| 研究生: |
黃昱霖 Huang, Yu-Lin |
|---|---|
| 論文名稱: |
Kullback-Leibler 資訊管制圖警訊後之診斷 Post-alarm diagnosis of Kullback-Leibler information control charts |
| 指導教授: |
張裕清
Chang, Yu-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | Kullback-Leibler資訊理論 、管制圖警訊後之診斷 、同時監控製程平均數與變異數 、貝氏模型平均法 |
| 外文關鍵詞: | Kullback-Leibler information, control chart post-alarm diagnosis, joint monitoring process mean and variance, Bayesian model averaging |
| 相關次數: | 點閱:58 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
管制圖是用來確定製造過程是否在統計管制狀態下的一種工具,本研究則基於同時監控製程平均數與變異數的情況下,提出了一套用於管制圖警訊後的診斷工具,若於警訊後提供更多相關的診斷資訊,則可促進工程師對於該變異之識別。常見的警訊後相關診斷資訊有製程平均數之估計值、製程變異數之估計值、變異點之估計、參數偏移種類與偏移方向之辨識,而常見的管制圖有累積和管制圖和指數加權移動平均管制圖,雖然其可偵測出製程參數偏移的微小變化,並也可於警訊後,藉由其診斷對於參數偏移的方向、種類與規模等進行識別,但都需要針對特定位移做最佳化的參數設定,若設置的參數不符合實際偏移情況時,管制圖性能將受到影響,基於上述,本研究則使用基於Kullback-Leibler information所建立起的資訊管制圖,其可用於同時監控製程平均數與製程變異數,不需要參數設定,且可用於偵測大範圍之偏移;在於此管制圖警訊後,本研究則也對其提出一個警訊後之診斷方法。本研究所提出之診斷方法,為對於製程參數的偏移情形進行識別,而製程參數的偏移情形有三種,分別為(1)僅製程平均數偏移(2)僅製程變異數偏移(3)製程平均數與製程變異數皆偏移,不同的可歸屬原因之影響也導致了上述不同情形之發生,因此本研究則基於貝氏模型平均法,事先對於上述模型進行定義,並且在KLI管制圖警訊後,藉由貝氏模型平均法,可對於以上偏移情形進行相對機率之估計,估計出之相對機率則可供辨識當前製程參數之偏移情形。在製程參數偏移規模較小時,採用貝氏模型平均法於辨識當前參數偏移情境之準確度較低,但是當製程參數偏移規模擴大時,採用此法之辨識準確度也隨之提升,並且其在辨識僅製程平均數偏移與製程平均數與製程變異數皆偏移之情況下,會有較高的準確度。
The objective of the thesis is to provide a diagnostic tool while applying Kullback-Leibler information (KLI) control chart for monitoring process mean and process variance simultaneously, utilizing KLI control chart needs not parameter adjustment, it only requires finding the control limit. Once the KLI control chart signals, in this research, we are going to identify types of parameter shifts, which are,1) Only change in process mean,2) Only change in process variance,3) Both changes in process mean and variance, respectively, since the identification of above schemes can streamline the search for diagnosing the assignable causes. After the control chart signals, we then exert Bayesian model averaging (BMA) as the measure to identify the above schemes. In this study, the result shows that using BMA as steps has higher accuracy in identifying the schemes of only change in process mean and both changes in process mean and variance, the accuracy ascends when there is larger shift in process parameter as well, yet it descends in small shift.
中文文獻:
賴芳妤,Kullback-Leibler資訊管制圖應用於同時監控製程平均數及變異數,國立成功大學工業與資訊管理研究所碩士論文,民國一百一十一年六月。
英文文獻:
Akaike, H. (1974). A new look at statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.
Adrian, E.R (1995). Bayesian model selection in social research. Sociological Methodology, 25(1), 111-163.
Adrian, E.R (1997). Bayesian model averaging for linear regression models. Journal of the American Statistical Association, 92(437), 179-191.
Chen, G. and Cheng, S.W. (1998). Max-chart: combining X-bar chart and S chart. Statistica Sinica, 8(1), 263–271.
Chen, G., Cheng, S.W. and Xie, H. (2001). Monitoring process mean and variability with one EWMA chart. Journal of Quality Technology, 33(2), 223-233.
Chen, G., Cheng, S. W. and Xie, H. (2004). A new EWMA control chart for monitoring both location and dispersion. Quality Technology and Quantitative Management, 1(2), 217-231.
Cheng, S.W. and Li, G.Y. (1993) A single variables control chart, Technical report, University of Manitoba, Winnipeg, Canada.
Cheng, S.W. and Thaga, K. (2006). Single variables control charts: an overview. Quality and Reliability Engineering International, 22(7), 811-820.
Chang, Y.C. (2020). Designing a parameter-free Kullback-Leibler information control chart for monitoring process mean shift Quality and Reliability Engineering International, 37(1), 1017-1034.
Costa, A.B.F. and Rahim, M.A. (2006). A synthetic control chart for monitoring the process mean and variance. Journal of Quality in Maintenance Engineering, 12(1), 81–88.
Domangue, R. and Patch, S.C.(1991). Some omnibus exponentially weighted moving average statistical process monitoring schemes. Technometrics, 33(3), 299–313.
Gan, F.F. (2000). Joint monitoring of process mean and variance based on the exponentially weighted moving averages. Statistical Process Monitoring and Optimization., 11(3), 189–208.
Han, D. and Tsung, F.G. (2006) A reference-free cuscore chart for dynamic mean change detection and a unified framework for charting performance comparison. Journal of the American Statistical Association,101(473), 368-386.
Hawkins, D.M. and Zamba, K.D. (2005). Statistical process control for shifts in mean or variance using a change-point formulation. Technometrics, 47(2), 164-173.
Hawkins, D.M. and Deng, Q. (2009). Combined charts for mean and variance information. Journal of Quality Technology, 41(4), 415-425.
Ridwan A. (2019). A comparative study of some EWMA schemes for simultaneous monitoring of mean and variance of a Gaussian process. Computers & Industrial Engineering 135(1), 426-439.
Jianying, L. (2012) maximum-likelihood–based diagnostics after a signal from control Charts. Journal of Quality Technology, 44(4), 321-347
Kullback, S. and Leibler, R.A. (1951) On information and sufficiency. The Annals of mathematical statistics, 22(1), 79-86.
Kupperman, M. (1956). Further applications of information theory to multivariate analysis and statistical inference. Annals of Mathematical Statistics, 27(4), 1184-1184.
Kanagawa, A., Arizono, I. and Ohta, H. (1997), Design of the control chart based on Kullback-Leibler information, Frontiers in Statistical Quality Control 5, Physica-Verlag, Heidelberg, Germany, 183-192.
McCracken, A.K. and Chakraborti, S. (2013).Control charts for joint monitoring of mean and variance: An overview. Quality Technology and Quantitative Management, 10(1), 17–36.
Page, E.S. (1954). Continuous inspection schemes. Biometrika, 41(1-2), 100–115.
Reynolds, M.R., Jr. and Stoumbos, Z.G. (2001). Individuals control schemes for monitoring the mean and variance of processes subject to drifts. Stochastic Analysis and Applications, 19(5), 863-892.
Reynolds, M. R., Jr. and Lou, J. (2010). An evaluation of a GLR control chart for monitoring the process mean. Journal of Quality Technology .,45(1), 287–310.
Reynolds, M. R., Lou, Jianying., Lee, Jaeheon. and Wang, Sai (2013).The design of GLR dontrol charts for monitoring the process mean and variance. Journal of Quality Technology, 45(1), 34–60.
Riaz, M. (2018). On designing a new Bayesian dispersion chart for process monitoring Arabian Journal for Science and Engineering, 45(1),2093-2111
Sparks, R. S. (2000). CUSUM charts for signaling varying locations shifts. Journal of Quality Technology, 32(2), 157–171.
Saber, M. (2013). A Max-EWMA approach to monitor and diagnose faults of multivariate quality control processes, The International Journal of Advanced Manufacturing Technology, 68(1), 2283–2294.
Thaga, K. (2003). Contributions to statistical process control tools. PhD Thesis, University of Manitoba, Winnipeg, Canada.
Takemoto, Y. (2013). Discrimination of out-of-control condition using AIC in (x, s) control chart. Korean Institute of Industrial Engineers,12(2), 112-117.
Takemoto, Y. (2019). Information visualization about changes of process mean and Variance on (x, s) control chart. Quality Technology & Quantitative Management, 15(1), 493-516.
Vasileios A and Kashinath C (2020) The triple exponentially weighted moving average control chart. Quality Technology & Quantitative Management,18(3), 326-354.
Wu, Z. and Tian, Y. (2005). Weighted-loss-function CUSUM chart for monitoring mean and variance of a production process. International Journal of Production Research, 43(14), 3027-3044.
Willsky, A.S. and Jones, H.L. (1976). A generalized likelihood ratio approach to the detection and estimation of jumps in linear Systems. IEEE Transactions on Automatic Control, 21(1), 108–112.
Watakabe, K. and Arizono, I. (1999), The power of the (x ̅, s ̅) control chart based on the log-likelihood ratio statistic, Naval Research Logistics, 46(8), 928-951.
Xie, H. (1999). Contributions to qualimetry. PhD Thesis, University of Manitoba, Winnipeg, Canada.
Yeh, A.B., Lin, D.K.J. and Venkataramani, C. (2004). Unified CUSUM charts for monitoring process mean and variability. Quality Technology and Quantitative Management, 1(1), 65-86.
Zhang, J., Zou, C. and Wang, Z. (2010) A control chart based on likelihood ratio test for monitoring process mean and variability. Quality and Reliability Engineering International, 26(1), 63–73.