簡易檢索 / 詳目顯示

研究生: 莊堯智
Chuang, Yao-Chih
論文名稱: 利用雷射合金化改善鋁合金磨耗性質之研究
A Study on the Wear Characteristics of Aluminum alloys by Laser Surface alloying
指導教授: 李世欽
Lee, Shih-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 129
中文關鍵詞: 雷射合金化磨耗鋁合金
外文關鍵詞: aluminum alloy, sliding wear, laser surface alloying (LSA)
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 本研究探討添加純鎳粉、鎳基自熔合金(Ni base powder)和鈷基自熔合金(Co base powder)粉末與鋁合金經CO2雷射合金化後,觀察顯微組織、硬度變化、熱處理(T6)效應及磨耗性質之影響。實驗結果顯示:純鎳粉經雷射合金化只有單一析出物Al3Ni產生。然而,鎳基自熔合金層依形成組織結構不同可分三區域:I區、II區和III區;鈷基合金層可分為兩個區域:IV區和V區。其組成主要取決於冷卻速率快慢及合金元素富集所致:I區因冷卻速率最快,因此形成具有方向性排列之Al3Ni微細等軸晶,而II區組織為較大Al3Ni2樹枝狀晶。經Ni、Cr元素分析和TEM觀察,III區相為Al-Ni-Cr之非晶質結構。介於II、III區之間界面層析出相以AlNi(Simple Cubic structure)和Al8Cr5(Rhombohedral structure)。在鈷基自熔合金層方面:最外層IV區為環狀排列之Al9Co2組織而內層V區為Al13Co4及Al7Cr。在硬度方面,結果顯示:純鎳粉經雷射合金化後,硬度較基材僅些微增加。鎳基自熔合金增加3-19倍。鈷基自熔合金硬度增加2-11倍。在常溫磨耗方面:鎳基自熔合金磨耗阻抗增加3-10倍,鈷基自熔合金2-7倍(15-35N),高溫磨耗部分鎳基、鈷基自熔合金磨耗阻抗增加3倍,且臨界轉換溫度比基材高約50℃

    The surface microstructures of 6061 Al-Mg-Si alloy coated with laser surface alloyed (LSA) pure Ni, Ni base and Co base powder and the microstructure, hardness, and sliding wear performance have been investigated. Experimental results show that there are three regions, as region I, region II and region III in LSA Ni base powder treated specimen. Two regions, IV and V are observed in the LSA Co base treated specimen. The Al3Ni and Al3Ni2 compounds appear in the region I and region II, respectively. The Al-Ni-Cr amorphous structure can be observed in the region III. The Al9Co2 particles with a network structure are present in region IV and block-like Al13Co4 and Al7Cr are distributed in region V. The hardness of the LSA Ni and Co base specimens is much higher than the Al-matrix. Compared with the Al-matrix, the LSA Ni and Co base specimens have excellent sliding wear performance. They have lower friction coefficient and wear rate. The critical temperature of sliding wear resistance of LSA specimen is higher than that of Al-matrix by about 50°C.

    中文摘要………………………………………………………………………I 英文摘要……………………………………………………………………II 誌謝…………………………………………………………………………III 目錄…………………………………………………………………………V 表目錄……………………………………………………………………X 圖目錄………………………………………………………………………XI 第一章 前言…………………………………………………………………1 1-1簡介………………………………………………………………………1 1-2研究動機與目的…………………………………………………………3 第二章 理論基礎及文獻回顧………………………………………………4 2-1雷射簡介…………………………………………………………………4 2-1-1 雷射特性……………………………………………………………4 2-1-2 二氧化碳雷射………………………………………………………5 2-1-3 雷射的優點…………………………………………………………5 2-2 雷射表面改質……………………………………………………………6 2-2-1雷射表面改質簡介…………………………………………………6 2-2-1-1雷射披覆………………………………………………………7 2-2-1-2雷射合金化……………………………………………………9 2-2-2雷射表面改質之發展沿革…………………………………………9 2-3合金層可能發生之磨耗型態……………………………………………13 2-3-1磨料磨耗……………………………………………………………16 2-3-1-1磨料磨耗機構………………………………………………16 2-3-1-2磨料磨耗種類………………………………………………17 2-3-2黏附磨耗……………………………………………………………22 2-4合金層對磨耗行為的影響………………………………………………24 2-4-1微觀組織……………………………………………………………25 2-4-2熔填金屬的硬度……………………………………………………26 2-4-3稀釋率………………………………………………………………27 2-5硬面合金之種類…………………………………………………………28 第三章、實驗方法與步驟……………………………………………………34 3-1實驗流程…………………………………………………………………34 3-2實驗材料…………………………………………………………………34 3-2-1基材…………………………………………………………………34 3-2-2合金粉末……………………………………………………………35 3-3實驗設備…………………………………………………………………35 3-3-1 CO2雷射……………………………………………………………35 3-4 材料試驗分析…………………………………………………………37 3-4-1顯微組織觀察………………………………………………………37 3-4-2硬度量測……………………………………………………………39 3-4-3 磨耗試驗分析……………………………………………………39 3-5 T6處理…………………………………………………………………40 第四章 研究結果與討論……………………………………………………42 4-1 鎳基合金層顯微組織觀察……………………………………………42 4-1-1 雷射合金化後之表面型態………………………………………42 4-2合金層顯微組織觀察……………………………………………………46 4-2-1鎳基自熔合金顯微組織觀察…………………………………46 4-2-2純鎳雷射合金化顯微組織……………………………………51 4-2-3 鈷基合金層顯微組織觀察……………………………………55 4-3熱處理對合金層性質之影響……………………………………………62 4-3-1 鎳基顯微組織觀察………………………………………………62 4-3-2 鈷基顯微組織觀察………………………………………………64 4-4硬度分析…………………………………………………………………64 4-4-1 鎳基合金層硬度分析……………………………………………64 4-4-1-1 熱處理效應對鎳基合金層硬度的影響……………………68 4-4-2 鈷基合金層硬度分析……………………………………………70 4-4-2-1 熱處理效應對鈷基合金層硬度的影響……………………71 4-5 磨耗特性分析…………………………………………………………71 4-5-1常溫磨耗……………………………………………………………72 4-5-1-1重量損失率率和正向力之關係……………………………72 4-5-1-2 鋁合金常溫磨耗行為………………………………………72 4-5-1-2-1 SKD61對手材磨耗觀察………………………………75 4-5-1-2-2 磨屑型態觀察…………………………………………78 4-5-1-3鎳基自熔合金常溫磨耗行為………………………………80 4-5-1-3-1 磨屑型態觀察………………………………………89 4-5-1-1-4鈷基自熔合金常溫磨耗行為………………………………91 4-5-2溫度與磨耗之關係…………………………………………………97 4-5-2-1重量損失率率比較…………………………………………97 4-5-2-2磨耗表面觀察………………………………………………101 4-5-2-3磨屑觀察……………………………………………………112 4-5-3 磨耗距離與重量損失率之關係…………………………………114 4-5-3-1重量損失率之比較…………………………………………114 4-5-3-2磨耗表面觀察………………………………………………114 4-5-4 荷重與重量損失率之關係………………………………………116 4-5-4-1荷重與重量損失率之比較…………………………………116 4-5-4-2磨耗表面觀察………………………………………………119 第五章結論…………………………………………………………………121 參考文獻……………………………………………………………………123 表 目 錄 Table 2-1 The capability of different laser∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7 Table 3-1 The chemical compositions of Al-Mg-Si alloys∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙34 Table 3-2 The chemical compositions of LSA powder∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙35 Table 3-3 The parameters of laser surface alloying∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙37 Table 3-4 The chemical compositions of SKD61 material∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙40 Table 4-1 The chemical compositions of the LSA Ni base specimen∙∙∙∙∙∙∙∙∙∙∙∙∙47 Table 4-2 The chemical compositions of the precipitated particles in LSA Co sample∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙62 Table 4-3 Hardness of the Al-matrix, LSA Ni base specimen and T6 condition∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙70 Table 4-4 Hardness of the LSA Co base specimen and T6 condition∙∙∙∙∙∙∙∙∙∙∙∙∙71 Table 4-5 The chemical compositions of the marked particle∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙110 圖 目 錄 Figure 2-1 Typical application parameters∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8 Figure 2-2 Schematic diagrams of laser surface treatment∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10 Figure 2-3 The grain size of matrix and Laser melted specimen∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12 Figure 2-4 Microhardness measurements as a function of pure nickel coating before and after laser alloying process∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12 Figure 2-5 The wear curves of the lost volume under a load of 90N∙∙∙∙∙∙∙∙∙∙∙∙∙∙14 Figure 2-6 Anodic polarization curves in 10% H2SO4 Solution∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙14 Figure 2-7 Anodic polarization curves in 10% HNO3 Solution∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙15 Figure 2-8 The three based mode of abrasive∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18 Figure 2-9 Schematic diagrams of low stress abrasive wear∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙18 Figure 2-10 Schematic diagrams of high stress abrasive wear∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙20 Figure 2-11 Schematic diagrams of gouging abrasion∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙20 Figure 2-12 Schematic diagrams of two/three body abrasive wear∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙23 Figure 2-13 Schematic diagrams of adhesive wear∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙23 Figure 3-1 The experiment processes∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙36 Figure 3-2 Set-up of a high power CO2 laser system∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙38 Figure 3-3 Schematic of powder feed system∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙38 Figure 3-4 A schematic representation of ring-on- disc type of wear equipment∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙41 Figure 4-1 The surface condition after LSA∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙43 Figure 4-2. The cross-section of (a) the LSA Ni base sample and (b) schema of (a) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙45 Figure 4-3 SEM photos of the LSA Ni base sample (a) region I; (b) region II∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙46 Figure 4-4 Compositions distribution with distance from region I to III in LSA Ni base sample∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙48 Figure 4-5 TEM photographs of the region III in LSA Ni base sample (a) the bright-field photograph; (b) the selected area diffraction of (a)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙50 Figure 4-6 SEM photograph of the interface region∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙52 Figure 4-7 TEM of the interface region (a) the bright-field photograph of AlNi; (b) the dark-field photograph of AlNi; (c) the selected area diffraction of (b)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙53 Figure 4-8 TEM of the interface region (a) the bright-field photograph of Al8Cr5; (b) the selected area diffraction of (a)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙54 Figure 4-9 Photographs of the LSA pure Ni specimen(a)the transverse cross-section(b)Al3Ni compounds∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙56 Figure 4-10 TEM of LSA pure Ni specimen (a) the bright-field photograph (b) the selected area diffraction of (a)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙57 Figure 4-11 Photograph of the transverse cross-section of the LSA Co base specimen∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙58 Figure 4-12 SEM micrograph of the LSA Co base specimen in the region IV∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙60 Figure 4-13 SEM observations in the region V of the LSA Co base specimen (a) block-like structures (b) flake-like particles∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙61 Figure 4-14The distribution of chemical compositions from surface to bottom of the pool in LSA Co base specimen∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙63 Figure 4-15 SEM micrographs of region I in the LSA Ni base specimen with T6 treatment∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙65 Figure 4-16 SEM micrographs of the region II in LSA Ni base specimen with T6 treatment∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙66 Figure 4-17 TEM observation in the region III of the LSA specimen with T6 treatment (a) bright-field image; (b) the selected area diffraction of black- arrowhead of (a);(c) the selected area diffraction of white-arrowhead of (a)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙67 Figure 4-18 SEM micrographs of the LSA Co base specimen with T6 treatment(a) region IV;(b) region V∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙69 Figure 4-19 The curves of wear rate versus load for the specimens of Al-matrix , LSA Ni base and LSA Co base∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙73 Figure 4-20 The curves of friction coefficient versus load for the Al-matrix, LSA Ni base and LSA Co base∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙73 Figure 4-21 The curves of wear rate versus load for the specimens of Al-matrix and T6 treated specimens∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙76 Figure 4-22 SEM micrographs of the worn surfaces of Al-matrix with sliding wear at (a) 15N; (b) 20N; (c) 25N∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙77 Figure 4-23 SEM micrographs of the worn surfaces of SKD 61 specimens with sliding wear at (a) 15N; (b)30N∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙79 Figure 4-24 Morphologies of wear debris of Al matrix for (a) 15N; (b) 20N; (c) 25N∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙81 Figure 4-25 The curves of wear rate versus load for the specimens of LSA Ni base and T6 treated specimens∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙82 Figure 4-26 The worn surfaces of LSA Ni base specimens with sliding wear at 25N in (a);(b)ploughing strips caused by particles;(c) the cross-section of worn surface∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙84 Figure 4-27 The worn surfaces of LSA Ni base specimens with sliding wear (a) at 30 N;(b)high magnification of the marked circle in (a);(c) the cross-section of worn surface∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙85 Figure 4-28 The worn surfaces of LSA Ni base specimens with sliding wear (a) at 30 N;(b)high magnification of the marked circle in (a)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙87 Figure 4-29 SEM micrographs of the worn surfaces of SKD61 with sliding wear (a) at 25 N;(b)at 35 N∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙88 Figure 4-30 Morphologies of wear debris of LSA Ni base specimens with sliding wear (a) at 25 N;(b)at 35 N∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙90 Figure 4-31 The curves of wear rate versus load for the specimens of LSA Co base specimens and T6 treated specimens∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙92 Figure 4-32 SEM micrographs of the worn surfaces of LSA Co base specimens with sliding wear (a) at 20 N;(b)high magnification of the marked circle in (a)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙94 Figure 4-33 SEM micrographs of the worn surfaces of LSA Co base specimens with sliding wear (a) at 25 N;(b)high magnification of the marked circle in (a)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙95 Figure 4-34 SEM micrographs of the worn surfaces of LSA Co base specimens with sliding wear (a) at 30 N;(b)high magnification of the marked circle in (a)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙96 Figure 4-35 The worn surfaces of LSA Co base specimens with sliding wear (a) at 40 N;(b)high magnification of the marked circle in (a)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙98 Figure 4-36 The curves of wear rate versus temperature for the specimens of Al- matrix, LSA Ni base and LSA Co base at load 20 N and distance 1000 m∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙100 Figure 4-37 DSC analysis (a)Al-matrix;(b)LSA Ni base specimen, (c)LSA Co base specimen∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙102 Figure 4-38 SEM micrographs of the worn surfaces of Al-matrix with sliding wear (a )at 100℃;(b)high magnification of the marked circle in(a)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙103 Figure 4-39 SEM micrographs of the worn surfaces of Al-matrix with sliding wear (a )at 150℃;(b)high magnification of the marked circle in (a)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙105 Figure 4-40 SEM micrographs of the worn surfaces of Al-matrix with sliding wear (a )at 200℃;(b)the edge of wear track∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙106 Figure 4-41 The curves of friction coefficient versus temperature for the specimens of Al-matrix, LSA Ni base and LSA Co base at load 20 N and distance 1000 m∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙107 Figure 4-42 SEM micrographs of the worn surfaces of LSA Ni base specimens with sliding wear at (a) 100°C; (b) 150°C; (c) 200°C∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙108 Figure 4-43 The EDS analysis of the worn surfaces of LSA Ni base specimens at 150℃∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙110 Figure 4-44 SEM micrographs of the worn surfaces of LSA Co base specimens with sliding wear at (a) 100°C; (b) 150°C; (c) 200°C∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙111 Figure 4-45 Morphology of debris of LSA specimens with sliding wear at (a) 100℃; (b) 200℃∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙113 Figure 4-46 The curves of wear rate versus distance for the specimens of Al-matrix, LSA Ni base and LSA Co base at load 20 N and temperature 200℃∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙115 Figure 4-47 Morphology of debris of specimens with sliding wear at 20 N , distance 1000 m and temperature 200℃ (a) Al-matrix;(b) LSA Ni base specimen;(c)LSA Co base specimen∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙117 Figure 4-48The curves of wear rate versus load for the specimens of Al-matrix, LSA Ni base and Co base at distance 1000 m and temperature 200℃∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙119 Figure 4-49 Morphology of debris of specimens with sliding wear at 30 N, distance 1000 m and temperature 200℃(a) Al-matrix; (b) LSA Ni base specimen;(c)LSA Co base specimen∙∙∙∙∙∙∙∙∙∙120

    [1] R. Pawlak and T. Raczynski, Mater. Sci. Eng., A168, 1993, pp.67–70.
    [2] G. Shafrestieu, M. Langohr and F. Maisenhalder, Surf. Coat. Technol., 45,1991, pp.417-423.
    [3] M. Pierantoni, J. D. Wagniere and E. Blank, Mater. Sci. Eng., A110
    , 1989, pp.L17–L21.
    [4] 關振中,“激光加工工藝手冊”,中國計量出版社,1998
    [5] 王家金,“激光加工技術’’,中國計量出版社,1992
    [6] Y. B. Liu, J. D. Hu, Z. Y. Cao and P. K. Rohatgi, Wear, 206, 1997, pp.83-86.
    [7] T. M. Yue, Y. X. Wu and H. C. Man, Surf. Coat. Technol., 114, 1999 pp.13-18.
    [8] H. C. Man, S. Zhang, T. M. Yue and F. T. Cheng, Surf. Coat. Technol., 148, 2001, pp.136-142.
    [9] L. J. Yang, Comp. Sci. Technol., 63, 2003, pp.575-583.
    [10] Q. Ming, L. C. Lin and Z. D. Chen, Surf. Coat. Technol., 106, 1998, pp.174-182.
    [11] C. T. Kwok, F. T. Cheng and H. C. Man, Surf. Coat. Technol., 107, 1998, pp.31-40.
    [12] 劉以明, “線材切刀應用於雷射鈷基披覆層與熱處理之研究”,國立高雄第一科技大學碩士論文, 2002.
    [13] G. Y. Liang and T. T. Wong, Surf. Coat. Technol., 89, 1997, pp. 121-126.
    [14] W. J. Tomlinson and A. S. Bransden, J. Mater. Sci. Lett., 13, 1994, pp. 1086-1088.
    [15] L. Dubourg and F. Hlawka, A. Cornet, J. Phys. IV 10, 2000, pp. 137- 144.
    [16] Y. Y. Qui, A. Almeida and R. Vilar, J. Mater. Sci., 33, 1998, pp.2639-2651.
    [17] Y. Y. Qui, A. Almeida and R. Vilar, Scr. Metal. Mater., 33 (6), 1995, pp. 863-870.
    [18] L. R. Katipelli, A. Agarwal and N. B. Dahotre, Applied Surf. Sci., 153, 2000, pp.65–78
    [19] K. H. W. Seah, L. Lu, S. C. Sharma, J. Venkatwsh and B. M. Girish, Composites, Part A, 28A, 1997, pp.113-119.
    [20] A. Ohmori and K. Kamada, Trans. JWRI , 20 (1), 1991, pp.137-139.
    [21] D. K. Das, Surf. Coat. Technol., 64, 1994, pp.11-15.
    [22] K. H. W. Seah, S. C. Sharma and B. M. Girish, Composites, Part A, 28A, 1997, pp.251-256.
    [23] L. I. Chan, W. H. Lu and H. L. Lee, Chinese Journal of Materials Science, 24, No.3, 1992, pp.171-182.
    [24] T. Suganuma and A. Tanaka, J. of the Iron and Steel Inst. of Japan, 1989, pp.376-383.
    [25] A. Mortensen and M. J. Koczak, JOM, March, 1993, pp.10-18.
    [26] F. A. Girot, J. M. Quenisset and R. Naslain, Comp. Sci. and Technol., 30, 1987, pp.155-184.
    [27] D. Huda, M. A. Eibradie and M. S. J. Hashmi, J. Mater. Proc. Technol., 37, 1993, pp.529-541.
    [28] K. Funatani and K. Kurosawa, Adv. Mater. & Proc., 146, No.6, 1994, pp.27-29.
    [29] G. Straffelini, F. Bonollo, A. Molinari and A. Tiziani, Wear, 211, 1997, pp.192-197.
    [30] C. Garcia-Cordovilla, J. Narciso and E. Louis, Wear, 192, 1996, pp.170-177.
    [31] A. K. Jha, S. V. Prasad and G. S. Upadhyaya, Wear, 133, 1989,
    pp.163-172.
    [32] A. Houndri, S. polymens, Y. Chrtssoulakis and D. Pantelis, Metal. Trans. A, 23A, pp.1992-1801.
    [33] T. T. Wong, G. Y. Liang and C. Y. Tang, J. Mater. Proc. Technol., 66, 1997, pp.172-178.
    [34] F. Fouquent and E. Szmatula, Mater. Sci. Eng., 98, 1988, pp.305-308.
    [35] T. T. Wong , G. Y. Liang , B. L. He and C. H. Woo, J. Mater. Proc. Technpl., 100, 2000, pp.142-146.
    [36] G. Y. Liang and J. Y. Su, Mater. Sci. and Eng., 290, 2000, pp.207–212.
    [37] D. Jianxin, Ceram. Inter., 27, 2001, pp.135-141.
    [38] S. Ariely, J. Shen, M. Bamberger, F. Dansieger and H. Hugel, Surf. Coat. Technol., 45, 1991, pp.403-408.
    [39] L. Renaud, F. Fouquent, J. P. Millet and J. L. Crolet, Surf. Coat. Technol., 45, 1991, pp.449-456.
    [40] Y. B. Liu, J. D. Hu, Z. Y. Cao and P. K. Rohatgi, Wear, 206, 1997, pp.83-86.
    [41] C. T. Kwok, F. T. Cheng and H. C. Man, Mater. Sci. and Eng., A290, 2000, pp.55–73.
    [42] W. J. Tomlinson and A. S. Bransden, Wear, 185, 1995, pp.59-65.
    [43] K. Budinski, Surface Engineering for Wear Resistance, Prentice-Hall, Englewood Cliffs, NJ, 1988, pp.30-33.
    [44] J. Larsen-Basse, Proc. Int. Conf. on Wear of Materials, ASME, New York, 1983, pp.161-166.
    [45] P. L. Hurricks, Wear, 26, 1973, pp.285-304.
    [46] E. Hornbogen, Wear, 33, 1975, pp.251-259.
    [47] K. H. Zum Gahr, Microstructure and wear of materials, Elesvier Science Pub Co., New York, 1987, pp.93-99.
    [48] V. H. Davies and L. A. Bolton, Welding Surfacing and Hardfacing, The Welding Institute, Cambridge, UK, 1980, pp.4-10.
    [49] D. J. Dunn, Proc. Int. Conf. on Wear of Materials, ASME, New York, 1985, pp.501-508.
    [50] M. J. Murray, P. J. Mutton, and J. D. Watson, J. Lubr. Technol., Transactions of ASME, 104, 1982, pp.9-14.
    [51] J. T. Burwell, Wear, 1, 1965,pp.119-141.
    [52] M. A. Moore, Fundamental of Friction and Wear of Materials, in D. A. Rigney (ed.), ASM, Ohio, 1981, pp.73-118.
    [53] E. M. Trent, Wear, 128, 1990, pp.47-64.
    [54] J. D. Mello and M. Durand-Charve, Mater. Sci. and Eng., 78, 1986, pp. 127-134
    [55] J. T. H. Perace, AFS Trans., 92, 1984, pp.599-622.
    [56] A. U. Dehart, Handbook of Lubrication, in E. R. Booser (ed.), Vol. 2, CRC Press, Boca Raton FL, 1984, pp.465-466.
    [57] A. H. Torrance and J. M. Art, Wear, 110, 1986, pp.49-59.
    [58] K. Tarnok, Fifty Years on 1987, Vol. II, Institution of Mechanical Engineers, London, pp.781-785.
    [59] A. Misra and I. Finnie, Wear, 68, 1981, pp.33-39.
    [60] 李健明, 磨損金屬學, 冶金工業出版社, 北京, 1990, 1st, pp.112-113.
    [61] J. C. Lira, Master of Science Thesis, Metallurgical Engineering, Department Colorado School of Mines, August, 1983.
    [62] R. F. Smart, Surf. Journ., 13, No. 2, 1982, pp.34-45.
    [63] D. N. Nobles, 2nd International Conference on Surface Engineering, 1987 pp.1-5.
    [64] P. L. Hurricks, Wear, 22, 1972, pp.291-320.
    [65] V. S. Popov and P. L. Nagornyi, Russ. Cast. Prod., 3, 1970, pp.134-145.
    [66] H. Berns, A. Fischer and W. Theisen, Proc. Int. Conf. on Wear of Materials, ASME, New York, 1987, pp.535-542.
    [67] H. Ocken, Surf. and Coat. Technol., 76-77, 1995, pp.456-461.
    [68] W. L. Silence and J. Lub. Technol., Transactions of ASME, 100, 1978, pp.428-435.
    [69] H. Berns and A. Fischer, Proc. Int. Conf. on Wear of Materials, ASME, New York, 1985, pp.625-633.
    [70] J. L. Chermant and F. Osterstock, J. Mater. Sci., 11, 1976, pp.1939-1951.
    [71] K. H. Zumgahr, Z. Metallkde., 71, 1980, pp.103-109.
    [72] W. L, Silence, Proc. Int. Conf. on Wear of Materials, ASME, New York, 1987, pp.77-85.
    [73] H. Berns, A. Fischer and W. Theisen, Proc. Int. Conf. on Wear of Materials, ASME, New York, 1989, pp.601-610.
    [74] G. R. Halford and S. S. Manson, Trans. ASM, 61, 1968, pp.94-102.
    [75] K. J. Bhansali, Proc. Int. Conf. on Wear of Materials, ASME, New York, 1979, pp.146-155.
    [76] K. J. Bhansali and A. E. Miller, Proc. Int. Conf. on Wear of Materials, ASME, New York, 1981, pp.179-185.
    [77] L. Badese, Proc. Int. Conf. on Wear of Materials, ASME, New York, 1983, pp.161-168.
    [78] K. G. Budiuski, Proc. Int. Conf. on Wear of Materials, ASME, New York, 1977, pp.100-109.
    [79] K. J. Bhansall and W. C. Silence, Metal Progress, 12, 1977, pp.39-45.
    [80] M. W. Kruschov, Wear, 28, 1974, pp.69-88.
    [81] E. Rabinowicz, Pro. Eng., 23, 1958, pp.71-73.
    [82] T. H. Kosel, and N. F. Fiore, J. Mater. Energ. Sys., 2, 1981, pp.7-27.
    [83] D. A. Rigney, Wear, 175, 1994, pp.63-69.
    [84] D. Womersley, Surf. Eng., 6, No. 1, 1990, pp.49-51.
    [85] W. H. Kearns, Welding Handbook, Vol. 2, 7th ed., AWS, Miami, Floride, 1978, pp.517-549.
    [86] O. Knotek and A. Schrey, Welding in the World, 32, 1993, pp.10-16.
    [87] K. J. Bransal, Wear control handbook in M. B. Peterson and W. O. Winer (eds.), ASME, New York, 1980, pp.373-383.
    [88] J. B. C. Wu and J. E. Redman, Welding Journal, 73, No. 9, 1994, pp.63-68.
    [89] Specification for Solid Surfacing Welding Rods and Electrodes, AWS A5. 13-80, Miami, Florida.
    [90] K. G. Budinski, Surface Engineering for Wear Resistance, Prentice-Hall, Englewood cliffs, NJ, 1988, pp.269-271.
    [91] O. Knotek, E. Lugscheider and H. Eschnauer, Hartlegierungen zum Verschleissschutz, Verlag Stahleisen, Duesseldorf, 1975.
    [92] S. Lebaili, M. Durand-Charre and S. Hamar-Thibault, J. Mater. Sci., 23, 1988, pp.3603-3611.
    [93] F. H. Stott, D. S. Lin and G. C. Wood, Corr. Sci., 13, 1973, pp.449-469.
    [94] F. H. Stott, C. W. Stevenson and G. C. Wood, Metals Technol., 4, 1977, pp.66-73.
    [95] P. M. Dunckley, T. F. J. Quinn and J. Salter, ASLE Tran., 19, 1976, pp.221-231.
    [96] H. Berns, Wear, l81-183, 1995, pp.271-279.
    [97] E. K. Ohriner, T. Wada, E. P. Whelan and H. Ocken, Metal Transfer and galling wear in metallic systems, in H. D. Merchant and K. J. Bhansali (eds.), Metallurgical Society of AIME, Warrendale, PA, 1987, p.247.
    [98] J. Vikstrom, Wear, 179, 1994, pp.143-146.
    [99] E. K. Ohriner, T. Wada, E P. Whelan and H. Ocken, Metal. Tran. A, 22A, 1991, pp.983-991.
    [100] J. Gerkema and A. R. Miedema, Surf. Sci., 124, 1983, pp.351-371.
    [101] 李健明, 磨損金屬學, 冶金工業出版社, 北京, 1990, 1st, p.81.
    [102] Metals Handbook, 2, 10th edition, ASM, 1990, pp.429-446.
    [103] E. Rabinowicz, ASLE Trans., 14, 1971, pp.198-205.
    [104] S. Shimizu and K. Nagai, Welding International, 5, No.1, 1991 pp.55-61.
    [105] A. Sandt, Surfacing Journal International, 1, No.4, 1986, pp.133-137.
    [106] I. C .Grigorescu, C. Di Rauso, R. Drira-Halouani, B. Lavelle, R. Di Giampaolo, and J. Lira, Surf. Coat. Technol., 76-77, 1995, pp.494-498.
    [107] T. B. Massalski (Ed), Binary Alloy Phase Diagrams, ASM. Metal Park, Ohio. 1, 1986, pp.142.
    [108] Colin J. Smithells, Metal Reference Book (5thEdition). Butter-worth and Co. Ltd, London, 1976, pp.100.
    [109] Y. Fu, A. W. Batchelor, Y. Gu, K. A. Khor and H. Xing, Surf. Coat. Technol., 99, 1998, pp.287-294.
    [110] T. F. J. Quinn and W. O. Winer, Wear, 102, 1985, pp.67-80.
    [111] T. F. J. Quinn, Wear, 100, 1984, pp.399-436.
    [112] J. Zhang and A. T. Alpas, Mater. Sci. Eng., A 161, 1993, pp.273-284.
    [113] W. Q. Song, P. Krauklis, A. P. Mouritz and S. Bandyopadhyay, Wear, 185, 1995, pp.125-130.
    [114] F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Part II, ( Oxford University Press, London), 1964, pp.97.

    無法下載圖示 校內:2016-07-21公開
    校外:2026-07-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE