簡易檢索 / 詳目顯示

研究生: 李尚儒
Li, Shang-Ru
論文名稱: 自行車手於上彎把握姿之尾流結構探討
Investigation on wake structure of a cyclist model at the hoods position
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 98
中文關鍵詞: 流場可視化流動分離尾流結構空氣動力阻力
外文關鍵詞: Flow visualization, Flow separation, Wake structure, Aerodynamic drag
相關次數: 點閱:161下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對均勻來流流經自行車手所產生之尾流結構進行探討,當中所採用之車手模型為1/5縮尺比例以及Hoods position騎乘姿勢,而踩踏角為195° 也使得兩側大腿於對稱的位置,使得尾流形狀也較為對稱。過程中透過尾流量測實驗,並結合多種不同的流場可視化技術,以期能夠對一些流場結構能有更為詳細的描述。
    由實驗結果發現自行車手的臀部周遭具有較大的速度缺陷,這合理的推測該處對於空氣動力阻力具有顯著的貢獻,並能夠與附近所發現的大尺度連貫結構做一些相關連結。不過由流場可視化的結果也指出由頸部與肩部之結合處所形成之二次流將發展成一對稱渦流對,雖然於下游的尾流量測結果已無法清楚分辨出該結構,不過由速度缺陷的形狀也能夠說明此渦流對對於空氣動力阻力的貢獻亦不容小覷。
    另外,尾流量測的結果也幫助說明了左右大、小腿間夾角的不同造成兩側三維性程度的不同,這與大型流場結構的發展程度息息相關,且紊流之高階統計量也能幫助尾流範圍的界定。

    In this study, we explored the flow characteristics and aerodynamic performance concerning a 1/5 scale model of a cyclist at the hoods position. Complementary to each other, the wake measurements and flow visualization results obtained enable us to discuss the flow around the model and the wake flow structures in detail. Experiments were conducted in a water channel and a low-speed wind tunnel, respectively. In the water channel experiments, the Reynolds numbers based on the torso length of the model was 1.1×10^4; on the other hand, in the wind tunnel experiment, the Reynolds numbers was 6.5×10^4. In the water channel, flow visualization was made with dye injection from the outside of the model and dotted paint applied on the model surface; in addition, PIV measurements were carried out in the reverse flow region of the wake. In the wind tunnel, two methods were employed, namely, the flow visualization experiment was made by applying oil-film on the model surface and the hot-wire measurements were conducted in the wake region.

    摘要 II Abstract III 誌謝 XIII 目錄 XIV 表目錄 XIX 圖目錄 XX 符號索引 XXVII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.3.1 鈍型體流體力學 3 1.3.2 自行車空氣動力學 8 1.3.3 渦流辨識方法 12 第二章 實驗設備與架設 17 2.1 實驗用模型 17 2.1.1 車手模型與地台 17 2.1.2 模型尺寸與坐標定義 17 2.2 低速循環式水槽 18 2.2.1 水槽介紹 18 2.2.2 水槽流速校正 18 2.3 低速開放式自由噴流風洞 18 2.3.1 風洞介紹 19 2.3.2 風洞流速校正 19 2.4 視流工具 20 2.5 粒子影像測速儀系統 20 2.5.1 示蹤粒子 20 2.5.2 雷射光源與光學儀器 21 2.5.3 高速攝影機 21 2.5.4 影像分析軟體 22 2.5.5 粒子影像測速儀量測位置 22 2.6 熱線測速儀系統 22 2.6.1 熱線測速儀主機 23 2.6.2 熱線探針 23 2.6.3 三維移動機構 23 2.6.4 資料擷取系統 24 2.6.5 熱線測速儀量測位置 24 第三章 研究方法 25 3.1 流場可視化 25 3.1.1 染液注射法 25 3.1.2 點墨法 25 3.1.3 油膜法 26 3.2 粒子影像測速儀分析 26 3.2.1 分析原理 27 3.2.2 粒子影像測速儀校正 27 3.2.3 拍攝參數 28 3.2.4 流速統計 29 3.2.5 粒子影像測速儀分析的獨立性測試 29 3.3 熱線測速儀分析 29 3.3.1 熱線測速儀校正 30 3.3.2 量測參數 31 3.3.3 基本紊流統計量 31 3.3.4 速度梯度及流向渦度 32 3.3.5 紊流積分時間尺度 33 3.3.6 無因次化方式 34 3.3.8 高階紊流統計量 36 3.3.9 渦流辨識 36 3.3.10 環量 37 3.3.11 熱線測速儀量測的獨立性測試 38 第四章 結果與討論 39 4.1 基本討論 39 4.1.1 雷諾數效應 39 4.1.2 阻塞比效應 40 4.1.3 基本流場特徵 41 4.1.4 初步觀察不對稱性 42 4.2 近尾流區表面流場特徵 42 4.3 迴流區範圍觀察 43 4.4 尾流發展之初步探討 44 4.4.1 無因次化流向平均速度分布 44 4.4.2 總紊流強度分布 44 4.4.3 無因次化流向平均渦度分布 45 4.5 尾流特徵之細部探討 46 4.5.1 不同方向之紊流強度分布 46 4.5.2 無因次化剪切雷諾應力分布 46 4.5.3 流向偏態、峰態係數分布 47 4.5.4 左側大尺度尾流結構間的相互影響 48 4.5.5 渦流辨識及環量 49 4.6 本研究與文獻的比較 50 第五章 結論與未來建議 53 5.1 結論 53 5.2 未來建議 54 參考文獻 55 表格 61 圖片 64

    [1] R. A. Lukes, S. B. Chin, and S. J. Haake, “The understanding and development of cycling aerodynamics,” Sports Engineering, vol. 8, no. 2, pp. 59-74, 2005.
    [2] T. Defraeye, B. Blocken, E. Koninckx, P. Hespel, and J. Carmeliet, “Aerodynamic study of different cyclist position: CFD analysis and full-scale wind-tunnel tests,” Journal of Biomechanics, vol. 43, no. 7, pp. 1262-1268, 2010.
    [3] Union-Cycliste-Internationale, “UCI Regulations-Part 1: General organisation of cycling as a sport,” UCI website, version on 6th Feb., 2017.
    [4] T. von Kármán, “Über den mechanismus des widerstandes, den ein bewegter körper in einer flüssigkeit erfährt,” Göttingen Nachrichten mathematische-physikalische Klasse, pp. 509-517, 1911.
    [5] A. Kozakiewicz, J. Fredsøe, and B. M. Sumer, “Forces on pipelines in oblique attack: steady current and waves,” Proceedings of the 5th International Offshore and Polar Engineering Conference, The Hague, The Netherlands, vol. 2, pp. 174-183, 1995.
    [6] M. M. Zdravkovich, “Flow around circular cylinders,” Oxford University Press, vol. 1, pp. 1-18, 1997.
    [7] H. Chowdhury, F. Alam, and A. Subic, “Aerodynamic performance evaluation of sports textile,” Procedia Engineering, vol. 2, pp. 2517-2522, 2010.
    [8] E. C. Maskell, “A theory of the blockage effects on bluff bodies and stalled wings in a closed wind tunnel,” Tech. Rep. DTIC Document, 1965.
    [9] A. E. Perry, and T. R. Steiner, “Large-scale vortex structures in turbulent wakes behind bluff bodies,” Journal of Fluid Mechanics, vol. 174, pp. 223-298, 1987.
    [10] W.-H. Hucho, and G. Sovran, “Aerodynamics of road vehicles,” Annal Reviews of Fluid Mechanics, vol. 25, no. 1, pp. 485-537, 1993.
    [11] J. C. R. Hunt, A. A. Wray, and P. Moin, “Eddies, stream, and convergence zones in turbulent flows,” Center for Turbulence Research Report, CTR-S88, 1988.
    [12] A. Brunn, E. Wassen, D. Sperder, W. Nitsche, and F. Thiele, “Active drag control for a generic car model,” Active Flow Control, vol. 95, pp. 247-259, 2007.
    [13] J.-L. Aider, J.-F. Beaudoin, and J. E. Wesfreid, “Drag and lift reduction of a 3D bluff-body using active vortex generators,” Experiment in Fluids, vol. 48, pp. 771-789, 2009.
    [14] J. A. Venning, D. L. Jacono, D. Burton, M. C. Thompson, and J. Sheridan, “The effect of aspect ratio on the wake of the Ahmed body,” Experiment in Fluids, vol. 56, no. 6, pp. 1-11, 2015.
    [15] J. Howell, “The decay of bluff body wakes,” Society of Automotive Engineers International, vol. 4, no. 1, pp. 207-215, 2011.
    [16] L. Sterken, S. Sebben, and L. Löfdahl, “Alternative approach in ground vehicle wake analysis,” International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, vol. 6, no. 8, pp. 1370-1377, 2012.
    [17] K. C. Chang, K. H. Li, and T. C. Chang, “Re-evaluating mixing length in turbulent mixing layer by means of high-order statistics of velocity field,” 4th International Symposium on Physics of Fluids International Journal of Modern Physics: Conference Series, vol. 19, pp. 154-165, 2012.
    [18] K. H. Li, and K. C. Chang, “Re-evaluating wake width in turbulent shear flow behind an axisymmetric cylinder by means of higher order turbulence statistics,” Journal of Fluid Science and Technology, vol. 9, no. 3, pp. 1-6, 2014.
    [19] L. G. Pugh, “The relation of oxygen intake and speed in competition cycling and comparative observations on bicycle ergometer,” Journal of Physilogy (London), vol. 241, no. 1, pp. 795-808, 1974.
    [20] R. S. Richardson, and S. C. Johnson, “Effect of aerodynamic handlebars on oxygen consumption while cycling at a constant speed,” Ergonomics, vol. 37, no. 5, pp. 859-863, 1994.
    [21] P. E. di Prampero, G. Cortili, P. Mognoni, and F. Saibene, “Equation of motion of a cyclist,” Journal of Applied Physiology, vol. 47, no. 1, pp. 201-206, 1979.
    [22] C. Capelli, G. Rosa, F. Butti, G. Ferretti, A. Veicsteinas, and P. E. di Prampero, “Energy cost efficiency of riding aerodynamic bicycles,” European Journal of Applied Physiology, vol. 67, pp. 144-149, 1993.
    [23] F. Grappe, R. Candau, A. Belli, and J. D. Rouillon, “Aerodynamic drag in field cycling with special reference to the Obree’s position,” Ergonomics, vol. 40, no. 12, pp. 1299-1311, 1997.
    [24] C. R. Kyle, and E. R. Burke, “Improving the racing bicycle,” Mechanical Engineering, vol. 106, no. 9, pp. 34-35, 1984.
    [25] J. García-López, J. A. Rodríguez-Marroyo, C. E. Juneau, J. Peleteiro, A. C. Martínez, and J. G. Villa, “Reference values and improvement of aerodynamic drag in professional cyclists,” Journal of Sports Sciences, vol. 26, no. 3, pp. 277-286, 2008.
    [26] T. Defraeye, B. Blocken, E. Konincks, P. Hespel, and J. Carmeliet, “Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer approaches,” Journal of Biomechanics, vol. 43, pp. 2281-2287, 2010.
    [27] T. N. Crouch, D. Burton, N. A. T. Brown, M. C. Thompson, and J. Sheridan, “Flow topology in the wake of a cyclist and its effect on aerodynamic drag,” Journal of Fluid Mechanics, vol. 748, pp. 5-35, 2014.
    [28] T. N. Crouch, D. Burton, M. C. Thompson, N. A. T. Brown, and J. Sheridan, “Dynamic leg-motion and its effect on the aerodynamic performance of cyclists,” Journal of Fluids and Structures, vol. 65, pp. 121-137, 2016.
    [29] T. N. Crouch, D. Burton, J. A. Venning, M. C. Thompson, N. A. T. Brown, and J. Sheridan, “A comparison of the wake structures of scale and full-scale pedalling cycling models,” Procedia Engineering, vol. 147, no. 13-19, 2016.
    [30] B. Blocken, T. Defraeye, E. Koninckx, J. Carmeliet, and P. Hespel, “CFD simulations of the aerodynamic drag of two drafting cyclists,” Computers & Fluids, vol. 71, pp. 435-445, 2013.
    [31] N. Barry, D. Burton, J. Sheridan, M. Thompson, and N. A. T. Brown, “Flow field interactions between two tandem cyclists,” Experiments in Fluids, vol. 57, no. 12, 181 (14 pages), 2016.
    [32] N. Barry, D. Burton, J. Sheridan, and N. A. T. Brown, “Flow interactions between two inline cyclists,” 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, pp. 8-11, 2014.
    [33] B. Blocken, Y. Toparlar, and T. Andrianne, “Aerodynamic benefit for a cyclist by a following motorcycle,” Journal of Wind Engineering & Industrial Aerodynamics, vol. 155, pp. 1-10, 2016.
    [34] T. Defraeye, B. Blocken, E. Koninckx, P. Hespel, B. Nicolai, and J. Carmeliet, “Cyclist drag in team pursuit: Influence of cyclist sequence, stature, and arm spacing,” Journal of Biomechanical Engineering, vol. 136, no. 1, 011005 (9 pages), 2014.
    [35] J. Jeong, and F. Hussain, “On the identificaiton of a vortex,” Journal of Fluid Mechanics, vol. 285, pp. 69-94, 1995.
    [36] M. S. Chong, A. E. Perry, and B. J. Cantwell, “A general classification of three-dimensional flow fields,” Physics of Fluids A, vol. 2, no. 5, pp. 765-777, 1990.
    [37] J. Zhou, R. J. Adrian, S. Balachander, and T. M. Kendall, “Mechanisms for generating coherent packets of hairpin vortices in channel flow,” Journal of Fluid Mechanics, vol. 387, pp. 353-396, 1999.
    [38] 江皇廷, “應用流場可視化及粒子影像測速技術剖析動態失速流場,” 國立成功大學航空太空工程研究所碩士論文, 2015.
    [39] 李哲語, “垂直軸風力機葉片性能提升之探討,” 國立成功大學航空太空工程研究所碩士論文, 2013.
    [40] Dantec-Dynamics, “Probes for Hot-wire Anemometry,” pp. 19-21, 2014.
    [41] S. Ristić, “Flow visualization techniques in wind tunnels: Part I-Non optical methods,” Scientific Technical Review, vol. 57, no. 1, pp. 39-49, 2007.
    [42] J. J. Miau, K. T. Kuo, W. H. Liu, S. J. Hsieh, and J. H. Chou, “Flow developments above 50-deg sweep delta wings with different leading-edge profiles,” Journal of Aircraft, vol. 32, no. 4, pp. 787-794, 1995.
    [43] R. L. Maltby, “Flow visualization in wind tunnels using indicators,” AGARDograph, vol. 70, 1962.
    [44] T. Utami, R. F. Blackwelder, and T. Ueno, “A cross-correlation technique for velocity field extraction from particulate visualization,” Experiment in Fluids, vol. 10, pp. 213-223, 1991.
    [45] R. D. Keane, and R. J. Adrian, “Theory of cross-correlation anlysis of PIV images,” Applied Scientific Research, vol. 49, pp. 191-215, 1992.
    [46] C. E. Willert, and M. Gharib, “Digital particle image velocimetry,” Experiment in Fluids, vol. 10, pp. 181-193, 1991.
    [47] R. D. Keane, and R. J. Adrian, “Optimization of particle image velocimeters. Part I: Double pulsed systems,” Measurement and Science and Technology, vol. 1, pp. 1202-1215, 1990.
    [48] R. M. Kelso, T. T. Lim, and A. E. Perry, “A novel flying hot-wire system,” Experiment in Fluids, vol. 16, pp. 181-186, 1994.
    [49] J. H. Kim, and Y. O. Han, “Experimental investigation of wake structure around an external rear view mirror of a passenger car,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 99, pp. 1197-1206, 2011.
    [50] L. V. King, “On the convection heat transfer from small cylinders in a stream of fluids: Determination of convection constants of small platinum wires with application to hot-wire anemometry,” Philosophical Transactions of the Royal Society of London, vol. 214, pp. 373-432, 1914.
    [51] W. K. George, P. D. Beuther, and A. Shabbir, “Polynomial calibration for hot-wires in thermally varying flows,” Experimental Thermal and Fluid Science, vol. 2, pp. 230-235, 1989.
    [52] K. Imaichi, and K. Ohmi, “Numerical processing of flow-visualization pictures-measurement of two-dimensional vortex flow,” Journal of Fluid Mechanics, vol. 129, pp. 283-311, 1983.
    [53] H. Tyagi, R. Liu, D. S.-K. Ting, and C. R. Johnston, “Measurement of wake properties of a sphere in freestream turbulence,” Experimental Thermal and Fluid Science, vol. 30, pp. 587-604, 2006.
    [54] J. P. Gallardo, B. Pettersen, and H. I. Andersson, “Coherence and Reynolds stresses in the turbulent wake behind a curved circular cylinder,” Journal of Turbulence, vol. 15, no. 12, pp. 883-904, 2014.
    [55] Q. Chen, Q. Zhong, M. Qi, and X. Wang, “Comperison of vortex identification criteria for planar velocity fields in wall turbulence,” Physics of Fluids, vol. 27, no. 8, 085101 (13 pages), 2015.
    [56] C. F. v. Carmer, R. Konrath, A. Schröder, and J.-C. Monnier, “Identification of vortex pairs in aircraft wakes from sectional velocity data,” Experiment in Fluids, vol. 44, pp. 367-380, 2008.
    [57] Z. X. Tsai, J. J. Miau, T. L. Chen, Y. H. Lai, and H. Wong, “Blance design for drag measurement,” 11th International Symposium on Advenced Science and Technology in Experimental Mechanics, Ho Chi Minh, Vietnam, 2016.
    [58] 梅文逢, “自行車手上彎把握姿之氣動力研究:使用LES與比較實驗結果,” 國立成功大學航空太空工程研究所碩士論文, 2017.
    [59] W. Terra, A. Sciacchitano, and F. Scarano, “Large-scale tomo-PIV for on-site drag analysis in speed sports,” Workshop on Non-Intrusive Measurements for unsteady flows and aerodynamics-2015, Session 1: Load Evaluation, pp. 12-14, 2015.
    [60] A. D'Auteuil, G. L. Larose, and S. J. Zan, “Wind turbulence in speed skating: Measurement, simulation and its effect on aerodynamic drag ” Journal of Wind Engineering & Industrial Aerodynamics, vol. 104, pp. 585-593, 2012.
    [61] A. D. Monte, L. M. Leonardi, C. Menchinelli, and C. Marini, “A new bicycle design based on biomechanics and advanced technology,” International Journal of Sport Biomechanics, vol. 3, no. 3, pp. 287-292, 1987.
    [62] C. R. Kyle, “The effects of crosswinds upon time trails,” Cycling Science, vol. 3, no. 3-4, pp. 51-56, 1991.
    [63] J. P. Broker, and C. R. Kyle, “Pursuit Aerodynamics, Project 96: wind tunnel test results,” USOC Sport Science and Technology Report, Colorado Springs, pp. 1-46, 1995.
    [64] M. M. Zdravkovich, M. W. Ashcroft, S. J. Chisholm, and N. Hicks, “Effect of cyclist's posture and vicinity of another cyclist on aerodynamic drag,” The Engineering of Sport, Rotterdam, pp. 21-28, 1996.
    [65] J. C. Martin, D. L. Milliken, J. E. Cobb, K. L. McFadden, and A. R. Coggan, “Validation of a mathematical model for road cycling power,” Journal of Applied Biomechanics, vol. 14, pp. 276-291, 1998.
    [66] S. Padilla, I. Mujika, F. Angulo, and J. J. Goiriena, “Scientific approach to the 1-h cycling world record: a case study,” Journal of Applied Physiology, vol. 89, pp. 1522-1527, 2000.
    [67] A. E. Jeukendrup, and J. Martin, “Improving cycling performance: how should we spend our time and money,” Sports Medicine, vol. 31, no. 7, pp. 559-569, 2001.
    [68] G. Gibertini, G. Campanardi, D. Grassi, and C. Macchi, “Aerodynamics of biker position,” Proceedings of the BBAA VI International Colloquium on: Bluff Bodies Aerodynamics and Applications, 2008.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE