| 研究生: |
張家瑋 Chang, Chia-Wei |
|---|---|
| 論文名稱: |
以系統識別法之自回歸滑動平均模型估算軌道不整 Assessment of Track Irregularities with Auto-regressive Moving Average Model of System Identification |
| 指導教授: |
郭振銘
Kuo, Chen-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 軌道不整 、SIMAPCK 、系統識別 、MATLAB system Idetification Toolbox |
| 外文關鍵詞: | track irregularities, SIMPACK, system identification, MATLAB system Idetification Toolbox |
| 相關次數: | 點閱:133 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在公路運輸系統完整發展後,台灣開始悄悄地走入軌道列車運輸的新紀元,而軌道鋪設的總長不斷增加也為軌道檢測面臨更多考驗。本研究希望能為軌道不整帶來新的檢測方法,來提升軌道檢查工作的效率。
利用MATLAB System Identification toolbox的系統識別法,將SIMPACK模擬出的車體反應和軌道不整做為系統輸入和系統輸出,建立出車體垂向位移和軌道高低不整間的系統模型。以不同軌道譜參數所產生的軌道不整為案例,探討於現地隨機狀況之軌道不整下,輸入車體反應給此系統模型,是否能有效的推算出軌道高低不整,而以系統模型推算出的軌道高低不整和原始軌道高低不整做相關性分析來驗證。
研究成果說明,車體垂向位移和軌道高低不整間之系統識別模型,於推算軌道高低不整的效果不錯,對於隨機波形之軌道高低不整的推算值與原始值有高達0.9以上的相關性,且皆適用於高干擾軌道不整和低干擾兩種情況之軌道高低不整,但須考慮現地軌道不整之組成頻率內涵的多寡。
The transportation system in Taiwan has been moving into a new era as construction and operation the Taiwan high speed rail and metro rapid transit systems in several main cities. Maintenance of track quality becomes an important issue to ensure safety and comfort. This study proposes a correlated model between track irregularities and train displacements to enhance the efficiency of track evaluation.
The System Identification Toolbox of MATLAB was applied to explore relationships between the track irregularity input and the dynamic responses of the car-body simulated by SIMPACK. The model identified by the MATLAB Toolbox was then validated with several simulated cases for track conditions of different parameters. The coefficients of correlation between the estimated irregularities and the target values are satisfactory. It was concluded that the simulated model of the system is capable of evaluating the track irregularities with recorded accelerations in carbody. Coefficients of correlation are more than 0.9 in the cases of random waveform and high/low power density of track irregularities, while must make sure of number of frequencies in the field test is lower than correlated model’s setting.
1. 林駿瑋, 軌道車輛舒適度量測及應用於軌道檢查之初探. 2013.
2. Chaolong, J., et al., Track Irregularity Time Series Analysis and Trend Forecasting. Discrete Dynamics in Nature and Society, 2012. 2012: p. 1-15.
3. Chaolong, J., et al., Study of Railway Track Irregularity Standard Deviation Time Series Based on Data Mining and Linear Model. Mathematical Problems in Engineering, 2013. 2013: p. 1-12.
4. 夏禾、張楠, 車輛與結構動力相互作用. 2005. 2.
5. 翟婉明, 車輛-軌道耦合動力學. 1997.
6. 張筑壹, 分析軌道不整對脫軌風險之影響. 2002.
7. 李建斌 and 練松良, 關于軌道譜面積與TQI指標關系的研究. 石家莊鐵道學院學報, 2008. 21(4): p. 9-12.
8. SIMPACK, Reference Guide. 2012.
9. 張玲華、鄭寶玉, 隨機信號處理. 2003.
10. website, http://eportfolio.lib.ksu.edu.tw/user/T/0/T093000113/repository/4.%E7%B3%BB%E7%B5%B1%E4%B9%8B%E7%A9%A9%E5%AE%9A%E6%80%A7%E5%88%86%E6%9E%90.pdf