnosis of Adsorption Mechanisms and in Measurement of Specific
Surface Areas of Solids”, J. Chem. Soc., pp. 3973-3993, 1960.
46. Katsutoshi Tomita and Toshio Sudo, “TRANSFORMATION OF SERICITE INTO AN
INTERSTRATIFIED MINERAL”, Clays and Clay Minerals 19, pp. 263-270, 1971.
47. Katsutoshi Tomita, “SIMILARITIES OF REHYDRATION AND REHYDROXYLATION
PROPERTIES OF RECTORITE AND 2M CLAY MICAS”, Clays and Clay Minerals 22, pp.
79-85, 1973.
48. W. R. Caseri, R. A. Shelden, and U. W. Suter, “Preparation of muscovite with
ultrahigh specific surface area by chemical cleavage”, Colloid Polym Sci 270,
392-398, 1992.
49. F. Ikazaki, K. Uchida, K. Kamiya, A. Kawai, A. Gotoh, E. Akiba, “Chemically
assisted dry comminution of Sericite dry comminution method accompanied by
ion-exchange”, Int. J. Miner. Process 44-45, pp. 93-100, 1996.
50. 李文鐘,”選礦學”,國立編譯館,pp. 98-103,2000年。
51. 環境檢測方法彙編,行政院環保署環境檢驗所,1994年。
52. 林正雄,”粒徑分析儀(上)”,科儀新知 20:2,pp. 6-20,1998年10月。
53. 呂維明,戴怡德,”粉粒體粒徑量測技術”,高立圖書有限公司,1998年。