| 研究生: |
蔣宇軒 Chiang, Yu-Hsuan |
|---|---|
| 論文名稱: |
探討SWEET2糖轉運蛋白對植物與枯草桿菌共生的影響 Invastigate the role of SWEET2 sugar transporter in the symbiosis between plant and Bacillus subtilus |
| 指導教授: |
郭瑋君
Guo, Woei-Jiun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | SWEET糖轉運蛋白 、枯草桿菌 、共生 、生物防治 |
| 外文關鍵詞: | SWEET, vacuolar transporter, Bacillus subtilis, symbiosis, biocontrol |
| 相關次數: | 點閱:75 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
植物與微生物的交互作用影響作物產量。研究指出阿拉伯芥根部液胞膜上的SWEET2糖轉運蛋白可調節根部糖輸出,避免病菌感染;然而AtSWEET2運輸活性如何介導益菌共生仍未知。枯草桿菌為一根部益菌,也是共生研究模式菌種,本研究目的欲探討AtSWEET2在枯草桿菌與根部共生扮演的角色。另一方面AtSWEET16/17與AtSWEET2生理分布有高度重疊,是否與AtSWEET2互補彼此功能也需進一步釐清。
本研究指出阿拉伯芥幼苗SWEET2的表現隨感菌時間增加而提高。在AtSWEET2-GUS及AtSWEET2-GFP融合蛋白表現株也觀察到感菌誘導AtSWEET2蛋白累積在維管束周圍。本研究也發現枯草桿菌盤據量在atsweet2突變株較高,過表達株則較少。先前研究顯示AHL29轉錄因子負調控SWEET2的表現,本研究中也確認此一趨勢。並且AHL29突變株也顯示對枯草桿菌的易感性。為了探討AtSWEET2、16及17液胞膜醣轉運蛋白的功能闗係,進行多次三重T-DNA突變株的篩選,但無法取得同質三突變株,推測三者同時缺失可能對種子發育有致死影響,目前以轉殖表現AtSWEET2-RNAi建立三重突變株的替代材料。本研究成果將可瞭解糖轉運活性如何影響微生物共生,並應用於生物防治的抗病栽培。
Interaction between microbes and plant roots significantly affect crop yield. Previous studies indicated that the root-dominant vacuolar transporter, AtSWEET2, could limit sugar secretion from roots to prevent pathogenic invasion of Pythium. However, how AtSWEET2 affects symbiotic microbes is unknown. Bacillus subtilis is a common beneficial bacterium applied in biological control and a model microorganism for symbiosis study. Thus, we will further investigate the role of AtSWEET2 in symbiosis between roots and B. subtilis. On the other hand, AtSWEET16 and 17 are also highly expressed in root vacuoles. Whether there is functional complementation and regulation deserves further study. AtSWEET2 expression levels in seedlings was upregulated about 5 times after 12 hours of inoculation of B. subtilis 168. In hydroponic mature plants, the fold change of AtSWEET2 can be upregulated up to 2000 times. Expressions of SWEET2-GUS or -GFP fusion proteins indicated that induced AtSWEET2 proteins were mainly located in vascular tissue, suggesting that AtSWEET2 may be involved in sugar unloading from the vascular tissues. Analysis of colonization ability of B. subtilis on roots showed that the bacterium number was increased in roots of AtSWEET2 mutants. But the trend was not consistent in overexpressor lines. The previous note that AtSWEET2 promoter activity is negatively regulated by AHL29 and probably is mediated by flg22 signal peptide was confirmed again. Consistently, an AHL29 overexpressor line, SOB3-6, showed more susceptible to B. subtilis. To address if AtSWEET2, AtSWEET16 and 17, may be involved functional interaction, triple mutant segregation population was generated and examined. Yet, the AtSWEET2/16/17 triple mutant line could not be discovered. Thus, transformation of the AtSWEET2 RNAi construct into atsweet16/17 and single mutant line was generated to produced double and triple mutant lines. These studies may reveal the role of vacuolar sugar dynamics in the biological control of plant roots for future application in pathogenesis resistance cultivation.
詹雅棻,探討阿拉伯芥SWEET2功能的分子調控機制,國立成功大學熱帶植物科學研究所碩士論文,2018。
Aluri, S., and Büttner, M. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proceedings of the National Academy of Sciences of the United States of America 104, 2537-2542, 2007.
An, J., Zeng, T., Ji, C., de Graaf, S., Zheng, Z., Xiao, T.T., Deng, X., Xiao, S., Bisseling, T., Limpens, E., and Pan, Z. A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis. New Phytologist 224, 396-408, 2019.
Anderson, E.H. Growth requirements of virus-resistant mutants of Escherichia Coli strain "B". Proceedings of the National Academy of Sciences of the United States of America 32, 120-128, 1946.
Arata, H., Iwasaki, I., Kusumi, K., and Nishimura, M. Thermodynamics of Malate Transport across the Tonoplast of Leaf Cells of CAM Plants. Plant and Cell Physiology 33, 873-880, 1992.
Badri, D.V., and Vivianco, J.M. Regulation and function of root exudates. Plant, Cell and Environment 32, 666-681, 2009.
Bais, H.P., Fall, R., and Vivanco, J.M. Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by Pseudomonas syringae is Facilitated by Biofilm Formation and Surfactin Production. Plant Physiology 134, 307-319, 2004.
Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., and Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology 57, 233-266, 2006.
Barnawal, D., Maji, D., Bharti, N., Chanotiya, C.S., and Kalra, A. ACC Deaminase-Containing Bacillus subtilis Reduces Stress Ethylene-Induced Damage and Improves Mycorrhizal Colonization and Rhizobial Nodulation in Trigonella foenum-graecum Under Drought Stress. Journal of Plant Growth Regulation 32, 809-822, 2013.
Bedini, A., Mercy, L., Schneider, C., Franken, P., and Lucic-Mercy, E. Unraveling the Initial Plant Hormone Signaling, Metabolic Mechanisms and Plant Defense Triggering the Endomycorrhizal Symbiosis Behavior. Frontiers in Plant Science 9, 1800, 2018.
Belkhadir, Y., Subramaniam, R., and Dangl, J.L. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Current Opinion in Plant Biology 7, 391-399, 2004.
Bezrutczyk, M., Hartwig, T., Horschman, M., Char, S.N., Yang, J., Yang, B., Frommer, W.B., and Sosso, D. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays. New Phytologist 218, 594-603, 2018.
Blanvillain-Baufume, S., Reschke, M., Sole, M., Auguy, F., Doucoure, H., Szurek, B., Meynard, D., Portefaix, M., Cunnac, S., Guiderdoni, E., Boch, J., and Koebnik, R. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnology Journal 15, 306-317, 2017.
Braidwood, L., Breuer, C., and Sugimoto, K. My body is a cage: mechanisms and modulation of plant cell growth. New Phytologist 201, 388-402, 2014.
Chen, H.Y., Huh, J.H., Yu, Y.C., Ho, L.H., Chen, L.Q., Tholl, D., B., F.W., and Guo, W.J. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. The Plant Journal 83, 1046-1058, 2015a.
Chen, L.Q., Hou, B.H., Lalonde, S., Takanaga, H., Hartung, M.L., Qu, X.Q., Guo, W.J., Kim, J.G., Underwood, W., Chaudhuri, B., Chermak, D., Antony, G., White, F.F., Somerville, S.C., Mudgett, M.B., and Frommer, W.B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527-532, 2010.
Chen, L.Q., Lin, I.W., Qu, X.Q., Sosso, D., McFarlane, H.E., Londono, A., Samuels, A.L., and Frommer, W.B. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell 27, 607-619, 2015b.
Cheng, R., Cheng, Y., Lü, J., Chen, J., Wang, Y., Zhang, S., and Zhang, H. The gene PbTMT4 from pear (Pyrus bretschneideri) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit. Physiologia Plantarum 164, 307-319, 2018.
Chong, J., Piron, M.C., Meyer, S., Merdinoglu, D., Bertsch, C., and Mestre, P. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. Journal of Experimental Botany 65, 6589-6601, 2014.
Clough, S.J., and Bent, A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735-743, 1998.
Conn, S.J., Hocking, B., Dayod, M., Xu, B., Athman, A., Henderson, S., Aukett, L., Conn, V., Shearer, M.K., Fuentes, S., Tyerman, S.D., and Gilliham, M. Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants. Plant Methods 9, 4, 2013.
Cullings, K.W., Vogler, D.R., Parker, V.T., and Finley, S.K. Ectomycorrhizal specificity patterns in a mixed Pinus contorta and Picea engelmannii forest in Yellowstone National Park. Applied and Environmental Microbiology 66, 4988-4991, 2000.
Dodd, I.C., Zinovkina, N.Y., Safronova, V.I., and Belimov, A.A. Rhizobacterial mediation of plant hormone status. Annals of Applied Biology 157, 361-379, 2010.
Doidy, J., Grace, E., Kuhn, C., Simon-Plas, F., Casieri, L., and Wipf, D. Sugar transporters in plants and in their interactions with fungi. Trends in Plant Science 17, 413-422, 2012.
Doidy, J., Vidal, U., and Lemoine, R. Sugar transporters in Fabaceae, featuring SUT MST and SWEET families of the model plant Medicago truncatula and the agricultural crop Pisum sativum. PLoS One 14, e0223173, 2019.
Dursun, A., Ekinci, M., and Dönmez, M.F. Effects of foliar application of plant growth promoting bacterium on chemical contents, yield and growth of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.). Pakistan Journal of Botany 42, 3349-3356, 2010.
Fall, R., Kinsinger, R.F., and Wheeler, K.A. A Simple Method to Isolate Biofilm-forming Bacillus subtilis and Related Species from Plant Roots. Systematic and Applied Microbiology 27, 372-379, 2004.
Fatima, U., and Senthil-Kumar, M. Plant and pathogen nutrient acquisition strategies. Frontiers in Plant Science 6, 1-12, 2015.
Finlayson, S.A. Arabidopsis TEOSINTE BRANCHED1-LIKE 1 Regulates Axillary Bud Outgrowth and is Homologous to Monocot TEOSINTE BRANCHED1. Plant and Cell Physiology 48, 667-677, 2007.
French, R.C. Formation of Embryo Starch During Germination as an Indicator of Viability and Vigor in Heat-Damaged Barley. Plant Physiology 34, 500-505, 1959.
Fusconi, A. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Annals of Botany 113, 19-33, 2014.
Gao, Y., Zhang, C., Han, X., Wang, Z.Y., Ma, L., Yuan, D.P., Wu, J.N., Zhu, X.F., Liu, J.M., Li, D.P., Hu, Y.B., and Xuan, Y.H. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Molecular Plant Pathology 19, 2149-2161, 2018.
Greenbaum, D., Colangelo, C., Williams, K., and Gerstein, M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biology 4, 117, 2003.
Guo, W.J., Nagy, R., Chen, H.Y., Pfrunder, S., Yu, Y.C., Santelia, D., Frommer, W.B., and Martinoia, E. SWEET17, a Facilitative Transporter, Mediates Fructose Transport across the Tonoplast of Arabidopsis Roots and Leaves. Plant Physiology 164, 777-789, 2014.
Guyonnet, J.P., Guillemet, M., Dubost, A., Simon, L., Ortet, P., Barakat, M., Heulin, T., Achouak, W., and Haichar, F.E.Z. Plant Nutrient Resource Use Strategies Shape Active Rhizosphere Microbiota Through Root Exudation. Frontiers in Plant Science 9, 1662, 2018.
Höfgen, R., and Willmitzer, L. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research 16, 9877, 1988.
Hütsch, B.W., Augustin, J., and Merbach, W. Plant rhizodeposition - an important source for carbon turnover in soils. Journal of Plant Nutrition and Soil Science 165, 397-407, 2002.
Hackel, A., Schauer, N., Carrari, F., Fernie, A.R., Grimm, B., and Kühn, C. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. The Plant Journal 45, 180-192, 2006.
Harrison, M.J. A sugar transporter from Medicago truncatula: altered expression pattern in roots during vesicular-arbuscular (VA) mycorrhizal associations. The Plant Journal 9, 491-503, 1996.
Healey, A., Furtado, A., Cooper, T., and Henry, R.J. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10, 21, 2014.
Hedrich, R., Sauer, N., and Neuhaus, H.E. Sugar transport across the plant vacuolar membrane: nature and regulation of carrier proteins. Current Opinion in Plant Biology 25, 63-70, 2015.
Hirooka, K. Transcriptional response machineries of Bacillus subtilis conducive to plant growth promotion. Bioscience, Biotechnology, and Biochemistry 78, 1471-1484, 2014.
Hirooka, K., Danjo, Y., Hanano, Y., Kunikane, S., Matsuoka, H., Tojo, S., and Fujita, Y. Regulation of the Bacillus subtilis Divergent yetL and yetM Genes by a Transcriptional Repressor, YetL, in Response to Flavonoids. Journal of Bacteriology 191, 3685, 2009.
Ho, L.H., Klemens, P.A.W., Neuhaus, H.E., Ko, H.Y., Hsieh, S.Y., and Guo, W.J. SlSWEET1a is involved in glucose import to young leaves in tomato plants. Journal of Experimental Botany 70, 3241-3254, 2019.
Hu, X.J., Roberts, D.P., Xie, L.H., Qin, L., Li, Y.S., Liao, X.S., Han, P.P., Yu, C.B., and Liao, X. Seed treatment containing Bacillus subtilis BY-2 in combination with other Bacillus isolates for control of Sclerotinia sclerotiorum on oilseed rape. Biological Control 133, 50-57, 2019.
Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The European Molecular Biology Organization Journal 6, 3901-3907, 1987.
Jones, D.L., and Darrah, P.R. Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere. Plant and Soil 178, 153-160, 1996.
Julius, B.T., Leach, K.A., Tran, T.M., Mertz, R.A., and Braun, D.M. Sugar Transporters in Plants: New Insights and Discoveries. Plant and Cell Physiology 58, 1442-1460, 2017.
Kaiser, C., Kilburn, M.R., Clode, P.L., Fuchslueger, L., Koranda, M., Cliff, J.B., Solaiman, Z.M., and Murphy, D.V. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. The New Phytologist 205, 1537-1551, 2015.
Kamilova, F., Kravchenko, L.V., Shaposhnikov, A.I., Azarova, T., Makarova, N., and Lugtenberg, B. Organic Acids, Sugars, and l-Tryptophane in Exudates of Vegetables Growing on Stonewool and Their Effects on Activities of Rhizosphere Bacteria. Molecular Plant-Microbe Interactions 19, 250-256, 2006.
Kanno, Y., Oikawa, T., Chiba, Y., Ishimaru, Y., Shimizu, T., Sano, N., Koshiba, T., Kamiya, Y., Ueda, M., and Seo, M. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nature Communications 7, 13245, 2016.
Kilian, M., Steiner, U., Krebs, B., Junge, H., Schmiedeknecht, G., and Hain, R. FZB24® Bacillus subtilis - mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer 53, 72-93, 2000.
Kjellbom, P., Larsson, C., Johansson, I., Karlsson, M., and Johanson, U. Aquaporins and water homeostasis in plants. Trends in Plant Science 4, 308-314, 1999.
Klemens, P.A.W., Patzke, K., Deitmer, J., Spinner, L., Le Hir, R., Bellini, C., Bedu, M., Chardon, F., Krapp, A., and Neuhaus, H.E. Overexpression of the Vacuolar Sugar Carrier AtSWEET16 Modifies Germination, Growth, and Stress Tolerance in Arabidopsis. Plant Physiology 163, 1338, 2013.
Klemens, P.A.W., Patzke, K., Trentmann, O., Poschet, G., Büttner, M., Schulz, A., Marten, I., Hedrich, R., and Neuhaus, H.E. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination. New Phytologist 202, 188-197, 2014.
Korir, H., Mungai, N.W., Thuita, M., Hamba, Y., and Masso, C. Co-inoculation Effect of Rhizobia and Plant Growth Promoting Rhizobacteria on Common Bean Growth in a Low Phosphorus Soil. Frontiers in Plant Science 8, 141, 2017.
Kosugi, S., and Ohashi, Y. DNA binding and dimerization specificity and potential targets for the TCP protein family. The Plant Journal 30, 337-348, 2002.
Kryvoruchko, I.S., Sinharoy, S., Torres-Jerez, I., Sosso, D., Pislariu, C.I., Guan, D., Murray, J., Benedito, V.A., Frommer, W.B., and Udvardi, M.K. MtSWEET11, a Nodule-Specific Sucrose Transporter of Medicago truncatula. Plant Physiology 171, 554-565, 2016.
Kumar, A.S., Lakshmanan, V., Caplan, J.L., Powell, D., Czymmek, K.J., Levia, D.F., and Bais, H.P. Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. The Plant Journal 72, 694-706, 2012.
Kus, J.V., Zaton, K., Sarkar, R., and Cameron, R.K. Age-Related Resistance in Arabidopsis Is a Developmentally Regulated Defense Response to Pseudomonas syringae. The Plant Cell 14, 479, 2002.
Kuzyakov, Y., and Domanski, G. Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science 163, 421-431, 2000.
Lakshmanan, V., Kitto, S.L., Caplan, J.L., Hsueh, Y.H., Kearns, D.B., Wu, Y.S., and Bais, H.P. Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. Plant Physiology 160, 1642-1661, 2012.
Lastdrager, J., Hanson, J., and Smeekens, S. Sugar signals and the control of plant growth and development. Journal of Experimental Botany 65, 799-807, 2014.
Latchman, D.S. Transcription factors: An overview. The International Journal of Biochemistry and Cell Biology 29, 1305-1312, 1997.
Lemonnier, P., Gaillard, C., Veillet, F., Verbeke, J., Lemoine, R., Coutos-Thévenot, P., and La Camera, S. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. Plant Molecular Biology 85, 473-484, 2014.
Li, W.Y.F., Wong, F.L., Tsai, S.N., Phang, T.H., Shao, G., and Lam, H.M. Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant, Cell and Environment 29, 1122-1137, 2006.
Lobet, G., Pagès, L., and Draye, X. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiology 157, 29-39, 2011.
Lu, T., Ke, M., Lavoie, M., Jin, Y., Fan, X., Zhang, Z., Fu, Z., Sun, L., Gillings, M., Peñuelas, J., Qian, H., and Zhu, Y.-G. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6, 231, 2018.
Lynch, J.M., and Whipps, J.M. Substrate flow in the rhizosphere. Plant and Soil 129, 1-10, 1990.
Ma, L., Zhang, D., Miao, Q., Yang, J., Xuan, Y., and Hu, Y. Essential Role of Sugar Transporter OsSWEET11 During the Early Stage of Rice Grain Filling. Plant Cell Physiology 58, 863-873, 2017.
Manck-Götzenberger, J., and Requena, N. Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family. Frontiers in Plant Science 7, 487, 2016.
Mathers, A.W., Hepworth, C., Baillie, A.L., Sloan, J., Jones, H., Lundgren, M., Fleming, A.J., Mooney, S.J., and Sturrock, C.J. Investigating the microstructure of plant leaves in 3D with lab-based X-ray computed tomography. Plant Methods 14, 99, 2018.
Miller, M.E. Relationships Between Onion Leaf Age and Susceptibility toAlternaria porri. Plant Disease 67, 284, 1983.
Molina-Favero, C., Creus, C.M., Simontacchi, M., Puntarulo, S., and Lamattina, L. Aerobic Nitric Oxide Production by Azospirillum brasilense Sp245 and Its Influence on Root Architecture in Tomato. Molecular Plant-Microbe Interactions 21, 1001-1009, 2008.
Morikawa, M. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. Journal of Bioscience and Bioengineering 101, 1-8, 2006.
Morton, E.R., and Fuqua, C. Laboratory maintenance of Agrobacterium. Current protocols in microbiology 1, 1, 2012.
Myresiotis, C.K., Karaoglanidis, G.S., Vryzas, Z., and Papadopoulou-Mourkidou, E. Evaluation of plant-growth-promoting rhizobacteria, acibenzolar-S-methyl and hymexazol for integrated control of Fusarium crown and root rot on tomato. Pest Management Science 68, 404-411, 2012.
Napoli, C., Lemieux, C., and Jorgensen, R. lntroduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes Ín trans. The Plant Cell 2, 279-289, 1990.
Neuhaus, H.E., and Trentmann, O. Regulation of transport processes across the tonoplast. Front Plant Science 5, 460, 2014.
Ngugi, H.K., Dedej, S., Delaplane, K.S., Savelle, A.T., and Scherm, H. Effect of flower-applied Serenade biofungicide (Bacillus subtilis) on pollination-related variables in rabbiteye blueberry. Biological Control 33, 32-38, 2005.
Oparka, K.J. What is Phloem unloading? Plant Physiology 94, 393-396, 1990.
Patrick, J.W. Phloem Unloading: Sieve Element Unloading and Post-Sieve Element Transport. Annual Review of Plant Physiology and Plant Molecular Biology 48, 191-222, 1997.
Pickard, W.F. The role of cytoplasmic streaming in symplastic transport. Plant, Cell and Environment 26, 1-15, 2003.
Pretorius, Z.A., Rijkenberg, F.H.J., and Wilcoxson, R.D. Effects of growth stage, leaf position and temperature on adult-plant resistance of wheat infected by Puccinia recondita f.sp. tritici. Plant Pathology 37, 36-44, 1988.
Radhakrishnan, R., Hashem, A., and Abd Allah, E.F. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Frontiers in Physiology 8, 667, 2017.
Rasmussen, H.N., and Rasmussen, F.N. Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118, 334-345, 2009.
Reeves, R.E., South, D.J., Blytt, H.J., and Warren, L.G. Pyrophosphate:d-Fructose 6-Phosphate 1-Phosphotransferase : A new enzyme with the glycolytic function of 6-phosphofructokinase. Journal of Biological Chemistry 249, 7737-7741, 1974.
Sattelmacher, B. The apoplast and its significance for plant mineral nutrition. New Phytologist 149, 167-192, 2001.
Sawada, H., Kuykendall, L.D., and Young, J.M. Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. The Journal of General and Applied Microbiology 49, 155-179, 2003.
Schie, C.C.N.v., and Takken, F.L.W. Susceptibility Genes 101: How to Be a Good Host. Annual Review of Phytopathology 52, 551-581, 2014.
Schuller, K.A., Turpin, D.H., and Plaxton, W.C. Metabolite regulation of partially purified soybean nodule phosphoenolpyruvate carboxylase. Plant Physiology 94, 1429-1435, 1990.
Sosso, D., van der Linde, K., Bezrutczyk, M., Schuler, D., Schneider, K., Kämper, J., and Walbot, V. Sugar Partitioning between Ustilago maydis and Its Host Zea mays L during Infection. Plant Physiology 179, 1373, 2019.
Spaepen, S., Versées, W., Gocke, D., Pohl, M., Steyaert, J., and Vanderleyden, J. Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. Journal of Bacteriology 189, 7626-7633, 2007.
Stiller, M. The Path of Carbon in Photosynthesis. Annual Review of Plant Physiology 13, 151-170, 1962.
Street, I.H., Shah, P.K., Smith, A.M., Avery, N., and Neff, M.M. The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis. Plant Journal 54, 1-14, 2008.
Sun, K., Hunt, K., and Hauser, B.A. Ovule abortion in Arabidopsis triggered by stress. Plant Physiology 135, 2358-2367, 2004.
Turgeon, R., and Gowan, E. Phloem Loading in Coleus blumei in the Absence of Carrier-Mediated Uptake of Export Sugar from the Apoplast. Plant Physiology 94, 1244-1249, 1990.
Updegraff, D.M. Semimicro determination of cellulose inbiological materials. Analytical Biochemistry 32, 420-424, 1969.
Vacheron, J., Desbrosses, G., Bouffaud, M.-L., Touraine, B., Moënne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dyé, F., and Prigent-Combaret, C. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science 4, 356, 2013.
Via, V.D., Zanetti, M.E., and Blanco, F. How legumes recognize rhizobia. Plant Signaling and Behavior 11, e1120396, 2015.
Voothuluru, P., Braun, D.M., and Boyer, J.S. An in Vivo Imaging Assay Detects Spatial Variability in Glucose Release from Plant Roots. Plant Physiology 178, 1002-1010, 2018.
Walker, T.S., Bais, H.P., Grotewold, E., and Vivanco, J.M. Root Exudation and Rhizosphere Biology. Plant Physiology 132, 44, 2003.
Wang, L., and Ruan, Y.L. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton. Plant Physiology 160, 777-787, 2012.
Wingenter, K., Schulz, A., Wormit, A., Wic, S., Trentmann, O., Hoermiller, II, Heyer, A.G., Marten, I., Hedrich, R., and Neuhaus, H.E. Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and seed yield in Arabidopsis. Plant Physiology 154, 665-677, 2010.
Winnepenninckx, B., Backeljau, T., and De Wachter, R. Extraction of high molecular weight DNA from molluscs. Trends in Genetics 9, 407, 1993.
Wippel, K., and Sauer, N. Arabidopsis SUC1 loads the phloem in suc2 mutants when expressed from the SUC2 promoter. Journal of Experimental Botany 63, 669-679, 2012.
Wormit, A., Trentmann, O., Feifer, I., Lohr, C., Tjaden, J., Meyer, S., Schmidt, U., Martinoia, E., and Neuhaus, H.E. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell 18, 3476-3490, 2006.
Wu, F.H., Shen, S.C., Lee, L.Y., Lee, S.H., Chan, M.T., and Lin, C.S. Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16, 2009.
Xie, L., Lehvävirta, S., Timonen, S., Kasurinen, J., Niemikapee, J., and Valkonen, J.P.T. Species-specific synergistic effects of two plant growth-promoting microbes on green roof plant biomass and photosynthetic efficiency. PLoS One 13, e0209432, 2018.
Xuan, Y.H., Hu, Y.B., Chen, L.Q., Sosso, D., Ducat, D.C., Hou, B.H., and Frommer, W.B. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proceedings of the National Academy of Sciences of the United States of America 110, E3685-E3694, 2013.
Yamada, K., Osakabe, Y., and Yamaguchi-Shinozaki, K. A C-terminal motif contributes to the plasma membrane localization of Arabidopsis STP transporters. PLoS One 12, e0186326, 2017.
Yamada, K., Saijo, Y., Nakagami, H., and Takano, Y. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 354, 1427-1430, 2016.
Yi, Y., de Jong, A., Frenzel, E., and Kuipers, O.P. Comparative Transcriptomics of Bacillus mycoides Strains in Response to Potato-Root Exudates Reveals Different Genetic Adaptation of Endophytic and Soil Isolates. Frontiers in Microbiology 8, 1487, 2017.
York, A. Plant probiotic supresses bacterial wilt. Nature Reviews Microbiology 16, 719, 2018.
Yuan, J., Zhao, J., Wen, T., Zhao, M., Li, R., Goossens, P., Huang, Q., Bai, Y., Vivanco, J.M., Kowalchuk, G.A., Berendsen, R.L., and Shen, Q. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome 6, 156, 2018.
Zhang, J., Shao, F., Li, Y., Cui, H.T., Chen, L.J., Li, H.T., Zou, Y., Long, C.Z., Lan, L.F., Chai, J.J., Chen, S., Tang, X.Y., and Zhou, J.M. A Pseudomonas syringae Effector Inactivates MAPKs to Suppress PAMP-Induced Immunity in Plants. Cell Host and Microbe 1, 175-185, 2007.
Zhang, Q., Hu, W., Zhu, F., Wang, L., Yu, Q., Ming, R., and Zhang, J. Structure, phylogeny, allelic haplotypes and expression of sucrose transporter gene families in Saccharum. BioMed Central Genomics 17, 88, 2016.
Zhou, A., Ma, H., Feng, S., Gong, S., and Wang, J. DsSWEET17, a Tonoplast-Localized Sugar Transporter from Dianthus spiculifolius, Affects Sugar Metabolism and Confers Multiple Stress Tolerance in Arabidopsis. International Journal of Molecular Sciences 19, 1564, 2018.
Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D.G., Felix, G., and Boller, T. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764-767, 2004.
校內:2024-12-17公開