| 研究生: |
曾曉盈 Tseng, Hsiao-Ying |
|---|---|
| 論文名稱: |
介白質素-18對星狀膠質細胞之細胞骨架蛋白GFAP和vimentin的影響 Effects of interleukin-18 on astrocytic glial fibrillary acidic protein and vimentin |
| 指導教授: |
曾淑芬
Tzeng, Shun-Fen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物學系 Department of Biology |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 星狀膠質細胞 、介白質素-18 |
| 外文關鍵詞: | IL-18, astrocyte |
| 相關次數: | 點閱:62 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
星狀膠質細胞是中樞神經系統中,數量最多的膠質細胞,和微血管形成血腦屏障,避免微生物和有毒物質入侵到中樞神經系統,傷害神經細胞。星狀膠質細胞另一個重要的功能為提供神經細胞能量,並調節離子的濃度,穩定中樞神經系統的環境。中樞神經系統受傷後,星狀膠質細胞參與膠質疤的形成,其細胞骨架蛋白GFAP和vimentin大量增加,排列成緊密的結構,形成一種物理性的屏障,阻礙神經細胞的再生。中樞神經系統受傷後,小膠質細胞(中樞神經系統的巨噬細胞)負責釋放前發炎因子、過氧化物和一氧化氮等,引起發炎反應,一般認為前發炎因子會刺激GFAP和vimentin的增加,而IL-18是一種前發炎因子,又稱為干擾素誘導因子,在中樞神經系統中主要由小膠質細胞所釋放,其對於星狀膠質細胞的作用仍不清楚。本實驗發現IL-18能增加初級星狀膠質細胞GFAP和vimentin的表現。將IL-18處理小膠質細胞株BV2 cells的條件培養基,培養初級星狀膠質細胞,也能造成GFAP和vimentin的增加。IL-18注射到雄性大白鼠成鼠的corpus callosum,三天後在注射區域表現GFAP和vimentin的細胞有增加的情形,且細胞有肥大、聚集的現象,此為膠質疤的特徵,顯示IL-18可能藉由增加GFAP和vimentin的表現,而參與膠質疤的形成。
Astrocytes, the most abundant cells in the central nervous system (CNS), form the blood-brain barrier (BBB) with brain capillaries. BBB protects the neurons from microorganisms and toxicants. Astrocytes also function in supplying the energy to neurons and modulating ion levels to make the neuronal homeostasis. However, in the injured CNS they become reactive and highly express glial fibrillary acidic protein (GFAP) and vimentin that are involved in the formation of glial scar, a physical barrier for CNS repair. The up-regulated of astrocytic GFAP and vimentin in the injured CNS is thought to be induced by pro-inflammatory mediators. Microglia, CNS resident macrophages, produce pro-inflammatory mediators during CNS infection or injury including pro-inflammatory cytokines, reactive oxygen species, and nitric oxide. Among pro-inflammatory cytokine, interleukin-18 (IL-18) is known as microglial interferon- inducing factor. The action of IL-18 on neurons and astrocytes are not yet known. In this study, we found that IL-18 induced an increase astrocytic GFAP and vimentin in rat primary astrocytes. Interestingly, treatment of rat astrocytes with the culture supernatant of IL-18 stimulated microglial cell line BV2 also caused an increase in GFAP and vimentin. In consistence with in vitro study, the in vivo study indicated that the injection of IL-18 into the adult rat cortical areas above corpus callosum resulted in the up-regulation of GFAP and vimentin in astrocytes at 3 day post injection. Together, our results indicated that IL-18 action may act as modulatory factor for glial scar formation through increasing astrocytic GFAP and vimentin.
Amenta F., Bronzetti E., Sabbatini M. and Vega J. A. (1998) Astrocyte changes in aging cerebral cortex and hippocampus : a quantitative immunohistochemical study. Microsc. Res. Tech. 43 : 29-33.
Andre R., Wheeler R. D., Collins P. D., Luheshi G. N., Pickering-Brown S., Kimber I., Rithwell N. J. and Pinteaux E. (2003) Identification of a truncated IL-18Rβ mRNA : a putative regulator of IL-18 expression in rat brain. J. Neuroimmunol. 145 : 40-45.
Bezzi P. and Volterra A. (2001) A neuron-glia signaling network in the active brain. Curr. Opin. Neurobiol. 11 : 387-394.
Bignami A., Raju T. and Dahl D. (1982) Localization of vimentin, the nonspecific intermediate filament protein, in early differentiating neurons. In vivo and in vitro immunofluorescence study of the rat embryo with vimentin and neurofilament antisera. Dev. Biol. 91 : 286-295.
Blasi E., Barluzzi R., Bocchini V., Mazzolla R. and Bistoni F. (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J. Neuroimmunol. 27 : 229-37.
Born T. L., Thomasson E., Bird T. A. and Sims J. E. (1998) Cloning of a novel receptor subunit, AcPL, required for IL-18 signaling. J. Biol. Chem. 273 : 29445-29450.
Bovolenta P., Liem R. K. and Mason C. A. (1984) Development of cerebellar astroglia : transitions in form and cytoskeletal content. Dev. Biol. 102 : 248-259.
Brodkey J. A., Laywell E. D., O’Brien T. F., Faissner A., Stefansson K., Dorries H. U., Schachner M. and Steindler D. A. (1995) Focal brain injury and the upregulation of a developmentally-regulated extracellular matrix protein. J. Neurosurg. 82 : 106-112.
Castonguay A., Levesque S. and Robitaille R. (2001) Glial cells as active partners in synaptic functions. Prog. Brain Res. 132 : 227-240.
Conti B., Park L. C., Calingasan N. Y., Kim Y., Kim H., Bae Y., Gibson G. E. and Joh T. H. (1999) Cultures of astrocytes and microglia express interleukin 18. Brain Res. Mol. Brain Res. 67 : 46-52.
Culhane A. C., Hall M. D., Rothwell N. J. and Luheshi G. N. (1998) Cloning of rat brain interleukin-18 cDNA. Mol. Psychiatry 3 : 362-366.
Culhane A. C., Molina-Holgado F., Toulmond S., Rothwell N. J. and Luheshi G. N. (1998) Interleukin-18 induces interleukin-1β in astrocytes. Vol. 634. Society for Neuroscience Meeting abstract. Los Angeles, CA, USA, p5.
David J. P., Ghozali F., Fallet-Bianco C., Wattez A., Delaine S., Boniface B., Di Menza C. and Delacourte A. (1997) Glial reaction in the hippocampal formation is highly correlated with aging in human brain. Neurosci. Lett. 235 : 53-56.
Eddleston M. and Mucke L. (1993) Molecular profile of reactive astrocytes : implications for their role in neurologic disease. Neuroscience. 54 : 15-36.
Eliasson C., Sahlgren C., Berthold C. H., Stakeberg J., Celis J. E., Betsholtz C., Eriksson J. E. and Pekny M. (1999) Intermediate filament protein partnership in astrocytes. J. Biol. Chem. 274 : 23996-24006.
Fantuzzi G., and Dinarello C. A. (1999) Interleukin-18 and interleukin-1 beta : two cytokine substrates for ICE (caspase-1). J. Clin. Immunol. 19 : 1-11.
Fassbender K., Mielke O., Bertsch T., Muehlhauser F., Hennerici M., Kurimoto M. and Rossol S. (1999) Interferon-gamma-inducing factor (IL-18) and interferon-gamma in inflammatory CNS diseases. Neurology 53 : 1104-1106.
Fawcett J. W. and Asher R.A. (1999) The glial scar and central nervous system repair. Brain Res. Bull. 49 : 377-391.
Gerdes N., Sukhova G. K., Libby P., Reynolds R. S., Young J. L. and Schonbeck U. (2002) Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, implications for atherogenesis. J. Exp. Med. 195 : 245-257.
Jander S., Schroeter M. and Stoll G. (2002) Interleukin-18 expression after focal ischemia of the rat brain : association with the late-stage inflammatory response. J. Cereb. Blood Flow Metab. 22 : 62-70.
Kohama S. G., Goss J. R., McNeill T. H. and Finch C. E. (1995) Glial fibrillary acidic protein mRNA increases at proestrus in the arcuate nucleus of mice. Neurosci. Lett. 183 : 164-166.
Kusakabe M., Mangiarini L., Laywell E. D., Bates G. P., Yoshiki A., Hiraiwa N., Inoue J. and Steindler D. A. (2001) Loss of cortical and thalamic neuronal tenascin-C expression in a transgenic mouse expressing exon 1 of the human Huntington disease gene. J. Comp. Neurol. 430 : 485-500.
Laywell E. D., Bartsch U., Dorries U., Bartsch S., Faissner A., Schachner M. and Steindler D. A. (1992) Enhanced expression of the developmentally regulated extracellular matrix molecule tenascin following adult brain injury. Proc. Natl. Acad. Sci. 89 : 2634-2638.
Le A. C. and Musil L. S. (1998) Normal differentiation of cultured lens cells after inhibition of gap junction-mediated intercellular communication. Dev. Biol. 204 : 80-96.
Legrand A. and Alonso G. (1998) Pregnenolone reverses the age-dependent accumulation of glial fibrillary acidic protein within astrocytes of specific regions of the rat brain. Brain Res. 802 : 125-133.
Lendahl U., Zimmerman L. B. and McKay R. D. (1990) CNS stem cells express a new class of intermediate filament protein. Cell. 60 : 585-595.
Levitt P. and Rakic P. (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J. Comp. Neurol. 193 : 815-840.
Liu T., McDonnell P. C., Young P. R., White R. F., Siren A. L., Hallenbeck J. M., Barone F. C. and Feuerstein G. Z. (1993) Interleukin-1 mRNA expression in ischemic rat cortex. Stroke 24 : 1746-1750.
Moller B., Kessler U., Rehart S., Kalina U., Ottmann O. G., Kaltwasser J. P., Hoelzer D. and Kukoc-Zivojnov N. (2002) Expression of interleukin-18 receptor in fibroblast-like synoviocytes. Arthritis Res. 4 : 139-144.
Moller B., Paulukat J., Nold M., Behrens M., Kukoc-Zivojnov N., Kaltwasser J. P., Pfeilschifter J. and Muhl H. (2003) Interferon-γ induces expression of interleukin-18 binding protein in fibroblast-like synoviocytes. Rheumatology. 42 : 442-445.
Morel J. C., Park C. C., Zhu K., Kumar P., Ruth J. H. and Koch A. E. (2002) Signal transduction pathways involved in rheumatoid arthritis synovial fibroblast interleukin-18-induced vascular cell adhesion molecule-1 expression. J. Biol. Chem. 277 : 34679-34691.
Netea M. G., Kullberg B. J., Verschueren I. and Van Der Meer J. W. (2000) Interleukin-18 induces production of proinflammatory cytokines in mice : no intermediate role for the cytokines of the tumor necrosis factor family and interleukin-1beta. Eur. J. Immunol. 30 : 3057-3060.
Okamura H., Tsutsui H., Komatsu T., Yutsudo M., Hakura A., Tanimoto T., Torigoe K., Okura T., Nukada Y., Hattori K., Akita K., Namba M., Tanabe F., Konishi K., Fukuda S. and Kurimoto M. (1995) Cloning of a new cytokine that induces interferon-γ production by T cells. Nature. 378 : 88-91.
Pixley S.K. and de Vellis J. (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res. 317 : 201-209.
Pixley S.K., Kobayashi Y. and de Vellis J. (1984) A monoclonal antibody against vimentin:characterization. Brain Res. 317 : 185-199.
Prinz M. and Hanisch U.K. (1999) Murine microglial cells produce and respond to interleukin-18. J. Neurochem. 72 : 2215-2218.
Rakic P. (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145 : 61-83.
Redlinger R. E., Mailliard R. B., Lotze M. T. and Barksdale E. M. (2003) Synergistic interleukin-18 and low-dose interleukin-2 promote regression of established murine neuroblastoma in vivo. J. Pediatr. Surg. 38 : 301-307.
Runquist M. and Alonso G. (2003) Gabaergic signaling mediates the morphological organization of astrocytes in the adult rat forbrain. GLIA. 41 : 137-151.
Son Y. I., Dallal R.M., Mailliard R. B., Egawa S., Jonak Z.L. and Lotze M. T. (2001) Interleukin-18 (IL-18) synergizes with IL-2 to enhance cytotoxicity, interferon-gamma production and expansion of natural killer cells. Can. Res. 61 : 884-888.
Steindler D. A. and Laywell E. D. (2003) Astrocytes as stem cells : nomenclature, phenotype, and translation. Glia. 43 : 62-69.
Steindler D. A. and Pincus D. W. (2002) Stem cells and neuropoiesis in the adult human brain. Lancet. 359 : 1047-1054.
Steindler D. A., Scheffler B., Zheng T., Laywell E. D., Suslov O. N. and Kukekov V.G. (2002) Neural stem/progenitor cell clones or “neurospheres” : a model for understanding neuromorphogenesis. In : Zigova T., Snyder E. Y. and Sanberg P. R. editors. Neural stem cells for brain repair. Totowa, NJ: Humana Press. p 183-201.
Sugimoto N., Nakahira M., Ahn H. J., Micallef M., Hamaoka T., Kurimoto M. and Fujiwara H. (2003) Differential requirements for JAK2 and TYK2 in T cell proliferation and IFN-γ production induced by IL-12 alone or together with IL-18. Eur. J. Immunol. 33 : 243-251.
Suk K., Kim S.Y. and Kim H. (2001) Regulation of IL-18 productin by IFN-γ and PGE2 in mouse mocroglial cells : involvement of NFκB pathway in the regulatory processes. Immunol. Lett. 77 : 79-85.
Torigoe K., Ushio S., Okura T., Kobayashi S., Taniai M., Kunikata T., Murakami T., Sanou O., Kojima H., Fujii M., Ohta T., Ikeda M., Ikegami H. and Kurimoto M. (1997) Purification and characterization of the human interleukin-18 receptor. J. Biol. Chem. 272 : 25737-25742.
Touzani O., Boutin H., Chuquet J. and Rothwell N. (1999) Potential mechanisms of interleukin-1 involvement in cerebral ischemia. J. Neuroimmunol. 100 : 203-215.
Unger J. W. (1998) Glial reaction in aging and Alzheimer’s disease. Microsc. Res. Tech. 43 : 24-28.
Wheeler R. D., Boutin H., Touzani O., Luheshi G. N., Takeda K. and Rothwell N. J. (2003) No role for interleukin-18 in acute murine stroke-induced brain injury. J. Cereb. Blood Flow Metab. 23 : 531-535.
Wheeler R. D., Brough D., Le Feuvre R. A., Takeda K., Iwakura Y., Luheshi G. N. and Rothwell N. J. (2003) Interleukin-18 induces expression and release of cytokines from murine glial cells : interactions with interleukin-1β. J. Neurochem. 85 : 1412-1420.
Zhang Z., Chopp M., Goussev A. and Powers C. (1998) Cerebral vessels express interleukin 1beta after focal cerebral ischemia. Brain Res. 784 : 210-217.
Zielasek J. and Hartung H. P. (1996) Molecular mechanisms of microglial activation. Adv. Neuroimmunol. 6 : 191-222.
Zwijnenburg P. J., van der Poll T., Florquin S., Akira S., Takeda K., Roord J. J. and Furth A. M. (2003) Interleukin-18 gene-deficient mice show enhanced defense and reduced inflammation during pneumococcal meningitis. J. Neuroimmunol. 138 : 31-37.