簡易檢索 / 詳目顯示

研究生: 賴科印
Lai, Ke-Yin
論文名稱: 白光有機發光元件製作與設計
The fabrication and design of white organic light emitting device
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 149
中文關鍵詞: 白光能量轉移有機發光元件
外文關鍵詞: White organic light emitting devices, energy transfer, excimer
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要分為兩部分,第一部份我們使用新穎的橘紅光染料10-(4-Dimethylamino-phenylethynyl)-anthracene-9-carbonitrile(DMAPEAC)來製作OLED元件,藉由吸收光譜與PL光譜的分析選擇合適的主體進行摻雜,並分析摻雜元件效能上的改善與EL光譜的變化,結果證實DMAPEAC與選擇的主體材料Alq3之間有不錯的能量轉移行為。此外由Alq3:DMAPEAC共摻雜薄膜的PL與吸收光譜分析發現630nm有一excimer的特性峰,其強度隨著摻雜濃度提高而增強。當元件在DMAPEAC 1 wt%的摻雜濃度下,元件在電流密度560 mA/cm2操作下有最大亮度19400 cd/m2 (16V),電流效率與功率效率分別為3.09 cd/A和1.94 lm/w。由單一電洞載子元件(ITO/Alq3:DMAPEAC/Au)和單一電子載子元件(Al/Alq3:DMAPEAC/LiF/Al)的I-V特性圖分析發現,當DMAPEAC摻雜進入Alq3會造成通過元件的電流密度下降,證實了DMAPEAC在Alq3是一載子捕捉中心。

      第二部分是利用4,4‘-bis(2,2-diphenyl-ethen-1-yl)-diphenyl (DPVBi)為主發光層,Alq3: DMAPEAC共鍍層為輔發光層製作雙發光層白光OLED,實驗結果發現電洞阻擋層BPhen的厚度、DMAPEAC的摻雜濃度和共鍍層的位置會影響載子複合發光的區域,當元件結構為ITO/m-MTDATA(5nm)/TPD(20nm)/DPVBi(50nm)/BPhen(12nm)/
    Alq3:DMAPEAC(14nm,1 wt%)/LiF/Al時,元件最大亮度為2880 cd/m2,電流效率與功率效率分別為1.5 cd/A和0.4 lm/w,當驅動電壓由依序為12V、15V、18V和21V時,對應的CIE座標分別為(0.27, 0.23)、(0.29, 0.26)、(0.31, 0.27)和(0.33, 0.30),皆位於白光區域。最後我們進行上陰極發光白光OLED製作,當陰極結構為Al(10nm)/Ag(15nm)時,能使元件有最佳的亮度與效率,但此複合式陰極有很強的光學干涉效應導致可見光穿透度大幅衰減,而陽極材料使用Au和Ni時,實驗結果發現以Au為陽極有較好的元件特性,元件的起使電壓分別為4V與7.6V,此乃由於Au的功函數高於Ni,因此有較小的電洞注入能障。

      最後我們製作上陰極發光白光OLED,元件結構為Au/m-MTDATA(5nm)/TPD(20nm)/Alq3:DMAPEAC(2nm,1wt%)/DPVBi
    (50nm)/LiF/Al,此時光色CIE座標為(0.42, 0.31),位於白光區域的邊緣,元件在電流密度263 mA/cm2時有最大亮度121 cd/m2,而最大電流與功率效率分別為0.25 cd/A和0.1 lm/w,上發光白光元件效能不如下發光白光元件的原因可能是元件的載子注入能力不佳,還有半透明金屬膜的穿透度(約30%)遠不如下發光元件的ITO陽極(約80%),導致發出的光無法由電極穿透。

      This subject is divided into two parts. The first is fabrication of orange/red organic light emitting devices (OLEDs) by employing an novel ethyne-based fluorescent dye, namely 10-(4-Dimethylamino-phenylethynyl)-
    anthracene-9-carbonitrile (DMAPEAC). The photoluminescence (PL) of DMAPEAC dispersed in methylene chloride were measured to be 600 nm. On the other hand, PL spectra for DMAPEAC doped Tris(8-hydroxyquinoline) aluminum(Alq3) film exhibited two peaks at 600nm and 630nm. Therefore, the extra PL peak at 630 nm was shown to be due to the excimer formation by absorption and PL measurement. From optics property analysis, we found that DMAPEAC doped into Alq3 have good Förster energy transfer. When device structure is ITO/TPD(15nm)/Alq3:DMAPEAC(50nm,1wt%)/BPhen(10nm)/LiF/Al, maximum brightness of 19,400 cd/m2 and current efficiency of 3.09 cd/A was obtained. By measuring I-V characteristics for hole only and electron only device, the result confirmed that DMAPEAC dispersed in Alq3 was center of carrier trapping.

      The second is fabrication of white OLED with double emission zone consisted of 4,4‘-bis(2,2-diphenyl-ethen-1-yl)-diphenyl (DPVBi) and DMAPEAC doped Alq3 film. Carriers recombination zone was influenced by thickness of hole blocking layer, doping concentration of DMAPEAC and position of doping film. When device is ITO/m-MTDATA(5nm)/
    TPD(20nm)/DPVBi(50nm)/BPhen(12nm)/Alq3:DMAPEAC(14nm,1wt%)/LiF/Al, maximum brightness of 2880 cd/m2 was obtained at 18.9V, maximum current and power efficiency was 1.5 cd/A and 0.4 lm/w, respectively. When driving voltage varied from 12V to 21V, the Commission Internationale de l'clairage (CIE) coordinates was changed from (0.27, 0.23) to (0.33, 0.30).

      Finally we tried to design top emitting white OLED, top emitting OLED with Al/Ag cathode had much amount of electron compared with pure Al or Ag cathode. But transparency dramatically decreased due to strong interference effect. Au and Ni had high work function was utilized as bottom anode for top cathode OLED. OLED with Au anode exhibited better performance than Ni anode due to Au with higher work function and decreased hole injection barrier. When device structure was Au(80nm)/m-MTDATA(5nm)/TPD(15nm)/Alq3:DMAPEAC(2nm,1wt%)/DPVBi(50nm)/LiF/Al(25nm),CIE coordinates was (0.42, 0.32) near white region. Beside, maximum current and power efficiency for device was 0.25 cd/A and 0.1 lm/w, respectively. Performance of top emitting white OLED was poorer compared with bottom emitting white OLED due to poorer ability of carriers injection and less transparency for electrode.

    目錄 中文摘要…………………………………………………………………….Ⅰ 英文摘要…………………………………………………………………….Ⅲ 目錄………………………………………………………………………….Ⅴ 表目錄……………………………………………………………………….Ⅸ 圖目錄……………………………………………………………………….Ⅹ 第一章 緒論……………………………………………………….1 1-1 前言………………………………………………………………………1 1-1-1 有機發光二極體的歷史簡介…………………………………….1 1-1-2 有機發光二極體顯示器的最新發展…………………………….2 1-2 研究動機與目的…………………………………………………………4 第二章 理論基礎與文獻回顧…………………………………….8 2-1 有機發光二極體元件理論………………………………………………8 2-1-1 有機發光元件結構………………………………………….……8 2-1-2 有機發光元件常用材料.………………………………………..10 2-1-2-1 電洞注入與電洞傳輸材料…………...………………..10 2-1-2-2 電子傳輸材料……………………………………...…..12 2-1-2-3 主體發光材料與摻雜發光材料…………………...…..17 2-1-3 載子的注入、傳輸與複合………………………………...……27 2-1-3-1 載子的注入………………..……………………...……27 2-1-3-2 載子的傳輸………………..……………………...……28 2-1-3-3 載子的複合………………..……………………...……29 2-2 白光有機發光元件製作技術………………..……………………........32 2-2-1 具單一發光層之白光有機發光元件………………...……........33 2-2-2 具多發光層之白光有機發光元件…………………...……........40 2-3-3 具異核複合分子(exciplex)之白光有機發光元件…...…….......42 2-3 上發光有機發光元件….………………..……………………...............47 2-3-1 上陽極發光有機發光元件…………………………...................49 2-3-1 上陰極發光有機發光元件…………..…………….....................50 第三章 實驗方法與步驟……………..…………...………………........53 3-1 實驗流程………………………….…..…………...………………........53 3-2 實驗系統設計………………….…..…………...…………………........54 3-2-1 高真空熱蒸鍍系統…….…..…………...………………….........54 3-2-1-1 抽氣系統…….…..…………...…………………...........54 3-2-1-2 壓力監控系統…..…………...…………….……......... .54 3-2-1-3 薄膜厚度監控系統…..…………...…………….......... .54 3-2-1-4 系統加熱裝置…..………………...…………….......... .55 3-2-2 氧電漿處理系統…..…………...……………………..….......... .55 3-2-2-1抽氣系統…..…………...……………………..….......... .55 3-2-2-2 壓力監控系統………...……………………..….......... .55 3-2-2-3 流量監控系統………...……………………..….......... .56 3-2-2-4 電漿產生之電源供應器………...……………............ .56 3-2-3 有機發光元件量測系統……...……………………..…............ .56 3-3 實驗材料……...……………………………………...……..…............ .57 3-3-1 基版材料……………………………………...……..…..............57 3-3-2 有機材料……………………………………...……..…............ .57 3-3-3 無機材料……………………………………...……..…............ .58 3-3-4 金屬材料……………………………………...……..…............ .58 3-3-5 基版清洗溶劑與實驗用氣體……………...……..…................ .58 3-4 實驗步驟……………………………………...……...……..…............ .58 3-4-1 ITO陽極圖案定義…………………...……...……….…............ .59 3-4-2 ITO基版之濕式處理…………………...……...…….…............ .59 3-4-3 ITO基版之低壓氧電漿處理…………………...………............ .59 3-4-4 有機與無機薄膜蒸鍍…………………...…………..…............ .60 3-5 元件特性分析與光譜之量測…………………...……...…….............. .60 第四章 DMAPEAC應用於有機發光元件……………..…..............63 4-1 前言…………………...……...……………………………..…............ .63 4-2 DMAPEAC之光學性質分析…………………...……...……….......... .67 4-3 主體材料的選擇……………………………...……...……..…............ .71 4-4 以DMAPEAC為發光層之有機發光元件製作……………............... .76 第五章 白光有機發光元件製作…………………………….........85 5-1 前言…………………...……...……………………………..…............ .85 5-2 電洞注入與傳輸層對元件性能之影響…………………..….............. .87 5-3 藍光發光層厚度對元件性能之影響…………………..….................. .93 5-4 白光有機發光元件製作與設計…………………..………....................99 5-4-1雙發光層白光有機發光元件……………..………......................99 5-4-2 具電子傳輸層的雙光層白光有機發光元件….........................102 5-4-3 具電洞阻擋層的雙光層白光有機發光元件……………….....105 5-5 上發光白光發光元件製作與設計……………..………......................121 5-5-1 上陰極發光有機發光元件之陰極材料選擇………………….121 5-5-2 陽極材料對上陰極發光有機發光元件之影響……………….127 5-5-3 上陰極發光白光有機發光元件………………….....................129 第六章 總結論…………...……...…………………………...................131 第七章 參考文獻………………………..……………………………...136 自述與著作………………………………………………………………...148

    [1] J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking, Science, 273, 884 (1996)
    [2] P. Pope, H. P. Kallmann, and P. J. Magnante, Journal of Chemical Physics, 38, 2042 (1963).
    [3] W. Helfrich, and W. G. Schneider, Physical Review Letters, 14, 229 (1965)
    [4] D. F. Williams, and M. Schadt, Proceedings IEEE, 58, 476 (1970)
    [5] C. W. Tang, and S. A. VanSlyke, Applied Physics Letters, 51, 913 (1987)
    [6] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539 (1990)
    [7] M. J. Flynn, J. Kanicki, A. Badano, and W. R. Eyler, Imaging & Therapeutic Technology, 19, 1653 (1999)
    [8] G. Mueller, Electroluminescence I-Semiconductor and Semimetals Vol. 64, Academic Press, San Diego, CA USA, 209 (2000)
    [9] R. G. Kepler, P. M. Beeson, S. J. Jacobs, R. A. Anderson, M. B. Sinclair, V. S. Valencia, and P. A. Cahill, Applied Physics Letters, 66, 3618 (1995)
    [10] P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Physical Review B, 55, R656 (1997)
    [11] P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, and T. O. Graham, Applied Physics Letters, 80, 2517 (2002)
    [12] H. Muratal, G. G. Malliaras, M. Uchida, Y. Shen, and Z. H. Kafafi1, Materials Research Society Symposium Proceedings, 665, 227 (2001)
    [13] M. Matsumura, T. Akai, and M. Saito, Japanese Journal of Applied Physics, 35, 3468 (1996)
    [14] D. Troadec, G. Veriot, R. Antony, and A. Moliton, Synthetic Metals, 124, 49 (2001)
    [15] D. Ammermann, A. Böhler, and W. Kowalsky, Annual report, Institut für Hochfrequenztechnik, TU Braunschweig, 48 (1995)
    [16] A. L. Burin, and M. A. Ratner, Journal of Physical Chemistry A, 104, 4704 (2000)
    [17] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Japanese Journal of Applied Physics Part 2, 27, L269 (1988)
    [18] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Japanese Journal of Applied Physics Part 2, 27, L713 (1988)
    [19] W. B. Im, H. K. Hwang, J. G. Lee, K. Han, and Y. Kim, Applied Physics Letters, 79, 1387 (2001)
    [20] M. Fujihira, L. M. Do, A. Koike, and E. M. Han, Applied Physics Letters, 68, 1787 (1996)
    [21] Y. Sato, S. Ichinosawa, and H. Kanai, IEEE Journal of Selected Topics in Quantum Electronics, 4, 40 (1998)
    [22] W. Rieß, H. Riel, P. F. Seidler, and H. Vestweber, Synth. Met., 99, 213 (1999)
    [23] Y. Shirota, M. Kinoshita, and K. Okumoto, Proceedings SPIE, 4464, 203 (2002)
    [24] M. Ikaia, S. Tokitob, Y. Sakamoto, T. Suzuki, and Y. Taga, Applied Physics Letters, 79, 156 (2001)
    [25] 黃春輝, 李富友, 黃岩誼, 光電功能超薄膜, 北京大學出版社, 北京, 中國, 258 (2001)
    [26] K. Yamashita, T. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, Thin Solid Films, 33, 363 (2000)
    [27] C. Adachi, K. Nagai, and N. Tamoto, Applied Physics Letters, 66, 2679 (1995)
    [28] Y. Shirata, Y. Kuwabara, D. Okuda, R. Okuda, H. Ogawa, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, and K. Imai, Journal of Luminescence,. 72-74, 985 (1997)
    [29] Y. Shirota, K. Okumoto, H. Inada, Synthetic Metals, 111-112, 387 (2000)
    [30] J. Kido and Y. Iizumi, Chemistry Letters, 26, 963 (1997)
    [31] H. Murata, Z. H. Kafafi, and M. Uchida, Applied Physics Letters, 80, 189 (2002)
    [32] R. Farchioni, G. Grosso, Organic Electronic Materials: Conjugated Polymers and Low molecular Weight Organic Solids, Springer-Verlag Berlin Heidelberg, Germany, 404 (2001)
    [33] Y. Kijima, N. Asai, and S. I. Tamura, Japanese Journal of Applied Physics, 38, 5274 (1999)
    [34] C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Applied Physics Letters, 67, 3853 (1995)
    [35] Y. Li, M. K. Fung, Z. Xie, S. T. Lee, L. S. Hung, and J. Shi, Advanced Materials, 14, 1317 (2002)
    [36] X. Y. Jiang, Z. L. Zhang, X. Y. Zheng, Y. Z. Wu, and S. H. Xu, Thin Solid Films, 401, 251 (2001)
    [37] L. M. Leung, W. Y. Lo, S. K. So, K. M. Lee, and W. K. Choi, Journal of the American Chemical Society, 122, 5640 (2000)
    [38] Y. Liu, J. Guo, J. Feng, H. Zhang, Y. Li, and Y. Wang, Applied Physics Letters, 78, 1200 (2001)
    [39] Y. Kim, J. G. Lee, and S. Kim, Advanced Materials, 11, 1463 (1999)
    [40] Z. Gao, C. S. Lee, I. Bello, S. T. Lee, R. M. Chen, T. Y. Luh, J. Shi and C. W. Tang, Applied Physics Letters, 74, 865 (1999)
    [41] H. T. Shih, C. H. Lin, H. H. Shih, and C. H. Cheng, Advanced Materials, 14, 1409 (2002)
    [42] C. C. Wu, Y. T. Lin, H. H. Chiang, T. Y. Cho, C. W. Chen, K. T. Wong, Y. L. Liao, G. H. Lee, and S. M. Peng, Applied Physics Letters, 81, 577 (2002)
    [43] C. H. Chen, J. Shi, Coordinates Chemistry Reviews, 171, 161 (1999)
    [44] C. H. Chen, C. W. Tang, Applied Physics Letters, 79, 3711 (2001)
    [45] C. W. Tang, S. A. VanSlyke, and C. H. Chen, Journal of Applied Physics, 65, 3610 (1989)
    [46] C.H. Chen, C.W. Tang, J. Shi, and K.P. Klubek, Thin Solid Films, 363, 327 (2000)
    [47] P. K. H. HO, J. S. Kim, J. H. Burroughes, H. Becker, S. F. Y. Li, T. M. Brown, F. Cacialli, and R. H. Friend, Nature, 404, 481 (2000)
    [48] Y. Cao, I. D. Parker, G. Yu, C. Zhang, and A. J. Heeger, Nature, 397, 414 (1999)
    [49] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature, 395, 151 (1998)
    [50] D. F. O’Brien, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Applied Physics Letters, 74, 442 (1999)
    [51] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Applied Physics Letters, 75, 4 (1999)
    [52] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Journal of Applied Physics, 90, 5048 (2001)
    [53] http://www.cam.ac.uk
    [54] J. Kalinowski, Journal of Physics D: Applied Physics, 32, R179 (1999)
    [55] U. Wolf, V. I. Arkhipov, and H. Bässler, Physical Review B, 59, 7507 (1999)
    [56] S. Barth, P. Müller, H. Riel, P.F. Seidler, W. Rieß, H. Vestweber, U. Wolf , and H. Bässler, Synthetic Metals, 111-112, 327 (2000)
    [57] M. Pope, and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford University Press, New York, 379 (1999)
    [58] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, and S. R. Forrest, Journal Applied Physics, 79, 7991 (1996)
    [59] http://hackman.mit.edu
    [60] P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest and M. E. Thompson, IEEE Transaction devices, 44, 1188 (1997)
    [61] R. S. Deshpande, V. Bulovic, and S. R. Forrest, Applied Physics Letters, 75, 888 (1999)
    [62] C. H. Chuen and Y. T. Tao, Applied Physics Letters, 81, 4499 (2002)
    [63] B. W. D’Andrade, R. J. Holmes, and S. R. Forrest, Advanced Materials, 16, 624 (2004)
    [64] J. Kido, H. Shionoya, and K. Nagai, Applied Physics Letters, 67, 2281 (1995)
    [65] J. H. Kim, P. Herguth, M. S. Kang, and A. K-Y. Jen, Applied Physics Letters, 85, 1116 (2004)
    [66] C. W. Ko, and Y. T. Tao, Applied Physics Letters, 79, 4234 (2001)
    [67] B. W. D’Andrade, M. E. Thompson and S. R. Forrest, Advanced Materials, 14, 147 (2002)
    [68] C. H Kim, and J. Shinar, Applied Physics Letters, 80, 2201 (2002)
    [69] M. C. J. M. Vissenberg, and M. J. M. de Jong, Physical Review Letters, 77, 4820 (1996)
    [70] J. Feng, F. Li, W. Gao, and S. Liu, Applied Physics Letters, 78, 3947 (2002)
    [71] J. S. Kim, B. W. Seo, and H. B. Gu, Synthetic Metals, 132, 285 (2003)
    [72] D. R. Baigent, R. N. Marks, N. C. Greenham, R. H. Friend, S. C. Moratti, and A. B. Holmes, Applied Physics Letters, 65, 2636 (1994)
    [73] P. Servati, S. Prakash, A. Nathan, and C. Py, The Journal of Vacuum Science Technology A, 20, 1347 (2002)
    [74] X. Zhou, M/ Pfeiffer, J. S. Huang, J. Blochwith-Nimoth, D. S. Qin, A. Werner, J. Drechsel, B. Maenning, and K. Leo, Applied Physics Letters, 81, 922 (2002)
    [75] C. Qiu, H. Peng, H. Chen, Z. Xie, M. Wong, and H. S. Kwok, IEEE Transactions on Electron Devices, 51, 1207 (2004)
    [76] L. S. Hung, and J. Madathil, Thin Solid Films, 410, 101 (2002)
    [77] L. S. Hung, and C. W. Tang, Applied Physics Letters, 74, 3209 (2002)
    [78] V. Bulovic´, P. Tian, P. E. Burrows, M. R. Gokhale, and S. R. Forrest, Applied Physics Letters, 70, 2954 (1997)
    [79] T. Dobbertin, M. Kroeger, D. Heithecker, D. Schneider, D. Metzdorf, H. Neuner, E. Becker, H. H. Johannes, and W. Kowalskya, Applied Physics Letters, 82, 284 (2003)
    [80] T. Dobbertin, O. Werner, J. Meyer, A. Kammoun, D. Schneider, T. Riedl, E. Becker, H. H. Johannes, and W. Kowalsky, Applied Physics Letters, 83, 5071 (2003)
    [81] G. Gu, V. Bulović, P. E. Burrows, S. R. Forrest, and M. E. Thompson, Applied Physics Letters, 68, 2606 (1996)
    [82] L. S. Hung,a) C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, Applied Physics Letters, 78, 544 (2001)
    [83] C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, Applied Physics Letters, 83, 5127 (2003)
    [84] H. Riel, S. Karg, T. Beierlein, B. Ruhstaller, and W. Rieß, Applied Physics Letters, 82, 466 (2003)
    [85] M. Uchida, C. Adachi, T. Koyama, and Y. Taniguchi, Journal Applied Physics, 86, 1680 (1999)
    [86] T. Wakimoto, R. Murayama, K. Nagayama, Y. Okuda, H. Nakada, T. Tohma, SID96 Digest, 849 (1996)
    [87] H. Nakamura, C. Hosokawa, T. Kusumoto, Inorganic and Organic Electroluminescence/EL 96, Berlin; Mauch, R. H., Gumlich,
    H. E., Eds.; Wissenschaft und Technik: Berlin, 1996; p 65.
    [88] A. Shoustikov, Y. You, M. E. Thompson, IEEE Journal of Selected Topics Quantum Electronics, 4, 3 (1998)
    [89] H. Murata, C. D. Merritt and Z. H. Kafafi, IEEE Journal of Selected Topics in Quantum Electronics, 4, 119 (1998)
    [90] P. E. Burrows, S. R. Forrest, S. P. Sibley, and M.E. Thompson,
    Applied Physics Letters, 69, 2959 (1996)
    [91] M. E. Thompson, A. Shoustikov, Y. You, S. Sibley, M. A. Baldo,
    V. Koslov, E. P. Burrows, and S. R. Forrest, Materials Research Society Abstract G2.4, Spring Meeting (1998)
    [92] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley,
    M. E Thompson, S. R. Forrest, Nature, 395, 151(1998)
    [93] D. F. O’Brien, M. A. Baldo, M. E. Thompson, and S. R. Forrest,
    Applied Physics Letters, 74, 442 (1999)
    [94] V. Bulovic, A. Shoustikov, M. A. Baldo, E. Bose, V. G. Kozlov, M. E. Thompson, and S. R. Forrest, Chemical Physics Letters 287, 455 (1998)
    [95] C. W. Tang, Dig. Soc. Inf. Display Int. Symposium, 27, 181 (1996)
    [96] C. H. Chen, C.W. Tang, J. Shi and K. P. Klubek, Thin Solid Films, 363, 327 (2000)
    [97] X. H. Zhang, B. J. Chen, X. Q. Lin, O. Y. Wong, C. S. Lee, H. L. Kwong, S. T. Lee and S. K. Wu, Chemistry of Materials, 13, 1565 (2001)
    [98] J. Kido, K. Nagai, Y. Okamato, and T. Skotheim, Chemistry Letters, 1267 (1991)
    [99] J. Kido, K. Nagai, and Y. Ohashi, Chemistry Letters, 657 (1990)
    [100] J. Kido, H. Hayase, K. Hongawa, K. Nagai, K. Okuyama, Applied Physics Letters, 65, 2124 (1994)
    [101] Junfeng Fang and Dongge Ma, Applied Physics Letters, 83, 4041 (2003)
    [102] M. A. Baldo and D. F. O’Brien, physical Review B, 60, 14422 (1999)
    [103] C. Q. Ma, Z. Liang, X. S. Wang, B. W. Zhang, Y. Cao, L. D. Wang and Y. Qiu, Synthetic Metals, 138, 537 (2003)
    [104] Y. Hamada, H. Kanno, T. Tsujioka, and H. Takahashi, Applied Physics Letters, 75, 1682 (1999)
    [105] S. T. Lim, M. H. Chun, K. W. Lee and D. M. Shin, Optical Materials, 21, 217 (2003)
    [106] D. H. Hwang, J. D. Lee, M. J Lee and C. Lee, Current Applied Physics, 5, 244 (2005)
    [107] S.A. Swanson, G. M. Wallraff, J. P. Chen, W. Zhang, L. D. Bozano, K. R. Carter, J. R. Salem, R. Villa, and J. C.Scott, Chemistry of Materials, 15, 2305 (2003)
    [108] K. Y. Lai, T. M. Chu, Franklin C. N. Hong, A. Elangovan, K. M. Kao, S. W. Yang and T. I. Ho, Surface and Coating Technology (acceptable)
    [109] F.P. Wenzla, P. Pachlera, E. J. W. Lista, D. Somitschb, P. Knollb, S. Patilc, R. Guentnerc, U. Scherfc, G. Leising, Physica E, 13, 1251 (2002)
    [110] C. Qiu, H. Chen, and M. Wong, IEEE Transactions on Electron Devices, 49, 1540 (2002)
    [111] H. Miyamoto, K. Takimiya, Y. Aso, T. Otsubo and F. Ogura, Synthetic Metals, 42, 2389 (1991)
    [112] Y. Shirota, T. Noda, and H. Ogawa, The International Society for Optical Engineering, 3797, 158 (1999)
    [113] J. Arinatti, and K. Paavo, Journal of Physical Chemistry B, 101, 7635 (1997)
    [114] L. C. Palilis, A. J. Makinen, M. Uchida, Z. H. Kafafi, Applied Physics Letters, 82, 2209 (2003)
    [115] Y. M. Wang, F. T., Z. Xu, Y. B. Hou, S. Y. Yang, L. Qian, T. Zhang, D. A. Liu, Applied Surface Science, 236, 251 (2004)
    [116] G.T. Lei, L.D. Wang, L. Duan, J.H. Wang, Y. Qiu, Synthetic Metals, 144, 249 (2004)
    [117] J. Michl, V. Bonacic-Koutecky, Electronic Aspects of Organic Photochemistry, J. Wiley, New York, p.274 (1990)
    [118] K. Okumoto, Y. Shirota, Journal of Luminescence, 87-89, 1171 (2000)
    [119] P. W. M. Blom and M. J. M. de Jong, IEEE Journal of Selected Topics in Quantum Electrons, 4, 105 (1998)
    [120] H. L. Wang, F. Huang, A.G. MacDiamid , Y.Z. Wang, D. D. Gebler, A. J. Epstein, Synthetic Metals, 80, 97 (1996)
    [121] T.A. Beierlein, W. Brutting, H. Riel, E.I. Haskal, P. Muller, W. Rieß, Synthetic Metals, 111-112, 296 (2000)
    [122] L. S. Hung, C. W. Tang, and M. G. Mason, Applied Physics Letters, 70, 152 (1997)
    [123] G. E. Jabbour, B. Kippelen, N. R. Armstrong, and N. Peyghambarian, Applied Physics Letters, 73, 1185 (1998)
    [124] Y. Kuwabara, H. Ogawa, H. Inada, N. Noma, and Y. Shirota, Advanced Materials, 6, 677 (1994)
    [125] C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Applied Physics Letters, 70, 1348 (1997)
    [126] B. Choi, H. Yoon, and H. H. Lee, Applied Physics Letters, 76, 412 (2000)
    [127] I. M. Chan, W. C. Cheng and Franklin C. N. Hong, Applied Physics Letters, 80, 13 (2002)
    [128] K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, J. Applied Physics, 87, 295 (2000)
    [129] I. M. Chan, and Franklin C. N Hong, Thin Solid Films, 444, 254 (2003)
    [130] L. S. Hung, and C. W. Tang, Applied Physics Letters, 74, 3209 (1999)
    [131] I. M. Chan, T.Y. Hsu, and Franklin C. N. Hong, Applied Physics Letters, 81, 1899 (2002)
    [132] I. M. Chan, and Franklin C. N Hong, Thin Solid Films, 450, 304 (2004)
    [133] M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, Applied Physics Letters, 77, 2255 (2000)
    [134] L. S. Hung, L. R. Zheng, and M. G. Mason, Applied Physics Letters, 78, 673 (2001)
    [135] K. H. Peter, M. Granström, R. H. Friend, and N. C. Greenham, Advanced Materials, 10, 769 (1998)
    [136] J. E. Malinsky, G. E. Jabbour, S. E. Shaheen, J. D. Anderson, A. G. Richter, T. J. Marks, N. R. Armstrong, B. Kippelen, P. Dutta, and N. Peyghambarian, Advanced Materials, 11, 227 (1999)
    [137] K. H. Ho. Peter, J. S. Kim, J. H. Burroughes, H. Becker, S. F. Y. Li, T. M. Brown, F. Cacialli and R. H. Friend, Nature, 404, 481 (2000)
    [138] I. D. Parker, Journal Applied Physics, 75, 1658 (1994)
    [139] V. Bulovic´, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, S. R. Forrest, Physical Review B, 58, 3730 (1998)
    [140] A. A. Shoustikov, Y. You, and M. E. Thompson, IEEE Journal of Selected Topics in Quantum Electronics, 4, 3 (1998)
    [141] P. E. Burrows, V. Khalfin, G. Gu, and S. R. Forrest, Applied Physics Letters, 73, 435 (1998)
    [142] L. B. Lin, S. A. Jenekhe, R. H. Young, and P. M. Borsenberger, Applied Physics Letters, 70, 2052 (1997)
    [143] D. Z. Garbuzov, V. Bulović, P. E. Burrows, and P. E. Forest, Chemical Physics Letters, 249, 433 (1996)
    [144] T. J. Chow, R. Lin, C. W. Ko and Y. T. Tao, Journal of Material Chemistry, 12, 42 (2002)
    [145] I. G. Hill, and A. Kahn, Journal of Applied Physics, 86, 4515 (1994)
    [146] C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Applied Physics Letters, 67, 3853 (1995)
    [147] I. M. Chan, C. H. Chen, F. S. Guo, Y. B. Guo and Franklin C. N. Hong, Applied Physics Letters (submitted)
    [148] I. M. Chan, C. H. Chen, F. S. Guo, Y. B. Guo and Franklin C. N. Hong, Advanced Materials (submitted)
    [149] Y. B. Yoona, H. W. Yanga, D. C. Chooa, T. W. Kima, and H. S. Ohb
    Solid State Communications, 134, 367 (2005)
    [150] Y. Yang, Q. Pei, and A. J. Heeger, Journal of Applied Physics, 79, 934 (1996)
    [151] P. F. Seidler, E. I. Haskal, A. Curioni, and W. Andreoni, SID Conference Record of the International Display Research Conference, F5 (1997)
    [152] Y. Yang, Q. Pei, and A. J. Heeger, Journal of Applied Physics, 79, 934 (1996)
    [153] L. S. Hung, R. Q. Zhang, and G. Mason, J. Phys. D 35, 103 (2002)
    [154] Samuel Selby, Handbook of mathematical tables, Springer-Verlag Berlin Heidelberg, Cleveland, 12-41 (1962)
    [155] R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, Applied Physics Letters, 84, 4614 (2005)
    [156] M. Stoßel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, A. Winnacker, H. Neuner, D. Metzdorf, H. H. Johannes, W. Kowalsky, Synthetic Metals, 111-112, 19 (2000)
    [157] M. Akbi, and A. Lefort, Japanese Journal of Applied Physics, 31, 1301 (1998)

    下載圖示 校內:2010-08-15公開
    校外:2010-08-15公開
    QR CODE