簡易檢索 / 詳目顯示

研究生: 游登進
Yu, Teng-Chin
論文名稱: 模糊理論與灰關聯分析於太陽能系統設計開發之決策研究
Applying Fuzzy Theory and Grey Relation Analysis to Optimize Solar PV System Design
指導教授: 蕭世文
Hsiao, Shih-Wen
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系碩士在職專班
Department of Industrial Design (on-the-job training program)
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 79
中文關鍵詞: 太陽能模糊理論灰關聯分析同步工程
外文關鍵詞: Solar PV system, Fuzzy theory, Grey relation analysis, Concurrent engineering
相關次數: 點閱:143下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要提出了一種全新的設計決策方法來進行太陽能光電系統專案。這種方法目的是針對不同的背景的工程人員進行集合式設計整合決策方法,同時滿足專案所需的太陽光電系統可靠性訴求與太陽能光電系統的最佳值決策 (BIPV)。
    在本文中,將說明如何應用模糊理論(Fuzzy)與灰關聯分析(GRA)並接續同步工程(CE)思維進行最佳化設計決策的分析,除了提升太陽能光電系統的轉換效率和工程設計質量探討。同時在本研究中的設計審查流程,依據我國太陽能光電政策法規進行專案光電系統的設計規劃。
    在整個研究過程中,本研究將所有的太陽能光電系統電子資料表均上傳於雲端系統(Dropbox)上,設置知識管理權限標準與同步分工作業;應用於50kW以下的太陽能光電系統,同步分享知識技術與排除在太陽能光電系統專案推動的可能失敗的因子產生。
    本研究中的太陽能光電系統依據的實際發電效益監控結果,驗證應用模糊理論(Fuzzy)和灰關聯分析(GRA)進行最佳化設計決策的太陽能光電系統,除了可以使團隊容易決定最佳標的物與設計方案,後續應用同步工程(CE)設計思維,亦可以縮短開發時間與提升工程品質。本論文以臺南市安南區4.16kW太陽能光電系統為例作為設計驗證研究。

    A new methodology to perform the optimal decision of developing a solar PV system is pro-posed in this study. The methodology provides an integrated design decision for engineers with different backgrounds and meets the desired system reliability requirements with the best value of solar PV system (BIPV). This study combines Fuzzy Theory and Grey Relation Analysis (GRA) to generate the optimum design decision and improve the efficacy of the solar PV system according to the concept of Concurrent Engineering (CE). This methodology can enhance the efficacy and quality of the solar PV system. The planning of solar PV system and its design examination in this study follows the laws and regulations of Taiwanese solar energy policy. All of the solar PV system data will be uploaded to the cloud system (Dropbox), and the standards of management authority are set simultaneously throughout the performance of different professional stages. The proposed model could be applied to solar PV systems with the power less than 50kW. The results show that the factors that trigger project failure can be known in advance and then be excluded from the process of developing a solar PV system. Moreover, an application (APP) constructed in this study can be used to mobile the results of the solar PV system, and get a report generated based on Fuzzy Theory and Grey Relation Analysis. With this methodology, the best location and design plan can easily be obtained; whereas, the Concurrent Engineering (CE) concept applied will effectively shorten the pre-required schedule and enhance the engineering quality of developing a solar PV sys-tem. Finally, a Solar PV System (4.16kW) was adopted to verify the feasibility of the methodology proposed in this study.

    摘要 I Abstract II 誌謝 XIV 目錄 XV 圖目錄 XVIII 表目錄 XX 第一章 緒論 1 1-1研究背景 1 1-2研究動機 2 1-3研究目的 3 1-4研究架構 5 1-5研究範圍與限制 7 第二章 文獻探討 9 2-1太陽光電系統現行法規基礎與相關機制 9 2-1-1經濟部能源局同意備案意見書 9 2-1-2臺灣電力公司躉售合約作業 10 2-2光電系統與相關理論 13 2-2-1光學基礎理論 14 2-2-2太陽能電池光電理論 15 2-2-3太陽光電系統分類太陽光電系統分類 16 2-2-4太陽光電系統架構探討 18 2-3太陽能系統設計用標準日射量分析 19 2-3-1氣象數據分析 20 2-3-2臺南各區日射量探討 20 2-3-3臺南各區發電量預測 22 2-4太陽能建築(BIPV)論述 27 2-4-1何謂BIPV 27 2-4-2 BIPV現行的優劣勢為何 29 2-4-3 BIPV結合建築設計注意事項 32 2-5太陽能系統與綠建築關聯 34 2-5-1綠建築認證 35 2-5-2綠建築設計指標 36 2-6太陽能系統與建築環境的永續設計思維 38 第三章 研究理論方法 40 3-1模糊理論(Fuzzy theory) 40 3-1-1模糊理論(Fuzzy theory)概述 41 3-1-2模糊理論(Fuzzy theory)實務運用 42 3-1-3模糊理論(Fuzzy theory)貼進度演算法 43 3-2灰色理論(Grey theory) 43 3-2-1灰色理論(Grey theory)論述 44 3-2-2灰關聯分析(Grey Relation Analysis) 45 3-2-3灰關聯空間(Grey Relation Analysis) 演算法 45 3-3同步工程(CE) 46 3-4專家訪談意見表 47 3-5目標樹決策法 48 3-6探討模糊理論貼進度與灰關聯分析與同步工程之關聯性 49 第四章 研究流程及實例驗證 50 4-1研究流程與步驟 51 4-2台南市現有10所中小學現況分析 53 4-3成立專家團隊 54 4-4運用模糊貼進度進行設計決策分析 54 4-5運用灰關聯分析進行設計決策分析 56 4-5-1數量化設計方案 57 4-5-2專家訪談與評估最佳化設計方案 58 4-5-3電腦輔助設計決策方程式 59 4-6實例驗證 60 4-6-1太陽光電系統遮蔭模擬 61 4-6-2太陽光電發電效益評估 62 4-6-3建置光電系統成本表 62 4-6-4專案時程與雲端知識管理 63 4-7同步工程設計與傳統工程設計時效驗證 67 4-8實際案例與最佳化設計交叉驗證 68 第五章 結論 70 5-1研究成果 70 5-2未來方向 71 參考文獻 72 附件一 75 附件二 76 附件三 77 附件四 79

    中文部分
    [1]Salat, S.(2006)。可持續性發展設計指南-高環境質量的建築。:清華大學出版社。
    [2]中文網, D.(2014)。 各類太陽能電池材料發展趨勢與比較。取自 http://www.digitimes.com.tw
    [3]中央網路報,再生能源專家看好台灣太陽能板,2009.4.16,http://www/cdnews.com.tw
    [4]王建智(2008)。中尺寸導光板光學設計與製程參數最佳化研究。高雄應用科技大學。
    [5]交通部觀光局 (2011)。 低碳島觀光島策略規劃計畫。
    [6]何明錦、歐文生(2007)。建築物建置太陽能光電最佳化設計模型之研究。內政部建築研究所。
    [7]何明錦、歐文生(2008)。建築整合型太陽能光電系統(BIPV)綜合效益之研究。內政部建築研究所。
    [8]李輝煌(2005)。田口方法品質設計的原理與實物。:高立圖書有限公司。
    [9]林永川(2014)。以灰關聯分析應用於市電併聯型太陽光電系統的整體性能評估。臺北科技大學。
    [10]施耀竣(2010)。太陽能集光片之效能設計與模具開發之研究。國立高雄應用科技大學。
    [11]紀曉菁(2013)。運用失效模式分析與同步工程策略於輔具研發設計。國立成功大學。
    [12]張仕添(2009)。InGaP/GaAs 雙接面與InGaP/GaAs/InGaAs 三接面串接式太陽能電池之模擬與分析。國立彰化師範大學。
    [13]陳依伸(2009)。太陽能聚焦用菲尼爾透鏡表面結構設計。國立成功大學。
    [14]陳嘉懿 (2014)。 開放式物聯網架構下的智慧綠建築設計樣式。桃園創新學報 第三十三期。
    [15]經濟部(2008)。永續能源政策綱要。經濟部。
    [16]蔡宜中(2009)。BIPV建材一體型太陽光電系統應用研究。內政部建築研究所。
    [17]鄧聚龍(2003)。灰色系統理論與應用。:高立圖書有限公司。
    [18]鄭元良、張又升(2009)。零碳綠建築願景、策略及可行性研究。內政部建築研究所。
    [19]闕頌廉(1994)。應用模糊數學。:科技圖書股份有限公司。

    英文部分
    [20] Alexouda, G. (2005). A user-friendly marketing decision support system for the product line design using evolutionary algorithms .Decision Support Systems, 38,P 495-509.
    [21] Beltrán-Chacon, R.、Leal-Chavez, D.、Sauceda, D.、Pellegrini-Cervantes, M.、Borunda, M. (2015). Design and analysis of a dead volume control for a solar Stirling engine with induction generator. Energy, 93(Part 2),Page 10.
    [22] Chen, C.-L.、Yuan, T.-W.、Lee, W.-C. (2007). Multi-criteria fuzzy optimization for locating warehouses and distribution centers in a supply chain network. Journal of the Chinese Institute of Chemical Engineers,38, P 393-407.
    [23] Dahlstrøm, O.、Sørnes, K.、Eriksen, S. T.、Hertwich, E. G. (2012). Life cycle assessment of a single-family residence built to either conventional- or passive house standard[Article].Energy & Buildings, 54,P 470-479.
    [24] Hemsath, T. L.、Bandhosseini, K. A. (2015). Building Design with Energy Performance as Primary Agent. Energy Procedia, 78, P 3049-3054.
    [25] Hygh, J. S.、DeCarolis, J. F.、Hill, D. B.、Ranji Ranjithan, S. (2012). Multivariate regression as an energy assessment tool in early building design. Building and Environment, 57, P 165-175.
    [26] Narasimhan, V.、Jiang, D.、Park, S.-Y. (2016). Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection[Article].Applied Energy, 162, P 450-459.
    [27] Shukla, A. K.、Sudhakar, K.、Baredar, P. (2016). Exergetic assessment of BIPV module using parametric and photonic energy methods: A review . Energy & Buildings, 119, P 62-73.
    [28] Ti-chun, W.、Ai-jun, Y.、Shi-sheng, Z.、Zhen-dong, Z. (2014). EXTENSION ADAPTIVE DESIGN MODEL OF SCHEME DESIGN FOR COMPLEX MECHANICAL PRODUCTS. Model projekta prilagodljivog proširenju kod projektiranja složenih mehaničkih proizvoda., 21(1),P 123-133.
    [29] Wei, P.、Shan, L.、Ying, G.、Fengxia, W. (2015). FUZZY MULTI-OBJECTIVE MODEL FOR SUPPLIER SELECTION CONSIDERING MULTIPLE PRODUCTS IN LOW CARBON SUPPLY CHAIN[Article].Environmental Engineering & Management Journal (EEMJ), 14(8),P 1781-1789.
    [30] Xu, J.、Liu, Q.、Wang, R. (2008). A class of multi-objective supply chain networks optimal model under random fuzzy environment and its application to the industry of Chinese liquor. Information Sciences, 178(8),P 2022-2043.
    [31] Yue, C.、Su, H.-J.、Ge, Q. J. (2012). A hybrid computer-aided linkage design system for tracing open and closed planar curves. Computer-Aided Design, 44, P1141-1150.
    [32] Zhou, J.、Wang, N.、Xie Da, C. (2016). Research Progresses of Vacuum glazing and BIPV. Key Engineering Materials, 680, P 311-314.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE