簡易檢索 / 詳目顯示

研究生: 黃彥明
Huang, Yen-Ming
論文名稱: 具有氧化鎳介電層之氮化鎵/氮化鋁鎵異質結構蕭特基接觸式元件之研製
Fabrication of GaN/AlGaN Heterostructure Schottky Contact-Type Devices With a NiO Dielectric Layer
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 66
中文關鍵詞: 氧化鎳氮化鎵/氮化鋁鎵高電子遷移率電晶體蕭特基二極體式氣體感測器
外文關鍵詞: nickel oxide, AlGaN/GaN, high electron mobility transistor, Schottky diode gas sensor
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,吾人研製以氧化鎳作為介電層之氮化鎵/氮化鋁鎵異質結構蕭特基接觸式元件,包含了高電子遷移率電晶體以及蕭特基二極體式氣體感測器。
    本研究首先探討具有氧化鎳介電層之氮化鎵/氮化鋁鎵高電子遷移率電晶體之特性。透過射頻磁控濺鍍法沉積,氧化鎳介電層可以降低表面電荷,有效地抑制閘極漏電流,進而提升元件特性。
    接著本研究將氧化鎳應用於蕭特基二極體上,製成蕭特基二極體式氫氣感測器,以鈀作為蕭特基接觸金屬來檢測氫氣。研究顯示,具有氧化鎳之氣體感測器有較低的漏電流與良好的感測倍率,亦可在施加逆向偏壓的狀態下維持功能。
    本研究再以鉑金屬替換鈀,研製另一種蕭特基氣體感測器並以氨氣作為偵測對象。研究顯示具有鈀/氧化鎳結構之氣體感測器對氨氣有不錯的感測倍率,並能在順偏與逆偏的狀態下感測氣體。

    In this dissertation, we investigate several AlGaN/GaN heterostructure Schottky contact-type devices with nickel oxide (NiO) dielectric layer, involving high electron mobility transistors (HEMTs) and Schottky diode gas sensors.
    We first fabricate AlGaN/GaN HEMTs with NiO dielectric layer and focus on their properties. The nickel oxide, deposited by radio-frequency (RF) sputtering, can reduce interface charges and suppress gate leakage current to improve device characteristics.
    The Schottky diode hydrogen sensor with NiO dielectric is also discussed. We use Palladium as Schottky contact metal to perform hydrogen sensing with Pd/NiO/GaN/AlGaN structure. The results show that gas sensors with NiO have low leakage current and well sensing response. Moreover, the devices can maintain sensing ability while applying reverse-voltage.
    We then replace Palladium with Platinum metal and fabricate Pt/NiO/GaN/AlGaN Schottky diode to detect ammonia. We found that the Pt/NiO gas sensor has good sensing ability to NH3, and the device can work at both forward- and reverse-biased state.

    Contents Table Lists Figure Captions Chapter 1. Introduction 1-1. Introduction to III-V Compound Semiconductors 1 1-2. Nickel Oxide 1 1-3. Thesis Organizations 1 Chapter 2. Investigation of AlGaN/GaN Depletion- and Enhancement-Mode Field-Effect Transistors (FETs) 2-1. Introduction 3 2-2. Device Structure and Fabrication 4 2-3. Experimental Results and Discussion 5 2-3-1. Material Analysis 5 2-3-2. Device Characteristics 6 2-4. Summary 7 Chapter 3. Investigation of Hydrogen Sensor Based on Pd/NiO/GaN/AlGaN Structure 3-1. Introduction 8 3-2. Device Structure and Fabrication 9 3-3. Experimental Results and Discussion 10 3-3-1. Material Analysis 10 3-3-2. Electrical Properties 10 3-3-3. Hydrogen Sensing Performance 12 3-3-4. Transient Responses 13 3-4. Summary 14 Chapter 4. Investigation of Gas Sensor Based on Pt/NiO/GaN/AlGaN Structure 4-1. Introduction 15 4-2. Device Structure and Fabrication 16 4-3. Experimental Results and Discussion 17 4-3-1. Material Analysis 17 4-3-2. Electrical Properties 17 4-3-3. Ammonia Sensing Performance 19 4-3-4. Transient Responses 20 4-4. Summary 21 Chapter 5. Conclusion and Prospect 5-1. Conclusion 22 5-2. Prospect 22 References 23 Tables Figures

    [1] T. Mimura, “The Early History of High Electron Mobility Transistor (HEMT),” IEEE Trans. Microw. Theory Tech. ,vol 50, pp.780, 2002
    [2] Y. S. Lin, W. C. Hsu, C. H. Wu. W. Lin, and R. T. Hsu, “High breakdown voltage symmetric double -doped In0.49Ga0.51P/In0.25Ga0.75As/GaAs high electron mobility transistor,” Appl. Phys. Lett., vol. 75, pp. 1616-1618, 1999.
    [3] X. G. He, D. G. Zhao, D. S. Jiang, “Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression,” Chin. Phys. B, vol. 24, no. 6, 2015.
    [4] U. K. Mishra, P. Parikh, and Y. F. Wu, “AlGaN/GaN HEMTs—An overview of device operation and application,” Proc. IEEE, vol. 90, no. 11, pp. 1022–1031, Nov. 2002.
    [5] N. Q. Zhang, B. Moran, S. P. Den Baars, U. K. Mishra, X. W. Wang, and T. P. Ma, “Effects of surface traps on breakdown voltage and switching speed of GaN power switching HEMTs,” IEDM Tech. Dig., pp. 589–592, 2001.
    [6] B. J. Baliga, “Gallium nitride devices for power electronic applications,” Semicond. Sci. Technol., vol. 28, pp. 074011, 2013.
    [7] T. Palacios, “High-power AlGaN/GaN HEMTs for Ka-band applications,” IEEE Transactions on Electron Devices, vol.26, pp.781-783, 2005
    [8] K. Ota, K. Endo, Y. Okamoto, Y. Ando, H. Miyamoto, and H. Shimawaki, “A normally-off GaN FET with high threshold voltage uniformity using a novel piezo neutralization technique,” in IEDM Tech. Dig., Dec. 2009, pp. 153–156.
    [9] T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductorsfor superior high-voltage unipolar power devices,” IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481–1483, Aug. 1994.
    [10] Q. Zhou, B. Chen, Y. Jin, S. Huang, K. Wei, X. Liu, X. Bao, J. Mou, and B. Zhang, “High-Performance Enhancement-Mode Al2O3/AlGaN/GaN-on-Si MISFETs With 626 MW/cm2 Figure of Merit,” IEEE Trans. Electron Devices, vol. 62, no. 3, Mar. 2015.
    [11] Q. Zhou, “7.6 V Threshold Voltage High-Performance Normally-off Al2O3/GaN MOSFET Achieved by Interface Charge Engineering,” IEEE Electron Device Lett., vol. 37, pp. 165-168, 2016.
    [12] Zhe Xu, Jinyan Wang, and Jingqian Liu, “Demonstration of Normally-off Recess-Gated AlGaN/GaN MOSFET Using GaN Cap Layer as Recess Mask,” IEEE Trans. Electron Devices, vol. 35, no. 12, pp. 1197-1199, 2014.
    [13] W. B. Lanford, T. Tanaka, Y. Otoki, and I. Adesid, “Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,” Electron. Lett., vol. 41, no. 7, pp. 449–450, Mar. 2005.
    [14] W. Saito, “Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications,” IEEE Trans. Electron Devices, vol.53, no.2, pp.356-362, 2006.
    [15] T. Oka and T. Nozawa, “AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 668–670, 2008.
    [16] K. S. Im, “Normally off GaN MOSFET based on AlGaN/GaN heterostructure with extremely high 2DEG density grown on silicon substrate,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 192–194, 2010.
    [17] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, “A normally-off AlGaN/GaN transistor with RonA = 2.6 m_cm2 and BVds = 640 V using conductivity modulation,” in Proc. IEDM, pp. 1–4, 2006.
    [18] I. Hwang, H. Choi, J. Lee, H. S. Choi, J. Kim, J. Ha, C. Y. Um, S. K. Hwang, J. Oh, J. Y. Kim, J. K. Shin, Y. Park, U. I. Chung, I. K. Yoo, and K. Kim, “1.6 kV, 2.9 m_cm2 normally-off p-GaN HEMT device,” in Int. Symp. Power Semiconductor Device ICs Dig. (ISPSD), pp. 41–44, 2012.
    [19] L. Y. Su, F. Lee, and J. J. Huang, “Enhancement-mode GaN-based high electron mobility transistors on the Si substrate with a P-type GaN cap layer,” IEEE Trans. Electron Devices, vol. 61, no. 2, pp. 460–465, 2014.
    [20] Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, “High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment,” IEEE Electron Device Lett., vol. 26, no. 7, pp. 435–437, 2005.
    [21] F. Roccaforte, G. Greco, P. Fiorenza, V. Raineri, G. Malandrino, and R. LoNigro, “Epitaxial NiO gate dielectric on AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 100, 063511, 2012.
    [22] C. S. Oh, C. J. Youn, G. M. Yang, K. Y. Lim, and J. W. Yang, “AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor with oxidized Ni as a gate insulator,” Appl. Phys. Lett., vol. 85, no. 18, 2004.
    [23] H. Sato, T. Minami, S. Takata, and T. Yamada, “Transparent conducting p-type NiO thin films prepared by magnetron sputtering,” Thin Solid Films, vol. 236, pp. 27-31, 1993.
    [24] S. J. Huang, C. W. Chou, Y. K. Su, J. H. Lin, H. C. Yu, D. L. Chen, J. L. Ruan, “Achievement of normally-off AlGaN/GaN high-electron mobility transistor with p-NiOx capping layer by sputtering and post-annealing," Appl. Surf. Scie., vol. 401, pp. 373-377, 2017.
    [25] N. Yamazoe, "Toward innovations of gas sensor technology," Sensors Actuators B: Chem, vol. 108, pp. 2-14, 2005.
    [26] B. Johnston, M.C. Mayo, and A. Khare, "Hydrogen: the energy source for the 21st century," Technovation, vol. 25, pp. 569-585, 2005.
    [27] A. Kaniyoor, R. Imran Jafri, T. Arockiadoss, and S. Ramaprabhu, "Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor," Nanoscale, vol. 1, pp. 382-386, 2009.
    [28] W. Peschka, "Hydrogen: The future cryofuel in internal combustion engines," Int J Hydrogen Energy, vol. 23, pp. 27-43, 1998.
    [29] P. Van Blarigan, and J.O. Keller, "A hydrogen fuelled internal combustion engine designed for single speed/power operation," Int J Hydrogen Energy, vol. 23, pp. 603-609, 1998.
    [30] C. W. Hung, T. H. Tsai, H. I. Chen, Y. Y. Tsai, T. P. Chen, and W. C. Liu, "Further investigation of a hydrogen-sensing Pd/GaAs heterostructure field-effect transistor (HFET)," Sensors Actuators B: Chem, vol. 132, pp. 587-592, 2008.
    [31] H. I. Chen, K. C. Chuang, C. H. Chang, W. C. Chen, I. P. Liu, and W. C. Liu, "Hydrogen sensing characteristics of a Pd/AlGaOx/AlGaN-based Schottky diode," Sensors Actuators B: Chem, vol. 246, pp. 408-414, 2017.
    [32] H. Y. Nie, and Y. Nannichi, "Pd-on-GaAs Schottky Contact: Its Barrier Height and Response to Hydrogen," Jpn J Appl Phys, vol. 30, pp. 906-913, 1991.
    [33] L.M. Lechuga, A. Calle, D. Golmayo, and F. Briones, "Hydrogen sensor based on a Pt/GaAs Schottky diode," Sensors Actuators B: Chem, vol. 4, pp. 515-518, 1991.
    [34] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, "Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor," IEEE Trans Electron Devices, vol. 48, pp. 1938-1944, 2001.
    [35] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang, C. Y. Chen, and W. C. Liu, Hydrogen sensing characteristics of Pd- and Pt-Al0.3Ga0.7As metal–semiconductor (MS) Schottky diodes, IEEE Trans Electron Devices, vol. 24, pp. 390-392, 2004.
    [36] W. C. Liu, K. W. Lin, H. I. Chen, C. K. Wang, C. C. Cheng, S. Y. Cheng, and C. T. Lu, A new Pt/oxide/In0.49Ga0.51P MOS Schottky diode hydrogen sensor, IEEE Trans Electron Devices, vol. 23, pp. 640-642, 2002.
    [37] C.W. Hung, H.L. Lin, H.I. Chen, Y.Y. Tsai, P.H. Lai, S.I. Fu, and W.C. Liu, "A Novel Pt/In0.52Al0.48 As Schottky Diode-Type Hydrogen Sensor," IEEE Electron Device Lett, vol. 27, pp. 951-954, 2006.
    [38] B.S. Kang, S. Kim, F. Ren, B.P. Gila, C.R. Abernathy, and S.J. Pearton, "Comparison of MOS and Schottky W/Pt–GaN diodes for hydrogen detection," Sensors Actuators B: Chem, vol. 104, pp. 232-236, 2005.
    [39] J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, K. W. Lin, H. I. Chen, and W. C. Liu, "Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al0.3Ga0.7 As Schottky diodes," Sensors Actuators B: Chem, vol. 117, pp. 151-158, 2006.
    [40] H. Hasegawa, and M. Akazawa, "Hydrogen sensing characteristics and mechanism of Pd/AlGaN/GaN Schottky diodes subjected to oxygen gettering," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 25, pp. 1495-1503, 2007.
    [41] H. T. Wang, T.J. Anderson, B.S. Kang, F. Ren, C. Li, Z.N. Low, J. Lin, B.P. Gila, S.J. Pearton, A. Osinsky, and A. Dabiran, "Stable hydrogen sensors from AlGaN/GaN heterostructure diodes with TiB2-based Ohmic contacts," Appl Phys Lett, vol. 90, pp. 252109, 2007.
    [42] T. H. Tsai, J. R. Huang, K. W. Lin, W. C. Hsu, H. I. Chen, and W. C. Liu, "Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode," Sensors Actuators B: Chem, vol. 129, pp. 292-302, 2008.
    [43] T. H. Tsai, H. I. Chen, K. W. Lin, Y. W. Kuo, C. F. Chang, C. W. Hung, L. Y. Chen, T. P. Chen, Y. C. Liu, and W. C. Liu, "SiO2 passivation effect on the hydrogen adsorption performance of a Pd/AlGaN-based Schottky diode," Sensors Actuators B: Chem, vol. 136, pp. 338-343, 2009.
    [44] H. I. Chen, C. H. Chang, H. H. Lu, I.P. Liu, W. C. Chen, B. Y. Ke, and W. C. Liu, "Hydrogen sensing performance of a Pd/HfO2/GaN metal-oxide-semiconductor (MOS) Schottky diode," Sensors Actuators B: Chem, vol. 262, pp. 852-859, 2018.
    [45] S. Mohseni Meybodi, S.A. Hosseini, M. Rezaee, S.K. Sadrnezhaad, and D. Mohammadyani, "Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method," Ultrason Sonochem, vol. 19, pp. 841-845, 2012.
    [46] H. Gun Woo, L. Seok Jae, L. Ho Won, K. Ja-Ryong, P. Jaehoon, K. Woo Young, K. Yong Seog, and K. Young Kwan, "Efficient Hole Injection for Top-Emitting Organic Light-Emitting Diodes Using Nickel Oxide by Oxygen Plasma Treatment," Jpn J Appl Phys, vol. 50, pp. 112101, 2011.
    [47] S.V. Green, M. Watanabe, N. Oka, G.A. Niklasson, C.G. Granqvist, and Y. Shigesato, "Electrochromic properties of nickel oxide based thin films sputter deposited in the presence of water vapor," Thin Solid Films, vol. 520, pp. 3839-3842, 2012.
    [48] H. Steinebach, S. Kannan, L. Rieth, and F. Solzbacher, "H2 gas sensor performance of NiO at high temperatures in gas mixtures," Sensors Actuators B: Chem, vol. 151, pp. 162-168, 2010.
    [49] I. Hotovy, J. Huran, P. Siciliano, S. Capone, L. Spiess, and V. Rehacek, "Enhancement of H2 sensing properties of NiO-based thin films with a Pt surface modification," Sensors Actuators B: Chem, vol. 103, pp. 300-311, 2004.
    [50] P.V. Tong, N.D. Hoa, N.V. Duy, V.V. Quang, N.T. Lam, and N.V. Hieu, "In-situ decoration of Pd nanocrystals on crystalline mesoporous NiO nanosheets for effective hydrogen gas sensors," Int J Hydrogen Energy, vol. 38, pp. 12090-12100, 2013.
    [51] P. C. Chou, H. I. Chen, I.P. Liu, C. C. Chen, J. K. Liou, K. S. Hsu, and W. C. Liu, "Hydrogen sensing performance of a nickel oxide (NiO) thin film-based device," Int J Hydrogen Energy, vol. 40, pp. 729-734, 2015.
    [52] P.C. Chou, H.I. Chen, I.P. Liu, C.C. Chen, J.K. Liou, K.S. Hsu, and W.C. Liu, "On the Ammonia Gas Sensing Performance of a RF Sputtered NiO Thin-Film Sensor," IEEE Sens J, vol. 15, pp. 3711-3715, 2015.
    [53] H. I. Chen, C. Y. Hsiao, W. C. Chen, C. H. Chang, T. C. Chou, I.P. Liu, K. W. Lin, and W. C. Liu, "Characteristics of a Pt/NiO thin film-based ammonia gas sensor," Sensors Actuators B: Chem, vol. 256, pp. 962-967, 2018.
    [54] C. C. Chen, H. I. Chen, I.P. Liu, H. Y. Liu, P. C. Chou, J. K. Liou, and W. C. Liu, "Enhancement of hydrogen sensing performance of a GaN-based Schottky diode with a hydrogen peroxide surface treatment," Sensors Actuators B: Chem, vol. 211, pp. 303-309, 2015.
    [55] P. C. Chou, H. I. Chen, I.P. Liu, W. C. Chen, C. C. Chen, J. K. Liou, C. J. Lai, and W. C. Liu, "On a Schottky diode-type hydrogen sensor with pyramid-like Pd nanostructures," Int J Hydrogen Energy, vol. 40, pp. 9006-9012, 2015.
    [56] H.W. Zan, W.W. Tsai, Y.r. Lo, Y.M. Wu, and Y.S. Yang, "Pentacene-based organic thin film transistors for ammonia sensing," IEEE Sens J, vol. 12, pp. 594-601, 2012.
    [57] S.G. Pawar, M.A. Chougule, S.L. Patil, B.T. Raut, P.R. Godse, S. Sen, and V.B. Patil, "Room temperature ammonia gas sensor based on polyaniline-TiO2 nanocomposite," IEEE Sens J, vol. 11, pp. 3417-3423, 2011.
    [58] H.M. ApSimon, B.M. Barker, and S. Kayin, " Modeling studies of the atmospheric release and transport of ammonia in anticyclonic episodes," Atmos Environ, vol. 21, pp. 1939-1946, 1967.
    [59] S. Yamulki, R.M. Harrison, and K.W.T. Goulding, "Ammonia surface-exchange above an agricultural field in Southeast England," Atmos Environ, vol. 30, pp. 109-118, 1996.
    [60] R.L. Knight, R.H. Kadlec, and H.M. Ohlendorf, "The use of treatment wetlands for petroleum industry effluents," Environ Sci Technol, vol. 33, pp. 973-980, 1999.
    [61] A. Yewale, K. Raulkar, A. Wadatkar, and G. Lamdhade, "Application of metal oxide thick film as a NH3 gas sensor," Journal of Electron Devices, vol. 11, pp. 544-550, 2011.
    [62] A.J. Kulandaisamy, J.R. Reddy, P. Srinivasan, K.J. Babu, G.K. Mani, P. Shankar, and J.B.B. Rayappan, "Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: Effect of Mg doping," J Alloys Compd, vol. 688, pp. 422-429, 2016.
    [63] N. Dac Dien, D. Duc Vuong, and N. Duc Chien, "Hydrothermal synthesis and NH3 gas sensing property of WO3 nanorods at low temperature," Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 6, pp. 035006, 2015.
    [64] R.K. Gangopadhyay, S.K. Das, "Ammonia leakage from refrigeration plant andthe management practice," Process Saf Prog, vol. 27, pp. 15-20, 2008.
    [65] M.J. Fedoruk, R. Bronstein, and B.D. Kerger, "Ammonia exposure and hazard assessment for selected household cleaning product uses," J Expo Anal Environ Epidemiol, vol. 15, pp. 534, 2005.
    [66] V.B. Raj, A.T. Nimal, Y. Parmar, M.U. Sharma, K. Sreenivas, and V. Gupta, "Cross-sensitivity and selectivity studies on ZnO surface acoustic wave ammonia sensor," Sensors Actuators B: Chem, vol. 147, pp. 517-524, 2010.
    [67] S. K. Lee, D. Chang, and S.W. Kim, "Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection," J Hazard Mater, vol. 268, pp. 110-114, 2014.
    [68] V. Talwar, O. Singh, and R.C. Singh, "ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor," Sensors Actuators B: Chem, vol. 191, pp. 276-282, 2014.
    [69] G. Wang, Y. Ji, X. Huang, X. Yang, P.-I. Gouma, and M. Dudley, "Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing," The Journal of Physical Chemistry B, vol. 110, pp. 23777-23782, 2006.
    [70] C. S. Hsu, H. I. Chen, C. W. Lin, T. Y. Chen, C. C. Huang, P. C. Chou, and W. C. Liu, "Ammonia gas sensing performance of an indium tin oxide (ITO) based device with an underlying Au-nanodot layer," J Electrochem Soc, vol. 160, pp. B17-B22, 2013.
    [71] P.C. Chou, H.I. Chen, I.P. Liu, C.C. Chen, J.K. Liou, K.S. Hsu, and W.C. Liu, "On the ammonia gas sensing performance of a RF sputtered NiO thin-film sensor," IEEE Sens J, vol. 15, pp. 3711-3715, 2015.
    [72] H. I. Chen, C. Y. Hsiao, W. C. Chen, C. H. Chang, T. C. Chou, I.P. Liu, K. W. Lin, and W. C. Liu, "Characteristics of a Pt/NiO thin film-based ammonia gas sensor," Sensors Actuators B: Chem, vol. 256, pp. 962-967, 2018.
    [73] T.Y. Chen, H.I. Chen, Y.J. Liu, C.C. Huang, C.S. Hsu, C.F. Chang, and W.C. Liu, "Ammonia Sensing Properties of a Pt/AlGaN/GaN Schottky Diode," IEEE Trans Electron Devices, vol. 58, pp. 1541-1547, 2011.
    [74] T. Y. Chen, H. I. Chen, Y. J. Liu, C. C. Huang, C. S. Hsu, C. F. Chang, and W. C. Liu, "Ammonia sensing characteristics of a Pt/AlGaN/GaN Schottky diode," Sensors Actuators B: Chem, vol. 155, pp. 347-350, 2011.
    [75] P. C. Chou, H. I. Chen, I.P. Liu, C. W. Hung, C. C. Chen, J. K. Liou, and W. C. Liu, "Study of an electroless plating (EP)-based Pt/AlGaN/GaN Schottky diode-type ammonia sensor," Sensors Actuators B: Chem, vol. 203, pp. 258-262, 2014.
    [76] S.C. Hung, W.Y. Woon, S.M. Lan, F. Ren, and S.J. Pearton, "Characteristics of carbon monoxide sensors made by polar and nonpolar zinc oxide nanowires gated AlGaN/GaN high electron mobility transistor," Appl Phys Lett, vol. 103, pp. 083506, 2013.
    [77] C. F. Lo, Y. Xi, L. Liu, S.J. Pearton, S. Doré, C. H. Hsu, A.M. Dabiran, P.P. Chow, and F. Ren, "Effect of temperature on CO sensing response in air ambient by using ZnO nanorod-gated AlGaN/GaN high electron mobility transistors," Sensors Actuators B: Chem, vol. 176, pp. 708-712, 2013.
    [78] K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu, "Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen-sensing Schottky diode," Sensors Actuators B: Chem, vol. 94, pp. 145-151, 2003.
    [79] J.R. Huang, W.C. Hsu, Y.J. Chen, T.B. Wang, H.I. Chen, and W.C. Liu, "Investigation of hydrogen-sensing characteristics of a Pd/GaN Shottky diode," IEEE Sens J, vol. 11, pp. 1194-1200, 2011.
    [80] C. Y. Chi, H. I. Chen, W. C. Chen, C. H. Chang, and W. C. Liu, "Formaldehyde sensing characteristics of an aluminum-doped zinc oxide (AZO) thin-film-based sensor," Sensors Actuators B: Chem, vol. 255, pp. 3017-3024, 2018.
    [81] T. Y. Chen, H. I. Chen, C. S. Hsu, C. C. Huang, J. S. Wu, P. C. Chou, and W. C. Liu, "Characteristics of ZnO nanorods-based ammonia gas sensors with a cross-linked configuration," Sensors Actuators B: Chem, vol. 221, pp. 491-498, 2015.
    [82] H. I. Chen, C. Y. Chi, W. C. Chen, I.P. Liu, C. H. Chang, T. C. Chou, and W. C. Liu, "Ammonia sensing characteristic of a Pt nanoparticle/aluminum-doped zinc oxide sensor," Sensors Actuators B: Chem, vol. 267, pp. 145-154, 2018.

    下載圖示 校內:2023-08-01公開
    校外:2023-08-01公開
    QR CODE