簡易檢索 / 詳目顯示

研究生: 王馨漩
Wang, Hsin-Hsuan
論文名稱: 從台灣健保角度建立願付價格閾值:以非小細胞肺癌為例
Constructing Willingness-to-pay Thresholds from the Perspective of Taiwan’s National Health Insurance: Using NSCLC as an illustration
指導教授: 歐凰姿
Ou, Huang-Tz
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 148
中文關鍵詞: 非小細胞肺癌最大願付價格閾值醫療科技評估藥物經濟學全民健康保險制度
外文關鍵詞: Non-small cell lung cancer, Willingness-to-pay threshold, Health technology assessment, Pharmacoeconomics, National Health Insurance Administration
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景及目的
    現行WHO(World Health Organization)指引建議以各國人均生產毛額(gross domestic product [GDP])的1至3倍作為最大願付價格閾值(willingness-to-pay [WTP] threshold)。然而後續研究指出,從不同評估觀點和族群出發,實際得出之WTP threshold多低於WHO的建議。此外,根據台灣之藥物經濟學研究,可以發現多數疾病領域之藥品之遞增成本效果比值(incremental cost-effectiveness ratio [ICER])普遍低於3倍人均GDP,使大部分的藥品具高度成本效益,導致健保方難以有效分配資源,因此建立台灣本土之WTP threshold已成當務之急。根據衛福部死因統計,癌症已連續多年位居十大死因之首,其中氣管、支氣管與肺癌在死亡率或整體醫療支出亦為台灣十大癌症之首。
    因此,本研究從衛福部健保署的角度出發,以台灣非小細胞肺癌(non-small cell lung cancer [NSCLC])為例,建立一套台灣本土WTP threshold之方法學框架,作為藥品之健保給付評估與資源配置之重要參考依據。
    研究材料與方法
    研究將健保資料庫與數個資料庫進行串聯,撈取2013-2021年間被診斷為NSCLC的患者,採用線性回歸分析模型以估計醫療支出對健康結果的彈性係數,再將彈性係數代入後續公式以推估WTP threshold。在建立模型時,本研究分別以總存活年數(life years, LYs)與生活品質校正人年(quality-adjusted life years [QALYs])作為健康結果指標,並根據文獻回顧納入共變數因子(covariates)與工具變數因子(instrumental variables [IVs])進行校正。另透過情境分析,限縮研究期間與分析族群,模擬臨床新藥給付情境下之WTP threshold,提升模型應用於實務決策之參考價值。本研究將所有貨幣單位統一換算至2022年美元。
    研究結果
    本研究最終納入118,698名符合篩選條件之NSCLC患者,平均年齡約66歲,以IIIB-IV期患者佔大宗(58%),累積死亡率高達59%。在治療藥品類別中,約25%的患者曾接受過化學治療,另有24.5%的患者接受EGFR-TKI(epidermal growth factor receptor-tyrosine kinase inhibitor)之標靶治療。本研究亦針對各項輸入參數進行變異分析,結果顯示這些參數皆具高度變異性。患者之總醫療支出平均約為113萬元,最高可達約8,225萬元;在健康結果方面,患者之LYs並不長,平均約為2.5年,最長可達10年,而QALYs也呈相似分布趨勢。
    根據基礎研究分析顯示,每增加一LY所對應之WTP threshold約為27,958美元(95% CI [27,721–28,199])(約0.85倍人均GDP),每增加一QALY所對應之WTP threshold約為35,643美元(95% CI [35,317–35,974])(約1.09倍人均GDP)。經校正covariates與IVs,以及同時校正covariates及IVs後,每增加一LY所對應之WTP threshold降至17,910美元(約0.55倍人均GDP)、9,163美元(約0.28倍人均GDP),以及10,355美元(約0.32倍人均GDP)。針對轉移性NSCLC患者之臨床新藥給付之情境分析結果,與基礎研究分析結果相比,其WTP threshold增加約1.2倍(每增加一LY所對應之WTP threshold約為33,560美元),顯示其估計值會因分析情境不同而產生明顯差異。
    研究結論
    本研究以NSCLC為例,建立一套估算WTP threshold之模型架構,不僅提供未來在台灣族群可行之方法學參考,亦可作為醫療科技評估之參考。而WTP threshold估計值會受選擇族群、參數設定與校正因子影響而有所差異,本研究結果顯示WTP threshold可能範圍,未來應根據臨床情境調整模型,並定期檢視其適用性,以提升結果之參考價值。

    While the WHO-CHOICE guideline recommends setting willingness-to-pay (WTP) thresholds at one to three times a country's gross domestic product (GDP) per capita, numerous studies suggest that actual WTP thresholds tend to be lower. Cancer remains the leading cause of death in Taiwan, with non-small cell lung cancer (NSCLC) ranking highest in both mortality and healthcare costs. This study aimed to develop a methodological framework to estimate WTP thresholds from the perspective of Taiwan’s National Health Insurance Administration (NHIA), using NSCLC as an illustration.
    We applied a two-step regression-based modeling approach to estimate WTP thresholds. Scenario analyses were conducted by adjusting for covariates and instrumental variables (IVs). A subgroup analysis of patients with metastatic NSCLC between 2019 and 2021 was performed to assess thresholds relevant to novel therapy reimbursement.
    In the base-case analysis of 118,698 patients, the estimated WTP thresholds were US$27,958 per life year (LY) gained (0.85× Taiwan’s per-capita GDP; 95% CI: US$27,721–28,199). When adjusting separately for covariates, IVs, and both, the LY-based thresholds decreased to US$17,910 (0.55× GDP), US$9,163 (0.28× GDP), and US$10,355 (0.32× GDP), respectively. In the metastatic NSCLC scenario for novel therapy reimbursement, the threshold increased by 1.2-fold to US$33,560 per LY gained.
    This study proposes a robust, adaptable framework for estimating WTP thresholds under a universal healthcare system. By incorporating adjustments and policy scenarios, this approach supports more precise and context-relevant decisions in health technology assessment and reimbursement planning.

    中文摘要 I Extended Abstract IV 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XIII 第一篇 從台灣健保角度建立願付價格閾值:以非小細胞肺癌為例 1 第一章、研究背景 2 第二章、文獻回顧 3 第一節、藥物經濟學概論 3 2.1.1 基本定義 3 2.1.2 藥物經濟學與醫療科技評估對新藥上市之影響及重要性 4 第二節、遞增成本效果比值與最大願付價格閾值 6 2.2.1 現行指引之說明 6 2.2.2 社會保險制度國家之WTP threshold界定方式 6 2.2.3 WTP threshold之各國文獻回顧 9 2.2.4 台灣成本效益研究之文獻回顧 11 第三節、台灣健保給付制度現況 15 第四節、台灣癌症現況暨非小細胞肺癌介紹 16 2.4.1 台灣癌症之經濟負擔概況 16 2.4.2 非小細胞肺癌定義與流行病學 16 第三章、研究動機、目的與臨床意義 18 第一節、研究動機 18 第二節、研究目的與臨床意義 18 第四章、研究方法 19 第一節、研究架構 19 第二節、研究設計 20 4.2.1 研究材料 20 4.2.2 研究期間 20 4.2.3 研究對象 21 4.2.3.1 納入條件 21 4.2.3.2 排除條件 21 4.2.4 研究族群篩選流程圖 22 4.2.5 觀察區間 23 4.2.6 病患之基本特徵 23 4.2.7 研究名詞與操作型定義 25 第三節、建立WTP threshold 32 4.3.1 模型建立與公式:基礎研究分析(base-case analysis) 32 第四節、情境分析 35 4.4.1 共變數因子與工具變數因子之選擇 35 4.4.2 情境分析1(Scenario analysis with adjustment of covariates) 36 4.4.3 情境分析2(Scenario analysis with adjustment of IVs) 37 4.4.4 情境分析3(Scenario analysis with adjustment of covariates & IVs) 37 4.4.5 情境分析4(生活品質校正人年分析) 38 4.4.6 情境分析5 41 第五節、統計方法 42 4.5.1 統計工具 42 4.5.2 統計分析方法 42 第五章、研究結果 43 第一節、研究對象篩選結果 43 第二節、病患基本特徵 45 第三節、線性回歸分析模型之參數變異 50 第四節、WTP threshold之結果分析 52 5.4.1 彈性係數結果 52 5.4.1.1 Base-case analysis之彈性係數結果 52 5.4.1.2 情境分析1之彈性係數結果 53 5.4.1.3 情境分析2之彈性係數結果 55 5.4.1.4 情境分析3之彈性係數結果 56 5.4.1.5 情境分析4之彈性係數結果 58 5.4.1.6 情境分析5之彈性係數結果 62 5.4.2 WTP threshold計算結果 66 5.4.3 WTP threshold計算結果(全部藥品市場) 66 5.4.3.1 WTP threshold計算結果(LYs為依變項)(全部藥品市場) 66 5.4.3.2 WTP threshold計算結果(QALYs為依變項)(全部藥品市場) 68 5.4.3.3 WTP threshold計算結果(LYs為依變項)(新藥市場) 70 第六章、討論 72 第一節、各項分析模型所推估之WTP threshold比較與探討 72 第二節、與過去文獻及現行指引之比較及探討 74 6.2.1 與過去文獻之研究方法之比較 74 6.2.1.1 Covariates與IVs之選擇與應用 74 6.2.1.2 QALYs與DALYs作為治療效果指標之轉換與應用: 75 6.2.2 與過去文獻之研究結果之比較 75 6.2.3 與現行指引之比較及應用 76 第三節、系統性方法學之建立 77 第四節、方法學之臨床意義及未來應用 80 第七章、研究優勢與限制 81 第一節、研究優勢 81 第二節、研究限制 82 第八章、未來研究方向 83 第九章、結論與建議 85 第二篇 建置末期腎臟病前期患者之個人化聊天機器人與行為意圖分析問卷 86 第一章、服務背景 87 第一節、行動醫療服務對於末期腎臟病前期患者之成效 87 第二節、利用整合科技接受模式評估病人對於行動醫療服務之行為意圖 88 第二章、服務動機與目的 90 第三章、臨床服務方法與內容 91 第一節、人工智慧衛教機器人之建置 91 第二節、行為意圖分析問卷之建立與確效 96 第四章、臨床服務之研究結果 98 4.1.1 Pre-ESRD人工智慧機器人之建置初步結果 98 4.1.2 問卷效度結果 100 第五章、討論 105 第六章、研究計畫之優勢與限制 106 第一節、研究優勢 106 第二節、研究限制 106 第七章、結論及未來方向 107 參考文獻 108 附錄 118

    1. Tonin FS, Aznar-Lou I, Pontinha VM, Pontarolo R, Fernandez-Llimos F. Principles of pharmacoeconomic analysis: the case of pharmacist-led interventions. Pharm Pract (Granada). Jan-Mar 2021;19(1):2302.
    2. Hutubessy R, Chisholm D, Edejer TT. Generalized cost-effectiveness analysis for national-level priority-setting in the health sector. Cost Eff Resour Alloc. Dec 19 2003;1(1):8.
    3. Robinson LA, Hammitt JK, Chang AY, Resch S. Understanding and improving the one and three times GDP per capita cost-effectiveness thresholds. Health Policy Plan. Feb 2017;32(1):141-145.
    4. Iino H, Hashiguchi M, Hori S. Estimating the range of incremental cost-effectiveness thresholds for healthcare based on willingness to pay and GDP per capita: A systematic review. PLoS One. 2022;17(4):e0266934.
    5. Pichon-Riviere A, Drummond M, Palacios A, Garcia-Marti S, Augustovski F. Determining the efficiency path to universal health coverage: cost-effectiveness thresholds for 174 countries based on growth in life expectancy and health expenditures. Lancet Glob Health. Jun 2023;11(6):e833-e842.
    6. Peng ZY, Yang CT, Ou HT, Kuo S. Cost-effectiveness of sodium-glucose cotransporter-2 inhibitors versus dipeptidyl peptidase-4 inhibitors among patients with type 2 diabetes with and without established cardiovascular diseases: A model-based simulation analysis using 10-year real-world data and targeted literature review. Diabetes Obes Metab. Jul 2022;24(7):1328-1337.
    7. Lang HC, Chen HW, Chiou TJ, Chan AL. The real-world cost-effectiveness of adjuvant trastuzumab in HER-2/neu-positive early breast cancer in Taiwan. J Med Econ. Oct 2016;19(10):923-7.
    8. Yang SC, Lai WW, Hsu JC, Su WC, Wang JD. Comparative effectiveness and cost-effectiveness of three first-line EGFR-tyrosine kinase inhibitors: Analysis of real-world data in a tertiary hospital in Taiwan. PLoS One. 2020;15(4):e0231413.
    9. 中央健康保險署. 健保多元協商議價機制上路 有助加速新藥給付. Updated 11月29日, 2023. Accessed 4月14日, 2025. Available from: https://www.nhi.gov.tw/ch/cp-7739-17b9b-3255-1.html
    10. 衛生福利部. 112年國人死因統計結果. Updated 6月17日, 2024. Accessed 4月14日, 2025. Available from: https://www.mohw.gov.tw/cp-16-79055-1.html
    11. 中央健康保險署. 癌症費用排行. Updated 3月25日, 2024. Accessed 4月14日, 2025. Available from: https://www.nhi.gov.tw/ch/cp-6018-9886a-3042-1.html
    12. Parkinson B. Pharmaceutical Policy in Australia. 2013. Accessed 3月. https://www.uts.edu.au/globalassets/sites/default/files/wp2013_01.pdf
    13. Wang B, Roth JA, Nguyen H, Felber E, Furnback W, Garrison LP. The short-term cost-effectiveness of once-daily liraglutide versus once-weekly exenatide for the treatment of type 2 diabetes mellitus in the United States. PLoS One. 2015;10(4):e0121915.
    14. Mikhael EM, Ong SC, Hussain SA. Cost-Effectiveness Analysis of the Culturally Developed Diabetes Self-Management Education and Support Program among Type 2 Diabetes Mellitus Patients in Iraq. J Pharm Bioallied Sci. Jan-Mar 2023;15(1):49-56.
    15. Tang Y, Sang H. Cost-utility analysis of add-on dapagliflozin in heart failure with preserved or mildly reduced ejection fraction. ESC Heart Fail. Aug 2023;10(4):2524-2533.
    16. Standaert B, Ethgen O, Emerson R, Postma M, Mauskopf J. Comparing cost-effectiveness results for a vaccine across different countries worldwide: what can we learn? Adv Ther. Oct 2014;31(10):1095-108.
    17. Abbott JH, Wilson R, Pryymachenko Y, Sharma S, Pathak A, Chua JYY. Economic evaluation: a reader's guide to studies of cost-effectiveness. Arch Physiother. Dec 15 2022;12(1):28.
    18. Bilinski A, MacKay E, Salomon JA, Pandya A. Affordability and Value in Decision Rules for Cost-Effectiveness: A Survey of Health Economists. Value Health. Jul 2022;25(7):1141-1147.
    19. Miller P. Role of pharmacoeconomic analysis in R&D decision making: when, where, how? Pharmacoeconomics. 2005;23(1):1-12.
    20. 財團法人醫藥品查驗中心. 醫療科技評估_業務說明. Updated 12月11日, 2024. Accessed 4月14日, 2025. Available from: https://www.cde.org.tw/hta/1444/1829/12796/12800/normalPost
    21. Ciani O, Jommi C. The role of health technology assessment bodies in shaping drug development. Drug Des Devel Ther. 2014;8:2273-81.
    22. Balijepalli C, Gullapalli L, Joshy J, Rawson NS. The impact of willingness-to-pay threshold on price reduction recommendations for oncology drugs: a review of assessments conducted by the Canadian Agency for Drugs and Technologies in Health. J Comp Eff Res. May 2024;13(5):e230178.
    23. Griffiths EA, Hendrich JK, Stoddart SD, Walsh SC. Acceptance of health technology assessment submissions with incremental cost-effectiveness ratios above the cost-effectiveness threshold. Clinicoecon Outcomes Res. 2015;7:463-76.
    24. Allen N, Walker SR, Liberti L, Salek S. Health Technology Assessment (HTA) Case Studies: Factors Influencing Divergent HTA Reimbursement Recommendations in Australia, Canada, England, and Scotland. Value Health. Mar 2017;20(3):320-328.
    25. McDougall JA, Furnback WE, Wang BCM, Mahlich J. Understanding the global measurement of willingness to pay in health. J Mark Access Health Policy. 2020;8(1):1717030.
    26. Lu JR, Sheu JT, Lee TJ. A Tale of Two Social Insurance Systems in South Korea and Taiwan: A Financial Risk Protection Perspective. Health Syst Reform. Jan 1 2022;8(1):2114648.
    27. Kim JH, Chun SY, Lee DE, et al. Cost-effectiveness of hyperthermic intraperitoneal chemotherapy following interval cytoreductive surgery for stage III-IV ovarian cancer from a randomized controlled phase III trial in Korea (KOV-HIPEC-01). Gynecol Oncol. Mar 2023;170:19-24.
    28. Kambhampati S, Shumilov E, Saumoy M, et al. Cost-effectiveness of polatuzumab vedotin in combination with chemoimmunotherapy (pola-R-CHP) in previously untreated diffuse large B-cell lymphoma in Germany. Br J Haematol. Aug 2023;202(4):771-775.
    29. Choi HY, Kim KA, Park BY, Choi BY, Ki M. Economic evaluation of mass screening as a strategy for hepatitis C virus elimination in South Korea. J Infect Public Health. Mar 2025;18(3):102662.
    30. Scholz SM, Weidemann F, Damm O, Ultsch B, Greiner W, Wichmann O. Cost-Effectiveness of Routine Childhood Vaccination Against Seasonal Influenza in Germany. Value Health. Jan 2021;24(1):32-40.
    31. Chi YL, Blecher M, Chalkidou K, et al. What next after GDP-based cost-effectiveness thresholds? Gates Open Res. 2020;4:176.
    32. Bertram MY, Lauer JA, De Joncheere K, et al. Cost-effectiveness thresholds: pros and cons. Bull World Health Organ. Dec 1 2016;94(12):925-930.
    33. 衛生福利部. 核定114年度全民健康保險醫療給付費用總額. Updated 1月9日. Accessed 8月10日, 2025. Available from: https://www.mohw.gov.tw/cp-16-81144-1.html
    34. 財團法人醫藥品查驗中心. 加速健保藥品給付作業. Updated 11月21日. Accessed 8月10日, 2025. Available from: https://www.cde.org.tw/HTA/1444/1832/1992/2001/18266/
    35. 財團法人醫藥品查驗中心. 暫時性支付藥品再評估計畫書審查重點. Accessed 8月10日, 2025. Available from: https://www.nhi.gov.tw/ch/dl-82813-d7e162929c2c4e2090ca91074be7d5a3-1.pdf
    36. Duma N, Santana-Davila R, Molina JR. Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin Proc. Aug 2019;94(8):1623-1640.
    37. 國民健康署. 110年癌症登記報告. Updated 11月12日, 2024. Accessed 4月14日, 2025. Available from: https://www.hpa.gov.tw/Pages/List.aspx?nodeid=119
    38. Ochalek J, Wang H, Gu Y, Lomas J, Cutler H, Jin C. Informing a Cost-Effectiveness Threshold for Health Technology Assessment in China: A Marginal Productivity Approach. Pharmacoeconomics. Dec 2020;38(12):1319-1331.
    39. Peng Q, Yin Y, Liang M, et al. Estimating the cost-effectiveness threshold of advanced non-small cell lung cancer in China using mean opportunity cost and contingent valuation method. Cost Eff Resour Alloc. Nov 2 2023;21(1):80.
    40. Lin LY, Warren-Gash C, Smeeth L, Chen PC. Data resource profile: the National Health Insurance Research Database (NHIRD). Epidemiol Health. 2018;40:e2018062.
    41. 台灣癌症登記中心. 癌症登記長表資料分析指引. Updated 1月2日, 2025. Accessed 4月28日, 2025. Available from: https://twcr.tw/?p=3284
    42. 衛生福利部. 死因統計檔資料庫使用手冊. Updated 9月24日, 2024. Accessed 4月28日, 2025. Available from: https://www.mohw.gov.tw/dl-16091-d39af7e8-e7d7-4e44-ba82-979c658d2562.html
    43. 衛生福利部. 承保檔資料庫使用手冊. Updated 1月21日, 2025. Accessed 5月9日, 2025. Available from: https://www.mohw.gov.tw/dl-23931-f1cd6d12-8675-47e6-8221-e5a1c81df208.html
    44. Yang SC, Lai WW, Chang HY, Su WC, Chen HH, Wang JD. Estimation of loss of quality-adjusted life expectancy (QALE) for patients with operable versus inoperable lung cancer: adjusting quality-of-life and lead-time bias for utility of surgery. Lung Cancer. Oct 2014;86(1):96-101.
    45. Liao CH, Yu S, Lin KC, Wu YC, Wang TJ, Wang KY. The determinants of health-related quality of life among patients with newly diagnosed lung cancer in Taiwan: A cross-sectional study. J Chin Med Assoc. Mar 1 2023;86(3):338-344.
    46. Lee LJ, Chung CW, Chang YY, et al. Comparison of the quality of life between patients with non-small-cell lung cancer and healthy controls. Qual Life Res. Apr 2011;20(3):415-23.
    47. Yang SC, Kuo CW, Lai WW, et al. Dynamic Changes of Health Utility in Lung Cancer Patients Receiving Different Treatments: A 7-Year Follow-up. J Thorac Oncol. Nov 2019;14(11):1892-1900.
    48. O'Kane GM, Su J, Tse BC, et al. The Impact of Brain Metastases and Associated Neurocognitive Aspects on Health Utility Scores in EGFR Mutated and ALK Rearranged NSCLC: A Real World Evidence Analysis. The Oncologist. 2019;24(7):e501-e509.
    49. Guo Y, Li L, Zheng K, et al. Development and validation of a survival prediction model for patients with advanced non-small cell lung cancer based on LASSO regression. Front Immunol. 2024;15:1431150.
    50. Edney LC, Lomas J, Karnon J, et al. Empirical Estimates of the Marginal Cost of Health Produced by a Healthcare System: Methodological Considerations from Country-Level Estimates. Pharmacoeconomics. Jan 2022;40(1):31-43.
    51. Jovanoski N, Abogunrin S, Di Maio D, et al. Health State Utility Values in Early-Stage Non-small Cell Lung Cancer: A Systematic Literature Review. Pharmacoecon Open. Sep 2023;7(5):723-738.
    52. Hays RD, Reeve BB, Smith AW, Clauser SB. Associations of cancer and other chronic medical conditions with SF-6D preference-based scores in Medicare beneficiaries. Qual Life Res. Mar 2014;23(2):385-91.
    53. 中央健康保險署. 門住診醫療費用申報狀況. Updated 5月26日, 2025. Accessed 6月12日, 2025. Available from: https://www.nhi.gov.tw/ch/cp-6015-0907b-3023-1.html
    54. Bathke A, Brunner E. A Nonparametric Alternative to Analysis of Covariance. 2003:109-120.
    55. Steyerberg E. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. vol 19. 2009.
    56. Newhouse JP, McClellan M. Econometrics in outcomes research: the use of instrumental variables. Annu Rev Public Health. 1998;19:17-34.
    57. Edney LC, Haji Ali Afzali H, Cheng TC, Karnon J. Estimating the Reference Incremental Cost-Effectiveness Ratio for the Australian Health System. Pharmacoeconomics. Feb 2018;36(2):239-252.
    58. Wooldridge JM. Introductory Econometrics: A Modern Approach. 4th ed. 2009.
    59. 中央健康保險署. 全民健康保險藥品給付規定歷史檔. Updated 1月10日, 2024. Accessed 6月19日, 2025. Available from: https://www.nhi.gov.tw/ch/cp-2192-9951a-2509-1.html
    60. Roustaei N. Application and interpretation of linear-regression analysis. Med Hypothesis Discov Innov Ophthalmol. Fall 2024;13(3):151-159.
    61. 中華民國統計資訊網. 國民所得及經濟成長統計資料庫. Updated 4月20日. Accessed 4月20日, 2025. Available from: https://nstatdb.dgbas.gov.tw/dgbasAll/webMain.aspx?sys=100&funid=dgmaind
    62. Whitehead SJ, Ali S. Health outcomes in economic evaluation: the QALY and utilities. Br Med Bull. 2010;96:5-21.
    63. B KJMTP. WTP THRESHOLD: A REVIEW OF INTERNATIONAL APPROACHES AND INSPIRATION FOR CULTIVATION OF CURRENT SITUATION IN THE CZECH REPUBLIC. presented at: ISPOR Europe; November 2023; Denmark.
    64. MacKean G, Noseworthy T, Elshaug AG, et al. Health technology reassessment: the art of the possible. Int J Technol Assess Health Care. Oct 2013;29(4):418-23.
    65. Nafees B, Stafford M, Gavriel S, Bhalla S, Watkins J. Health state utilities for non small cell lung cancer. Health Qual Life Outcomes. Oct 21 2008;6:84.
    66. 中央健康保險署. 健保5月1日起給付癌症精準醫療「實體癌/血癌次世代基因定序檢測(NGS)」2萬多名癌友受惠. Updated 6月13日. Accessed 6月28日, 2025. Available from: https://www.mohw.gov.tw/cp-16-78416-1.html
    67. Claxton K, Martin S, Soares M, et al. Methods for the estimation of the National Institute for Health and Care Excellence cost-effectiveness threshold. Health Technol Assess. Feb 2015;19(14):1-503, v-vi.
    68. Siverskog J, Henriksson M. Estimating the marginal cost of a life year in Sweden's public healthcare sector. Eur J Health Econ. Jul 2019;20(5):751-762.
    69. Vallejo-Torres L, García-Lorenzo B, Serrano-Aguilar P. Estimating a cost-effectiveness threshold for the Spanish NHS. Health Econ. Apr 2018;27(4):746-761.
    70. Feng X, Kim DD, Cohen JT, Neumann PJ, Ollendorf DA. Using QALYs versus DALYs to measure cost-effectiveness: How much does it matter? Int J Technol Assess Health Care. Apr 2020;36(2):96-103.
    71. Ball G, Levine MAH, Thabane L, Tarride JE. Appraisals by Health Technology Assessment Agencies of Economic Evaluations Submitted as Part of Reimbursement Dossiers for Oncology Treatments: Evidence from Canada, the UK, and Australia. Curr Oncol. Oct 13 2022;29(10):7624-7636.
    72. Nimdet K, Chaiyakunapruk N, Vichansavakul K, Ngorsuraches S. A systematic review of studies eliciting willingness-to-pay per quality-adjusted life year: does it justify CE threshold? PLoS One. 2015;10(4):e0122760.
    73. NICE health technology evaluations: the manual. National Institute for Health and Care Excellence; 2022.
    74. Cai R, Tokarz A, Jain A, Libanore A. Exploring the Impact of the New NICE Disease Severity Modifier on HTA Oncology Submissions: A Retrospective Analysis of Technology Appraisals. presented at: ISPOR Europe 2024; November 17-20 2024; Spain.
    75. Charlton V. Does NICE apply the rule of rescue in its approach to highly specialised technologies? J Med Ethics. Feb 2022;48(2):118-125.
    76. Hale G, Morris J, Barker-Yip J. Flexibility in assessment of rare disease technologies via NICE's single technology appraisal route: a thematic analysis. J Comp Eff Res. Nov 2023;12(11):e230093.
    77. Hsu W, Yang CH, Fan WP. A Study of Patients' Willingness to Pay for a Basic Outpatient Copayment and Medical Service Quality in Taiwan. Int J Environ Res Public Health. Jun 19 2021;18(12)
    78. Chen YT, Ying YH, Chang K, Hsieh YH. Study of Patients' Willingness to Pay for a Cure of Chronic Obstructive Pulmonary Disease in Taiwan. Int J Environ Res Public Health. Mar 1 2016;13(3)
    79. Lang HC, Chang K, Ying YH. Quality of life, treatments, and patients' willingness to pay for a complete remission of cervical cancer in Taiwan. Health Econ. Oct 2012;21(10):1217-33.
    80. Lizheng X, Mingsheng C, Blake A, et al. Establishing cost-effectiveness threshold in China: a community survey of willingness to pay for a healthy life year. BMJ Global Health. 2024;9(1):e013070.
    81. Cubi-Molla P, Errea M, Zhang K, Garau M. Are Cost-Effectiveness Thresholds fit for Purpose for Real-World Decision Making? Updated 2月1日. Accessed 6月24日, 2025. Available from: https://www.ohe.org/publications/are-cost-effectiveness-thresholds-fit-for-purpose/
    82. Lipton RB, Brennan A, Palmer S, et al. Estimating the clinical effectiveness and value-based price range of erenumab for the prevention of migraine in patients with prior treatment failures: a US societal perspective. J Med Econ. Jul 2018;21(7):666-675.
    83. Chalkidou K, Claxton K, Silverman R, Yadav P. Value-based tiered pricing for universal health coverage: an idea worth revisiting. Gates Open Res. 2020;4:16.
    84. Malaviya S, Shajarizadeh A, Tremblay G. Is Cost-Effectiveness Analysis a Tool to Exercise Value-Based Pricing or Monopsony Power?Evidence from Canada and Other Countries. presented at: ISPOR; May 7–10 2023; Boston.
    85. 國民健康署. 民國106年國民健康訪問調查. Updated 5月30日. Accessed 6月28日, 2025. Available from: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=364&pid=13636&sid=18514
    86. 中央健康保險署. Pre-ESRD病人照護與衛教計畫. Updated 6月9日. Accessed 6月15日, 2025. Available from: https://www.nhi.gov.tw/ch/cp-7595-38b11-2834-1.html?preview=1
    87. Tesfaye WH, Erku D, Mekonnen A, et al. Medication non-adherence in chronic kidney disease: a mixed-methods review and synthesis using the theoretical domains framework and the behavioural change wheel. J Nephrol. Aug 2021;34(4):1091-1125.
    88. Tangkiatkumjai M, Walker DM, Praditpornsilpa K, Boardman H. Association between medication adherence and clinical outcomes in patients with chronic kidney disease: a prospective cohort study. Clin Exp Nephrol. Jun 2017;21(3):504-512.
    89. Baker M, Perazella MA. NSAIDs in CKD: Are They Safe? Am J Kidney Dis. Oct 2020;76(4):546-557.
    90. Markossian TW, Boyda J, Taylor J, et al. A Mobile App to Support Self-management of Chronic Kidney Disease: Development Study. JMIR Hum Factors. Dec 15 2021;8(4):e29197.
    91. Toapanta N, Sánchez-Gavilan E, Guirao C, et al. Pilot monitoring study in patients with diabetic kidney disease using NORA application. Nefrologia (Engl Ed). Jul-Aug 2024;44(4):519-526.
    92. Chen NJ, Huang CM, Fan CC, et al. User Evaluation of a Chat-Based Instant Messaging Support Health Education Program for Patients With Chronic Kidney Disease: Preliminary Findings of a Formative Study. JMIR Form Res. Sep 19 2023;7:e45484.
    93. Liu Y, Lu X, Zhao G, Li C, Shi J. Adoption of mobile health services using the unified theory of acceptance and use of technology model: Self-efficacy and privacy concerns. Front Psychol. 2022;13:944976.
    94. 蕭佩妮. 探討慢性腎臟病病人對於行動醫療服務使用意圖之影響因素. master. 國立高雄師範大學; 2017.
    95. Venkatesh V, Morris MG, Davis GB, Davis FD. User Acceptance of Information Technology: Toward a Unified View. Institutions & Transition Economics: Microeconomic Issues eJournal. Sep 1 2003;27:425-478.
    96. DeLone WH, McLean ER. Information Systems Success: The Quest for the Dependent Variable. Information Systems Research. 1992;3(1):60-95.
    97. Delone WH, and ERM. The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems. 2003/04/01 2003;19(4):9-30.
    98. 國民健康署. 慢性腎臟病健康管理手冊. Accessed 6月16日, 2025. Available from: https://www.hpa.gov.tw/Pages/EBook.aspx?nodeid=1157
    99. 國立成功大學附設醫院藥劑部. 藥劑部部門網頁. Accessed 6月16日, 2025. Available from: https://nckupharmacy.hosp.ncku.edu.tw/newhomepage/index.asp
    100. 國家高速網路與計算中心. 國網中心建構生醫資料可信賴研究環境 滿足健康大數據永續平台隱私與研究兩大需求. Updated 4月26日. Accessed 6月26日, 2025. Available from: https://www.nchc.org.tw/Active/ActiveView/676?mid=172&page=1
    101. Sullivan GM, Artino AR, Jr. Analyzing and interpreting data from likert-type scales. J Grad Med Educ. Dec 2013;5(4):541-2.
    102. Zamanzadeh V, Ghahramanian A, Rassouli M, Abbaszadeh A, Alavi-Majd H, Nikanfar AR. Design and Implementation Content Validity Study: Development of an instrument for measuring Patient-Centered Communication. J Caring Sci. Jun 2015;4(2):165-78.
    103. Shi J, Mo X, Sun Z. [Content validity index in scale development]. Zhong Nan Da Xue Xue Bao Yi Xue Ban. Feb 2012;37(2):152-5.
    104. Mao B, Jia X, Huang Q. How do information overload and message fatigue reduce information processing in the era of COVID-19? An ability–motivation approach. J Inf Sci. Sep 5 2022;

    無法下載圖示 校內:2030-08-18公開
    校外:2030-08-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE