簡易檢索 / 詳目顯示

研究生: 蔣宜旻
Chiang, Yi-Min
論文名稱: 個人化位置感知服務之探討─以校園資訊為例
The Development of Personal Location-Aware Service – An Example of Campus Information Recommendation
指導教授: 洪榮宏
Hong, Jung-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 134
中文關鍵詞: 適地性服務位置感知服務推薦系統知識本體
外文關鍵詞: location-based service, location-aware service, recommender system, ontology
相關次數: 點閱:104下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 適地性服務(Location-based services, LBS)為利用行動裝置及無線網路來獲取基於使用者所在地理位置的資訊服務,近幾年日益受到重視。以推播(push)方式提供之服務稱為位置感知服務(Location-aware services, LAS),其最大特色為伺服器端可主動提供資訊給使用者。雖然這項優勢能讓資訊提供商主動尋找候選人用戶,以提高服務之價值,但其成功必須仰賴正確且有效掌握使用者需求及依情況篩選推播之資訊,否則使用者可能對於連續的垃圾訊息感到厭煩,並失去使用此服務的興致。本研究提出個人化位置感知系統(Personal Location-Aware Services, PLAS)之概念,探討行動用戶所面臨的各種情況,整合包含空間、時間、使用者興趣及當前活動等情境之約制條件及個人資料、行程表、事件等資料,發展為基礎於個人需求之情境感知資訊推薦服務。以校園資訊為例,PLAS系統之演算法可依學生之時空條件及情境狀態而推薦合適參加之活動資訊,並隨時根據使用者移動、時間推移及事件之更新而動態調整服務之內容。在持續精進所包含之事件種類及選取知識後,PLAS可進一步擴展為更為全面之個人行程規劃系統,依據規劃之行程主動通知使用者該前往下一行程地點之時間,用以提供行動用戶符合時空條件之個人化資訊,並提供行程規劃以增進使用者於空閒時間管理之效率。

    Location-based service (LBS) is an information service accessed by mobile device and wireless internet based on user’s geographical location, it has been popular in recent years. Among a variety of LBS, push mechanism allows servers to automatically push information to the users, so-called location-aware services (LAS). Although LAS enables information providers to actively locate and provide information to candidate users for increasing the service value, it is success heavily relies on the accurate selection of information based on users’ personal needs and situation, to avoid annoying or even garbage information. In this research, a Personal Location-Aware System (PLAS) is proposed by analyzing the situation mobile users may encountered, considering the spatial, temporal factors, user’s preferences, and current activity and utilizing a user’s personal profile, schedule and event data as resources to develop a context-aware recommendation service based on personal requirements. Take campus information as an example, the developed algorithm in PLAS can adapt to the users’ continuously changed location and adjust the information pushed according to this user’s contexts and spatial-temporal condition. The recommended events are dynamically adjusted according to the user’s movement, remaining time, and the updating information on the event. In the continuous improvement of the types of events and the event selection knowledge, PLAS can further expand to personal travel planning system, and remind the time user must depart for the next destination, in order to provide mobile users with not only personalized information meets the spatio–temporal constraint, but the travel plan for user to follow in their leisure time.

    摘要 I Abstract II ACKNOWLEDGEMENT IV TABLE OF CONTENTS V LIST OF FIGURES VIII LIST OF TABLES XI 1. Introduction 1 1.1 Motivation and objective 1 1.2 Research scope 4 1.3 Research methodology and organization of the thesis 5 2. Literature Review 9 2.1 The basic framework of LBS/LAS 9 2.1.1 Mobile devices and wireless networks 10 2.1.2 Positioning technologies 12 2.1.3 Spatial-database, online map services and Web GIS 13 2.2 Classification of LBS 15 2.2.1 Users’ perspective 15 2.2.2 Information feeding perspective 16 2.3 Development of LAS 19 2.4 The approaches used in developing location-aware system 23 2.4.1 Information filtering approach 24 2.4.2 Query processing approach 25 2.4.3 The ontology-based approach 25 2.5 Development of online calendar service 27 3. Design and process of PLAS 30 3.1 Considerations in designing PLAS 30 3.2 Considerations for spatio–temporal constraint rules 32 3.2.1 Scenario of spatio–temporal constraint rules 32 3.2.2 Problem analysis and basic assumptions 33 3.3 Design of spatio–temporal constraint rules 35 3.3.1 Declaration of parameters 35 3.3.2 Declaration of functions 46 3.3.3 Procedure of spatio–temporal constraint rules 49 4. Preference prediction model and travel plan design processing 62 4.1 Preference prediction model 62 4.1.1 Student profile 66 4.1.2 Features of an event 69 4.1.3 Matching between user profile and event information 70 4.1.4 Scoring function to derive preference value 72 4.2 Travel plan design process 80 4.2.1 Composition of a travel plan 80 4.2.2 The declaration of parameters and property of components in leisure time 83 4.2.3 Temporal constraint in arranging subinterval components into the leisure time 83 4.2.4 Methodology for identifying a preferable travel plan 87 4.2.5 Indicators for travel plans 88 4.3 Alarm mechanism 88 4.3.1 Event alarm 89 4.3.2 Activity alarm 90 5. PLAS system prototype development and test analysis 93 5.1 System architecture 93 5.1.1 The interaction among system components 95 5.1.2 System interface 99 5.2 System test 101 6. Conclusion and future work 126 7. References 130

    Adomavicius, G., & Tuzhilin, A. (2011). Context-aware recommender systems. Recommender Systems Handbook, 217-253.
    Ahn, H. C., & Kim, K. J. (2011). Context-Aware recommender system for location-based advertising. Key Engineering Materials, 467, 2091-2096.
    Ahn, H. J., Kang, H., & Lee, J. (2010). Selecting a small number of products for effective user profiling in collaborative filtering. Expert Systems with Applications, 37(4), 3055-3062.
    Ahuja, R. K., Mehlhorn, K., Orlin, J., & Tarjan, R. E. (1990). Faster algorithms for the shortest path problem. Journal of the ACM (JACM), 37(2), 213-223.
    Ardissono, L., Goy, A., Petrone, G., Segnan, M., & Torasso, P. (2006). Ubiquitous user assistance in a tourist information server
    adaptive hypermedia and adaptive web-based systems. In P. De Bra, P. Brusilovsky & R. Conejo (Eds.), (Vol. 2347, pp. 14-23): Springer Berlin / Heidelberg.
    Balabanović, M., & Shoham, Y. (1997). Fab: content-based, collaborative recommendation. Communications of the ACM, 40(3), 66-72.
    Barnes Jr, M. L. (2009). System, method, and computer program product for providing location based services and mobile e-commerce: Google Patents.
    Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., & Stein, L. A. (2004). OWL web ontology language reference. W3C recommendation, 10, 2006-2001.
    Brimicombe, A. (2002). GIS-Where are the frontiers now. Paper presented at the Proceedings GIS 2002.
    Bures, T., Hnetynka, P., Kroha, P., & Simko, V. (2012). Requirement Specifications Using Natural Language: Technical Report D3S-TR-2012-05. Charles University, Faculty of Mathematics and Physics, Dep. of Distributed and Dependable Systems, Czechoslovakia.
    Castells, P., Fernandez, M., & Vallet, D. (2007). An adaptation of the vector-space model for ontology-based information retrieval. Knowledge and Data Engineering, IEEE Transactions on, 19(2), 261-272.
    Chen, G., & Kotz, D. (2000). A survey of context-aware mobile computing research.
    Chen, R.-C., & Tsai, W.-T. (2006). 以知識本體來輔助個人化排序. Paper presented at the The Conference of Information Management Pratice (IMP2006), Huwei, Yunlin, Taiwan.
    Cocotas, A. (2013). Smartphone Market Forecast: How Price-Sensitive Global Consumers Will Shape The Next Growth Wave.
    D'Roza, T., & Bilchev, G. (2003). An overview of location-based services. BT Technology Journal, 21(1), 20-27.
    Dey, A., & Abowd, G. (2000). Cybreminder: A context-aware system for supporting reminders.
    Dey, A. K. (2001). Understanding and using context. Personal and Ubiquitous Computing, 5(1), 4-7.
    ESRI. (2012). ArcGIS for Mobile.
    Gartner, G. F., Cartwright, W., & Peterson, M. P. (2007). Location based services and telecartography (Vol. 1): Springer.
    Groh, G., & Ehmig, C. (2007). Recommendations in taste related domains: collaborative filtering vs. social filtering.
    Gruber, T. (2009). Ontology.
    Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge acquisition, 5(2), 199-220.
    IAMAI. (2008). Location Based Services (LBS) on Mobile in India.
    Ilyas, I. F., Beskales, G., & Soliman, M. A. (2008). A survey of top-k query processing techniques in relational database systems. ACM Computing Surveys (CSUR), 40(4), 11.
    Ishaya, T. (2012). Business Intelligence Through Personalised Location-Aware Service Delivery. InTech.
    Jamalipour, A. (2003). The wireless mobile internet: Wiley New York.
    Jiang, B., & Yao, X. (2006). Location-based services and GIS in perspective. Computers, Environment and Urban Systems, 30(6), 712-725.
    Jung, T.-m., Lee, Y.-S., & Cho, S.-B. (2010). Mobile sync-application for life logging and high-level context using Bayesian network Knowledge Management and Acquisition for Smart Systems and Services (pp. 223-234): Springer.
    JuniperResearch. (2013). Press Release: Mobile Location-Based Services Market to exceed $12bn by 2014 driven by Increased Apps Store Usage, Smartphone Adoption and New Hybrid Positioning Technologies, According to Juniper Research.
    Kaasinen, E. (2003). User needs for location-aware mobile services. Personal and Ubiquitous Computing, 7(1), 70-79.
    Ko, E.-J., Lee, H.-J., & Lee, J.-W. (2005). An intelligent context-aware service engine based on ontology. Paper presented at the Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference on.
    Koeppel, I. (2000). What are location services?–from a GIS perspective. ESRI white chapter.
    Kuba, M. (2012). OWL 2 and SWRL Tutorial.
    Kupper, A. (2005). Location based services Foundamentals and Operation (pp. 386).
    Lebo, T., Sahoo, S., & McGuinness, D. (2013). PROV-O: The PROV Ontology. World Wide Web Consortium.
    Li, L.-H., Lee, F.-M., Ou, R.-D., Liu, Y.-J., & Jan, S.-G. (2007). 利用本體論建立個人偏好樹於個人化推薦. Paper presented at the 2007 資訊科技國際研討會.
    LIU, Q., & LI, S. (2002). 基於《 知網》 的辭彙語義相似度計算. 中文計算語言學期刊, 7(2), 59-76.
    Lord, P. (2010). Components of an Ontology. Ontogenesis.
    Machuca, M., López, M. Á., Marsá Maestre, I., & Velasco Pérez, J. R. (2005). A contextual ontology to provide location-aware services and interfaces in smart environments.
    Maniraj, V., & Sivakumar, R. (2010). Ontology Languages–A Review. International Journal of Computer Theory and Engineering, 2(6).
    Marmasse, N., & Schmandt, C. (2000). Location-Aware Information Delivery with ComMotion.
    Middleton, S. E., De Roure, D. C., & Shadbolt, N. R. (2001). Capturing knowledge of user preferences: ontologies in recommender systems. Paper presented at the Proceedings of the 1st international conference on Knowledge capture.
    Middleton, S. E., Shadbolt, N. R., & De Roure, D. C. (2004). Ontological user profiling in recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 54-88.
    Mokbel, M. F., & Levandoski, J. J. (2009). Toward context and preference-aware location-based services. Paper presented at the Proceedings of the Eighth ACM International Workshop on Data Engineering for Wireless and Mobile Access, Providence, Rhode Island.
    Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems The adaptive web (pp. 325-341): Springer.
    Peng, Z.-R., & Tsou, M.-H. (2003). Internet GIS: distributed geographic information services for the internet and wireless networks: Wiley. com.
    Raita, T. (1999). Strengthening GSM Market. Benefon Annual Report 1999.
    Rhee, S. K., Lee, J., & Park, M.-W. (2007). Ontology-based semantic relevance measure. Paper presented at the Proceedings of the The First International Workshop on Semantic Web and Web.
    Sadoun, B., & Al-Bayari, O. (2007). Location based services using geographical information systems. Computer Communications, 30(16), 3154-3160.
    Shardanand, U., & Maes, P. (1995). Social information filtering: algorithms for automating “word of mouth”. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems.
    Silva, A., & Mateus, G. (2003). A mobile location-based vehicle fleet management service application. Paper presented at the Intelligent Vehicles Symposium, 2003. Proceedings. IEEE.
    Smailagic, A., Martin, R., Rychlik, B., Rowlands, J., & Ozceri, B. (1997). Metronaut: A wearable computer with sensing and global communication capabilities. Personal Technologies, 1(4), 260-267.
    SnapTrack. ( 2003). Location Technologies for GSM, GPRS and UMTS Networks
    Steinfield, C. (2004). The development of location based services in mobile commerce. Elife after the dot. com bust, 177-197.
    Stojanovic, D. H., & Djordjevic-Kajan, S. J. (2001). Developing location-based services from a GIS perspective. Paper presented at the Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2001. TELSIKS 2001. 5th International Conference on.
    Tsai, S.-A. (2009). 利用社交網路於適地性服務之位置感知時空間事件查詢. 碩士, 臺灣大學, 台北市.
    Tsai, W.-T., & Chen, R.-C. (2007). 建立個人化知識本體來輔助網頁行為探勘 - 以個人化排序為例. [Building Personal Ontology to Assist Web Usage Mining - Using Personalized Ranking as An Example].
    Ulder, N. L., Aarts, E. H., Bandelt, H.-J., van Laarhoven, P. J., & Pesch, E. (1991). Genetic local search algorithms for the traveling salesman problem Parallel problem solving from nature (pp. 109-116): Springer.
    Unni, R., & Harmon, R. (2007). Perceived effectiveness of push vs. pull mobile location-based advertising. Journal of Interactive advertising, 7(2), 28-40.
    Uschold, M., & Gruninger, M. (2004). Ontologies and semantics for seamless connectivity. ACM SIGMod Record, 33(4), 58-64.
    Van Setten, M., Pokraev, S., & Koolwaaij, J. (2004). Context-aware recommendations in the mobile tourist application COMPASS.
    Virrantaus, K., Markkula, J., Garmash, A., Terziyan, V., Veijalainen, J., Katanosov, A., & Tirri, H. (2001). Developing GIS-supported location-based services.
    Yu, J., Benatallah, B., Casati, F., & Daniel, F. (2008). Understanding mashup development. Internet Computing, IEEE, 12(5), 44-52.
    Yu, S., Spaccapietra, S., Cullot, N., & Aufaure, M. A. (2004). User profiles in location-based services: Make humans more nomadic and personalized. Paper presented at the Proceedings of the IASTED International Conference on Databases and Applications (DBA’04).

    下載圖示 校內:2016-09-03公開
    校外:2016-09-03公開
    QR CODE