簡易檢索 / 詳目顯示

研究生: 鍾典育
Chung, Tien-Yu
論文名稱: 利用L型電極發展可調式介電泳微流系統用以分離多尺寸粒子
Development of a Tunable Dielectrophoresis Enabled Microfluidic System based on L-Shaped Electrodes for Size-based Particle Sorting
指導教授: 莊漢聲
Chuang, Han-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 57
中文關鍵詞: 微流體介電泳粒子排序交流電滲交流電熱
外文關鍵詞: microfluidics, dielectrophoresis (DEP), particle sorting, AC electro-osmosis (ACEO), AC electro-thermal (ACET)
相關次數: 點閱:125下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為發展一種可調式介電泳微流系統,用於分離微小、不同尺寸的粒子,並希望能將本裝置應用在生物粒子,如:微胞、血球的分離上。與以往許多藉由介電泳力分離粒子的裝置相比,本研究將L型形狀電極與微流道中出口流道的相對位置技巧性的排列,利用流道壁面攔截粒子進行分離,因此能大幅降低所需的流道長度與電極數目,使能分離的粒子大小差距減少,且增加能同時分離粒子的尺度數目。在本實驗中,1, 3, 5 μm的乳膠粒子已成功在不超過 1毫米的流道中被分離,並透過調控電壓和輸入流率的比例,可即時改變欲分離粒子的大小並得到理想的分離結果,使得本裝置具備高耐用和靈活度。最佳化的分離效果是將這三種不同尺寸的粒子分別排序在不同的出口流道中,各有 92.7 %, 75.2 % 以及94.3 %的比率。透過模擬與實驗結果的相互對照,已驗證裝置可以快速、自動化與高通量同時分離粒子的可行性。最終希望將本技術應用到生物粒子的分離,在未來得以和生物醫學結合,具有開發定點照護晶片之潛力。

    This research develops a tunable size-based microfluidic system by using the force of negative dielectrophoresis (nDEP). A sample stream containing a mixture of particles is pinched in the upstream and then sorted by size after flowing over planar interdigitated electrodes. The L-shaped electrodes and flow chamber were aligned in a particular arrangement to yield an optimal sorting effect. 1, 3, and 5 µm polystyrene (PS) particles were successfully separated into three distinct streams in a short distance (1 mm) and collected in different outlet channels. The sorting could be modulated by flow rate and electric potential. The optimal experimental sorting efficiencies of 1, 3, and 5 µm particles achieved 92.7 %, 75.2 %, and 94.3 %, respectively. Based on the principle, further sorting of smaller particles is achievable.

    Abstract i 摘要 ii 致謝 iii Contents iv Figure Contents vi Nomenclature ix Chapter1 Introduction 1 1.1 Overview and Motivation 1 1.1.1 Microfluidic Systems (MFS) 2 1.1.2 Point of Care Testing 3 1.1.3 Preview and Contribution 3 1.1.4 Purpose and Motivation 3 1.2 Particle Sorting 4 1.2.1 Conventional Sorting 4 1.2.2 Electrokinetic Sorting 6 Chapter2 Material and Methods 11 2.1 DEP 11 2.1.1 Theory 11 2.1.2 Sorting 13 2.2 Dielectric Properties of Particles 17 2.3 Chip Fabrication 18 2.3.1 Design 18 2.3.2 Fabrication 21 2.4 Experimental Setup 23 2.5 Scaling Analysis 28 2.5.1 Force Analysis 28 2.5.2 Phase Diagram 31 2.6 Numerical Simulation 32 2.6.1 Model and Settings 32 2.6.2 Simulation Results 36 Chapter 3 Experimental Results and Discussion 39 3.1 Effects of DEP with Different Conditions 39 3.1.1 CM factor of Particles 39 3.1.2 Effects of Variable Frequency, Voltage and Flow Rate 43 3.2 Comparisons of Simulation and Experiment 49 Chapter 4 Conclusion 52 Chapter 5 Future Work 54 References 55

    1. Nakashima, Y., S. Hata, and T. Yasuda, Blood Plasma Separation and Extraction from A Minute Amount of Blood Using Dielectrophoretic and Capillary Forces. Sensors and Actuators B-Chemical, 2010. 145(1): p. 561-569.
    2. Wang, Z.Y., et al., Dielectrophoresis Microsystem with Integrated Flow Cytometers for On-line Monitoring of Sorting Efficiency. Electrophoresis, 2006. 27(24): p. 5081-5092.
    3. Liu, K.K., et al., Microfluidic Systems for Biosensing. Sensors 2010. 10(7): p. 6623-61.
    4. Tsutsui, H. and C.M. Ho, Cell Separation by Non-inertial Force Fields in Microfluidic Systems. Mechanics Research Communications, 2009. 36(1): p. 92-103.
    5. Haeberle, S. and R. Zengerle, Microfluidic Platforms for Lab-on-a-chip Applications. Lab on a Chip, 2007. 7(9): p. 1094-110.
    6. Cheng, I.F., et al., An Integrated Dielectrophoretic Chip for Continuous Bioparticle Filtering, Focusing, Sorting, Trapping, and Detecting. Biomicrofluidics, 2007. 1(2): p. 21503.
    7. Wang, J., Electrochemical Biosensors: Towards Point-of-care Cancer Diagnostics. Biosensors & Bioelectronics, 2006. 21(10): p. 1887-1892.
    8. GRAHAM John M., R.D., Biological Centrifugation. 2001. 1-3.
    9. Yamada, M. and M. Seki, Hydrodynamic Filtration for On-chip Particle Concentration and Classification Utilizing Microfluidics. Lab on a Chip, 2005. 5(11): p. 1233-1239.
    10. Gascoyne, P., et al., Microsample Preparation by Dielectrophoresis: Isolation of Malaria. Lab on a Chip, 2002. 2(2): p. 70-75.
    11. X-B Wang, Y.H., J P H Burt, G H Mark and R Pethigt Selective Dielectrophoretic Confinement of Bioparticles in Potential Energy Wells. IOP Science, 1993: p. 1278-1285.
    12. Takagi, J., et al., Continuous Particle Separation in A Microchannel Having Asymmetrically Arranged Multiple Branches. Lab on a Chip, 2005. 5(7): p. 778-784.
    13. Huang, L.R., et al., Continuous Particle Separation through Deterministic Lateral Displacement. Science, 2004. 304(5673): p. 987-990.

    14. Choi, S. and J.K. Park, Microfluidic System for Dielectrophoretic Separation bsed on A Trapezoidal Electrode Array. Lab on a Chip, 2005. 5(10): p. 1161-1167.
    15. Chiou, P.Y., A.T. Ohta, and M.C. Wu, Massively Parallel Manipulation of Single Cells and Microparticles Using Optical Images. Nature, 2005. 436(7049): p. 370-372.
    16. Dholakia, K., P. Reece, and M. Gu, Optical Micromanipulation. Chemical Society Reviews, 2008. 37(1): p. 42-55.
    17. Chuang, H.S., S.C. Jacobson, and S.T. Wereley, A Diffusion-based Cyclic Particle Extractor. Microfluidics and Nanofluidics, 2010. 9(4-5): p. 743-753.
    18. Barbulovic-Nad, I., et al., DC-dielectrophoretic Separation of Microparticles Using An Oil Droplet Obstacle. Lab on a Chip, 2006. 6(2): p. 274-279.
    19. Green, N.G. and H. Morgan, Dielectrophoretic Separation of Nano-particles. Journal of Physics D-Applied Physics, 1997. 30(11): p. L41-L44.
    20. Duerr, M., et al., Microdevices for Manipulation and Accumulation of Micro- and Nanoparticles by Dielectrophoresis. Electrophoresis, 2003. 24(4): p. 722-731.
    21. Markx, G.H. and R. Pethig, Dielectrophoretic Separation of Cells - Continuous Separation. Biotechnology and Bioengineering, 1995. 45(4): p. 337-343.
    22. Wei, M.T., J. Junio, and H.D. Ou-Yang, Direct Measurements of the Frequency-dependent Dielectrophoresis Force. Biomicrofluidics, 2009. 3(1): p. 12003.
    23. Burgarella, S., et al., A Modular Micro-fluidic Platform for Cells Handling by Dielectrophoresis. Microelectronic Engineering, 2010. 87(11): p. 2124-2133.
    24. Masumi Yamada, Megumi Nakashima, and M. Sek, Pinched Flow Fractionation Continuous Size. Analytical Chemistry, 2004. 76(18): p. 5465-5471.
    25. Han, S.I., et al., Lateral Dielectrophoretic Microseparators to Measure the Size Distribution of Blood Cells. Lab on a Chip, 2011. 11(22): p. 3864-3872.
    26. Kumar, A., H.S. Chuang, and S.T. Wereley, Dynamic Manipulation by Light and Electric Fields: mMcrometer Particles to Microliter Droplets. Langmuir, 2010. 26(11): p. 7656-60.
    27. Yih, T.C. and L. Talpasanu, Micro and Nano Manipulations for Biomedical Applications. 2008. 185-191.
    28. Sukhorukov, V.L., et al., A Single-shell Model for Biological Cells Extended to Account for the Dielectric Anisotropy of the Plasma Membrane. Journal of Electrostatics, 2001. 50(3): p. 191-204.

    29. Chuang, H.-S. and S. Wereley, Design, Fabrication and Characterization of A Conducting PDMS for Microheaters and Temperature Sensors. Journal of Micromechanics and Microengineering, 2009. 19(4): p. 045010.
    30. Castellanos, A., et al., Electrohydrodynamics and Dielectrophoresis in Microsystems Scaling Laws. Journal of Physics D-Applied Physics, 2003. 36: p. 2584-2597.
    31. Wu, L., L.-Y.L. Yung, and K.-M. Lim, Dielectrophoretic Capture Voltage Spectrum for Measurement of Dielectric Properties and Separation of Cancer Cells. Biomicrofluidics, 2012. 6(1): p. 014113.

    無法下載圖示 校內:2015-01-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE