簡易檢索 / 詳目顯示

研究生: 黃亭毓
Huang, Ting-Yu
論文名稱: 以奈米微區阻抗頻譜技術與模型擬合半導體高分子形貌相依之載子傳導效能
Utilizing Nano-Scale Impedance Spectroscopy and Model Fitting to Analyze the Carrier Transport Performance Dependent on Morphology in Semiconductor Polymers
指導教授: 徐邦昱
Hsu, Bang-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 91
中文關鍵詞: 阻抗頻譜原子力顯微鏡聚(3-己烷塞吩)半導體高分子薄膜
外文關鍵詞: impedance spectroscopy, poly(3-hexylthiophene), semiconducting polymeric film, AFM
相關次數: 點閱:36下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機半導體高分子材料構成之軟性電子元件性能,主要取決於高分子於微觀結構上有序排列。由於半導體高分子之導電性來自於主鏈內共軛鍵結讓載子傳遞,主鏈的分子構型、堆疊等微觀結構差異都會影響鏈上電子結構,混亂堆疊、扭曲型態會產生形貌與電子結構缺陷,將大幅增加載子散射影響,導致載子無法於水平方向有效傳輸,造成巨觀水平傳導效能低落,因此高分子微觀結構與載子傳導效能密切相關。本研究旨在藉由原子力顯微鏡(AFM)奈米級探針技術與變頻率之電化學阻抗頻譜(EIS)結合,以AFM導電探針作為微型電極,將量測範圍聚焦於奈米尺度之半導體高分子膜,觀測載子微觀動力學與介面行為,建立半導體高分子微觀結構與電學性能間聯繫的分析方法學。
    本研究選用聚(3-己烷塞吩)(Poly(3-hexylthiophene-2,5-diyl),P3HT)半導體高分子材料,首先以旋轉塗佈法(spin coating)、於矽基板及二氧化矽基板兩種基板上,製備無序均質P3HT半導體高分子薄膜,並分別建立垂直與水平測試架構、量測阻抗頻譜,隨後擬合各量測系統對應之等效電路模型。由於探針於所有量測中皆為垂直接觸高分子膜表面,故先透過垂直架構分析不同基板、不同膜厚之薄膜載子電學行為,結果顯示其符合半導體介於導體與絕緣體間、可呈現載子傳導與介電累積行為之電學特性。在此基礎上,通過水平架構比對等效垂直模型之差異,發現電力線走向確實可在薄膜中即轉向水平、使載子於水平方向上傳輸,驗證了水平架構的可行性,為後續量測本實驗室開發之三明治製程(sandwich process)形成之有序P3HT薄膜建立基礎。

    The conductivity of semiconducting polymers is influenced by charge transport through the π-conjugated backbone. Microstructure variations like disordered stacking or twisted formations can create defects that result in carrier scattering and poor lateral conductivity. Therefore, the electrical performance of flexible organic polymeric devices depends on molecular ordering of the microstructure.
    In this study, we utilized AFM-based nanoscale impedance spectroscopy to analyze variable-frequency AC signal responses of semiconducting polymers. By using AFM probes as microelectrodes, we focused on nanoscale semiconducting polymer films to investigate carrier dynamics or accumulation behaviors, aiming to link the microstructure with electrical performance.
    For simplicity, macroscopic homogeneous spin-coated poly(3-hexylthiophene-2,5-diyl) (P3HT) films were prepared. The measurement was divided into vertical and horizontal parts, with equivalent circuit models fitted to the impedance spectroscopy data for each. As the AFM probe contacts the films vertically in all systems, we first measured vertical part, revealing that P3HT films indeed demonstrate behaviors between conductors and insulators, including conduction and dielectric accumulation. Additionally, comparing the horizontal and vertical fittings revealed that the electric field lines can reorient horizontally within the film, enabling lateral carrier transport. This confirms the feasibility of the system and establishes a further measurement foundation for ordered sandwich-processed P3HT films.

    中文摘要 I 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 研究背景與動機 1 第二章 文獻回顧 3 2.1 電化學阻抗頻譜(Electrochemical Impedance Spectroscopy, EIS) 3 2.2 半導體共軛高分子(Conjugated polymers) 8 2.3 自組裝單分子層(Self-assembled monolayer, SAM) 16 第三章 實驗材料與儀器 20 3.1 實驗藥品與材料 20 3.2 實驗儀器 22 3.3 儀器原理 24 3.3.1 拉曼散射光譜(Raman scattering spectroscopy) 24 I. 拉曼散射光譜 24 II. 偏振拉曼光譜(Polarized Raman spectroscopy) 26 3.3.2 原子力顯微鏡(Atomic Force Microscopy, AFM) 27 3.3.3 電化學阻抗頻譜(EIS) 30 I. EIS介紹 30 II. 電路元件 34 第四章 實驗方法與流程 36 4.1 實驗方法 36 4.2 實驗流程 41 4.2.1 旋轉塗佈法(spin coating method) 41 4.2.2 三明治製程(sandwich process) 42 第五章 結果與討論 46 5.1 旋轉塗佈高分子膜之垂直阻抗量測 46 5.1.1 薄膜形貌與膜厚量測 46 5.1.2 垂直阻抗頻譜圖與等效電路模型擬合:矽基板 49 I. 定點微區阻抗頻譜 49 II. 等效垂直電路模型擬合 51 5.1.3 垂直阻抗頻譜圖與等效電路模型擬合:二氧化矽基板 54 I. 定點微區阻抗頻譜 54 II. 等效垂直電路模型擬合:二氧化矽基板 55 5.2 旋轉塗佈高分子膜之水平阻抗量測 62 5.2.1 定點微區阻抗頻譜 62 5.2.2 等效水平電路模型擬合 63 5.3 三明治製程高分子膜之水平阻抗量測 66 5.3.1 薄膜形貌 66 5.3.2 定點微區阻抗頻譜 67 第六章 總結 68 第七章 參考文獻 69

    1. Lee, Wonyoung, et al. "Nanoscale impedance and complex properties in energy-related systems." MRS bulletin 37.7 (2012): 659-667.
    2. Macdonald, Digby D. "Reflections on the history of electrochemical impedance spectroscopy." Electrochimica acta 51.8-9 (2006): 1376-1388.
    3. Wang, Shangshang, et al. "Electrochemical impedance spectroscopy." Nature Reviews Methods Primers 1.1 (2021): 41.
    4. Lazanas, Alexandros Ch, and Mamas I. Prodromidis. "Electrochemical impedance spectroscopy─ a tutorial." ACS Measurement Science Au 3.3 (2023): 162-193.
    5. Chi, Dan, et al. "High efficiency P3HT: PCBM solar cells with an inserted PCBM layer." Journal of Materials Chemistry C 2.22 (2014): 4383-4387.
    6. Zebardast, H. R., S. Rogak, and E. Asselin. "Use of EIS to measure the rate of H2O2 decomposition on a bulk magnetite electrode in alkaline solution." Journal of The Electrochemical Society 159.12 (2012): B831.
    7. Christinelli, Wania Ap, Roger Gonçalves, and Ernesto C. Pereira. "A new generation of electrochemical supercapacitors based on layer-by-layer polymer films." Journal of Power Sources 303 (2016): 73-80.
    8. O’Hayre, Ryan, Minhwan Lee, and Fritz B. Prinz. "Ionic and electronic impedance imaging using atomic force microscopy." Journal of applied physics 95.12 (2004): 8382-8392.
    9. Davis, J. J., et al. "Molecular bioelectronics." Journal of Materials Chemistry 15.22 (2005): 2160-2174.
    10. Szociński, Michał, and Kazimierz Darowicki. "Assessment of copper surface coverage with corrosion inhibitor using AFM-based local electrical measurements." Corrosion Engineering, Science and Technology 52.7 (2017): 520-525.
    11. Schauer, Franz. "Electronic structure spectroscopy of organic semiconductors by energy resolved-electrochemical impedance spectroscopy (ER-EIS)." Journal of Applied Physics 128.15 (2020).
    12. Koç, Yücel, et al. "Investigation of electrochemical behavior of potassium ferricyanide/ferrocyanide redox probes on screen printed carbon electrode through cyclic voltammetry and electrochemical impedance spectroscopy." Turkish Journal of Chemistry 45.6 (2021): 1895-1915.
    13. Gharbi, Oumaïma, et al. "Local electrochemical impedance spectroscopy: A window into heterogeneous interfaces." Current Opinion in Electrochemistry 20 (2020): 1-7.
    14. Gonçalves, Roger, Ernesto C. Pereira, and Luís F. Marchesi. "The Overoxidation of poly (3-hexylthiophene)(P3HT) Thin Film: CV and EIS measurements." International Journal of Electrochemical Science 12.3 (2017): 1983-1991.
    15. Heeger, Alan J., Alan G. MacDiarmid, and Hideki Shirakawa. "The Nobel Prize in chemistry, 2000: conductive polymers." Stockholm, Sweden: Royal Swedish Academy of Sciences (2000): 1-16.
    16. Mdluli, Siyabonga B., et al. "π-Conjugated polymers and their application in organic and hybrid organic-silicon solar cells." Polymers 14.4 (2022): 716.
    17. Altamura, Davide, et al. "Assembled nanostructured architectures studied by grazing incidence x-ray scattering." nanomaterials and nanotechnology 2 (2012): 16.
    18. Alizadehaghdam, Mina, et al. "Following isothermal and non-isothermal crystallization of poly (3-hexylthiophene) thin films by UV–vis spectroscopy." Polymer 210 (2020): 122959.
    19. Pandey, Manish, et al. "Recent advances in the orientation of conjugated polymers for organic field-effect transistors." Journal of Materials Chemistry C 7.43 (2019): 13323-13351.
    20. Yang, Hoichang, et al. "Solubility-driven thin film structures of regioregular poly (3-hexyl thiophene) using volatile solvents." Applied Physics Letters 90.17 (2007).
    21. Li, Qi‐Yi, et al. "Achieving high alignment of conjugated polymers by controlled dip‐coating." Advanced Electronic Materials 6.6 (2020): 2000080.
    22. Dörling, Bernhard, et al. "Uniaxial macroscopic alignment of conjugated polymer systems by directional crystallization during blade coating." Journal of Materials Chemistry C 2.17 (2014): 3303-3310.
    23. Kim, Nam-Koo, et al. "High-performance organic field-effect transistors with directionally aligned conjugated polymer film deposited from pre-aggregated solution." Chemistry of Materials 27.24 (2015): 8345-8353.
    24. Luo, Chan, et al. "General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility." Nano letters 14.5 (2014): 2764-2771.
    25. Skrypnychuk, Vasyl, et al. "Enhanced vertical charge transport in a semiconducting P3HT thin film on single layer graphene." Advanced Functional Materials 25.5 (2015): 664-670.
    26. Whitesides, George M., and Bartosz Grzybowski. "Self-assembly at all scales." Science 295.5564 (2002): 2418-2421.
    27. Sagiv, Jacob. "Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces." Journal of the American Chemical Society 102.1 (1980): 92-98.
    28. Kavli, A. "A Kavli prize at the interface." NATURE NANOTECHNOLOGY 17.11 (2022): 1127-1127.
    29. Hasan, A., and L. M. Pandey. "Self-assembled monolayers in biomaterials." Nanobiomaterials. Woodhead Publishing, 2018. 137-178.
    30. Singh, Mandeep, Navpreet Kaur, and Elisabetta Comini. "The role of self-assembled monolayers in electronic devices." Journal of Materials Chemistry C 8.12 (2020): 3938-3955.
    31. Casalini, Stefano, et al. "Self-assembled monolayers in organic electronics." Chemical Society Reviews 46.1 (2017): 40-71.
    32. Kim, Do Hwan, et al. "Surface-induced conformational changes in poly (3-hexylthiophene) monolayer films." Langmuir 21.8 (2005): 3203-3206.
    33. Kim, Do Hwan, et al. "Enhancement of field‐effect mobility due to surface‐mediated molecular ordering in regioregular polythiophene thin film transistors." Advanced Functional Materials 15.1 (2005): 77-82.
    34. Kim, Do Hwan, et al. "Layered molecular ordering of self-organized poly (3-hexylthiophene) thin films on hydrophobized surfaces." Macromolecules 39.17 (2006): 5843-5847.
    35. Ito, Yutaka, et al. "Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors." Journal of the American Chemical Society 131.26 (2009): 9396-9404.
    36. 林廷翰。「評估聚(3-己烷噻吩)在不同鏈長自組裝單分子層上形貌準直排列的驅動力」。碩士論文,國立成功大學材料科學及工程學系,2020。https://hdl.handle.net/11296/645kw5。
    37. KevinYager, editor. “Example:P3HT Orientation Analysis.” MediaWiki, 6 Jan. 2015, http://gisaxs.com/index.php/Example:P3HT_orientation_analysis.
    38. Abboudi, A., et al. "Tribological study of molybdenum nitrides under the effect of vanadium." (2018).
    39. Gamry Instruments. “Understanding the Specifications of Your Potentiostat.” Gamry.Com, 2015, https://www.gamry.com/application-notes/instrumentation/understanding-specs-of-potentiostat/.
    40. Zensor R&D co.,Ltd. “Understanding the Specifications of Your Potentiostat.” Zensorrd.Com, 2021, https://www.zensorrd.com/Article18.html.
    41. Schultheiß, Jan, Tadej Rojac, and Dennis Meier. "Unveiling alternating current electronic properties at ferroelectric domain walls." Advanced Electronic Materials 8.6 (2022): 2100996.
    42. Gramse, G., G. Gomila, and Laura Fumagalli. "Quantifying the dielectric constant of thick insulators by electrostatic force microscopy: effects of the microscopic parts of the probe." Nanotechnology 23.20 (2012): 205703.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE