| 研究生: |
王馨漩 Wang, Hsin-Hsuan |
|---|---|
| 論文名稱: |
從台灣健保角度建立願付價格閾值:以非小細胞肺癌為例 Constructing Willingness-to-pay Thresholds from the Perspective of Taiwan’s National Health Insurance: Using NSCLC as an illustration |
| 指導教授: |
歐凰姿
Ou, Huang-Tz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學與藥物科技研究所 Institute of Clinical Pharmacy and Pharmaceutical sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 非小細胞肺癌 、最大願付價格閾值 、醫療科技評估 、藥物經濟學 、全民健康保險制度 |
| 外文關鍵詞: | Non-small cell lung cancer, Willingness-to-pay threshold, Health technology assessment, Pharmacoeconomics, National Health Insurance Administration |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究背景及目的
現行WHO(World Health Organization)指引建議以各國人均生產毛額(gross domestic product [GDP])的1至3倍作為最大願付價格閾值(willingness-to-pay [WTP] threshold)。然而後續研究指出,從不同評估觀點和族群出發,實際得出之WTP threshold多低於WHO的建議。此外,根據台灣之藥物經濟學研究,可以發現多數疾病領域之藥品之遞增成本效果比值(incremental cost-effectiveness ratio [ICER])普遍低於3倍人均GDP,使大部分的藥品具高度成本效益,導致健保方難以有效分配資源,因此建立台灣本土之WTP threshold已成當務之急。根據衛福部死因統計,癌症已連續多年位居十大死因之首,其中氣管、支氣管與肺癌在死亡率或整體醫療支出亦為台灣十大癌症之首。
因此,本研究從衛福部健保署的角度出發,以台灣非小細胞肺癌(non-small cell lung cancer [NSCLC])為例,建立一套台灣本土WTP threshold之方法學框架,作為藥品之健保給付評估與資源配置之重要參考依據。
研究材料與方法
研究將健保資料庫與數個資料庫進行串聯,撈取2013-2021年間被診斷為NSCLC的患者,採用線性回歸分析模型以估計醫療支出對健康結果的彈性係數,再將彈性係數代入後續公式以推估WTP threshold。在建立模型時,本研究分別以總存活年數(life years, LYs)與生活品質校正人年(quality-adjusted life years [QALYs])作為健康結果指標,並根據文獻回顧納入共變數因子(covariates)與工具變數因子(instrumental variables [IVs])進行校正。另透過情境分析,限縮研究期間與分析族群,模擬臨床新藥給付情境下之WTP threshold,提升模型應用於實務決策之參考價值。本研究將所有貨幣單位統一換算至2022年美元。
研究結果
本研究最終納入118,698名符合篩選條件之NSCLC患者,平均年齡約66歲,以IIIB-IV期患者佔大宗(58%),累積死亡率高達59%。在治療藥品類別中,約25%的患者曾接受過化學治療,另有24.5%的患者接受EGFR-TKI(epidermal growth factor receptor-tyrosine kinase inhibitor)之標靶治療。本研究亦針對各項輸入參數進行變異分析,結果顯示這些參數皆具高度變異性。患者之總醫療支出平均約為113萬元,最高可達約8,225萬元;在健康結果方面,患者之LYs並不長,平均約為2.5年,最長可達10年,而QALYs也呈相似分布趨勢。
根據基礎研究分析顯示,每增加一LY所對應之WTP threshold約為27,958美元(95% CI [27,721–28,199])(約0.85倍人均GDP),每增加一QALY所對應之WTP threshold約為35,643美元(95% CI [35,317–35,974])(約1.09倍人均GDP)。經校正covariates與IVs,以及同時校正covariates及IVs後,每增加一LY所對應之WTP threshold降至17,910美元(約0.55倍人均GDP)、9,163美元(約0.28倍人均GDP),以及10,355美元(約0.32倍人均GDP)。針對轉移性NSCLC患者之臨床新藥給付之情境分析結果,與基礎研究分析結果相比,其WTP threshold增加約1.2倍(每增加一LY所對應之WTP threshold約為33,560美元),顯示其估計值會因分析情境不同而產生明顯差異。
研究結論
本研究以NSCLC為例,建立一套估算WTP threshold之模型架構,不僅提供未來在台灣族群可行之方法學參考,亦可作為醫療科技評估之參考。而WTP threshold估計值會受選擇族群、參數設定與校正因子影響而有所差異,本研究結果顯示WTP threshold可能範圍,未來應根據臨床情境調整模型,並定期檢視其適用性,以提升結果之參考價值。
While the WHO-CHOICE guideline recommends setting willingness-to-pay (WTP) thresholds at one to three times a country's gross domestic product (GDP) per capita, numerous studies suggest that actual WTP thresholds tend to be lower. Cancer remains the leading cause of death in Taiwan, with non-small cell lung cancer (NSCLC) ranking highest in both mortality and healthcare costs. This study aimed to develop a methodological framework to estimate WTP thresholds from the perspective of Taiwan’s National Health Insurance Administration (NHIA), using NSCLC as an illustration.
We applied a two-step regression-based modeling approach to estimate WTP thresholds. Scenario analyses were conducted by adjusting for covariates and instrumental variables (IVs). A subgroup analysis of patients with metastatic NSCLC between 2019 and 2021 was performed to assess thresholds relevant to novel therapy reimbursement.
In the base-case analysis of 118,698 patients, the estimated WTP thresholds were US$27,958 per life year (LY) gained (0.85× Taiwan’s per-capita GDP; 95% CI: US$27,721–28,199). When adjusting separately for covariates, IVs, and both, the LY-based thresholds decreased to US$17,910 (0.55× GDP), US$9,163 (0.28× GDP), and US$10,355 (0.32× GDP), respectively. In the metastatic NSCLC scenario for novel therapy reimbursement, the threshold increased by 1.2-fold to US$33,560 per LY gained.
This study proposes a robust, adaptable framework for estimating WTP thresholds under a universal healthcare system. By incorporating adjustments and policy scenarios, this approach supports more precise and context-relevant decisions in health technology assessment and reimbursement planning.
1. Tonin FS, Aznar-Lou I, Pontinha VM, Pontarolo R, Fernandez-Llimos F. Principles of pharmacoeconomic analysis: the case of pharmacist-led interventions. Pharm Pract (Granada). Jan-Mar 2021;19(1):2302.
2. Hutubessy R, Chisholm D, Edejer TT. Generalized cost-effectiveness analysis for national-level priority-setting in the health sector. Cost Eff Resour Alloc. Dec 19 2003;1(1):8.
3. Robinson LA, Hammitt JK, Chang AY, Resch S. Understanding and improving the one and three times GDP per capita cost-effectiveness thresholds. Health Policy Plan. Feb 2017;32(1):141-145.
4. Iino H, Hashiguchi M, Hori S. Estimating the range of incremental cost-effectiveness thresholds for healthcare based on willingness to pay and GDP per capita: A systematic review. PLoS One. 2022;17(4):e0266934.
5. Pichon-Riviere A, Drummond M, Palacios A, Garcia-Marti S, Augustovski F. Determining the efficiency path to universal health coverage: cost-effectiveness thresholds for 174 countries based on growth in life expectancy and health expenditures. Lancet Glob Health. Jun 2023;11(6):e833-e842.
6. Peng ZY, Yang CT, Ou HT, Kuo S. Cost-effectiveness of sodium-glucose cotransporter-2 inhibitors versus dipeptidyl peptidase-4 inhibitors among patients with type 2 diabetes with and without established cardiovascular diseases: A model-based simulation analysis using 10-year real-world data and targeted literature review. Diabetes Obes Metab. Jul 2022;24(7):1328-1337.
7. Lang HC, Chen HW, Chiou TJ, Chan AL. The real-world cost-effectiveness of adjuvant trastuzumab in HER-2/neu-positive early breast cancer in Taiwan. J Med Econ. Oct 2016;19(10):923-7.
8. Yang SC, Lai WW, Hsu JC, Su WC, Wang JD. Comparative effectiveness and cost-effectiveness of three first-line EGFR-tyrosine kinase inhibitors: Analysis of real-world data in a tertiary hospital in Taiwan. PLoS One. 2020;15(4):e0231413.
9. 中央健康保險署. 健保多元協商議價機制上路 有助加速新藥給付. Updated 11月29日, 2023. Accessed 4月14日, 2025. Available from: https://www.nhi.gov.tw/ch/cp-7739-17b9b-3255-1.html
10. 衛生福利部. 112年國人死因統計結果. Updated 6月17日, 2024. Accessed 4月14日, 2025. Available from: https://www.mohw.gov.tw/cp-16-79055-1.html
11. 中央健康保險署. 癌症費用排行. Updated 3月25日, 2024. Accessed 4月14日, 2025. Available from: https://www.nhi.gov.tw/ch/cp-6018-9886a-3042-1.html
12. Parkinson B. Pharmaceutical Policy in Australia. 2013. Accessed 3月. https://www.uts.edu.au/globalassets/sites/default/files/wp2013_01.pdf
13. Wang B, Roth JA, Nguyen H, Felber E, Furnback W, Garrison LP. The short-term cost-effectiveness of once-daily liraglutide versus once-weekly exenatide for the treatment of type 2 diabetes mellitus in the United States. PLoS One. 2015;10(4):e0121915.
14. Mikhael EM, Ong SC, Hussain SA. Cost-Effectiveness Analysis of the Culturally Developed Diabetes Self-Management Education and Support Program among Type 2 Diabetes Mellitus Patients in Iraq. J Pharm Bioallied Sci. Jan-Mar 2023;15(1):49-56.
15. Tang Y, Sang H. Cost-utility analysis of add-on dapagliflozin in heart failure with preserved or mildly reduced ejection fraction. ESC Heart Fail. Aug 2023;10(4):2524-2533.
16. Standaert B, Ethgen O, Emerson R, Postma M, Mauskopf J. Comparing cost-effectiveness results for a vaccine across different countries worldwide: what can we learn? Adv Ther. Oct 2014;31(10):1095-108.
17. Abbott JH, Wilson R, Pryymachenko Y, Sharma S, Pathak A, Chua JYY. Economic evaluation: a reader's guide to studies of cost-effectiveness. Arch Physiother. Dec 15 2022;12(1):28.
18. Bilinski A, MacKay E, Salomon JA, Pandya A. Affordability and Value in Decision Rules for Cost-Effectiveness: A Survey of Health Economists. Value Health. Jul 2022;25(7):1141-1147.
19. Miller P. Role of pharmacoeconomic analysis in R&D decision making: when, where, how? Pharmacoeconomics. 2005;23(1):1-12.
20. 財團法人醫藥品查驗中心. 醫療科技評估_業務說明. Updated 12月11日, 2024. Accessed 4月14日, 2025. Available from: https://www.cde.org.tw/hta/1444/1829/12796/12800/normalPost
21. Ciani O, Jommi C. The role of health technology assessment bodies in shaping drug development. Drug Des Devel Ther. 2014;8:2273-81.
22. Balijepalli C, Gullapalli L, Joshy J, Rawson NS. The impact of willingness-to-pay threshold on price reduction recommendations for oncology drugs: a review of assessments conducted by the Canadian Agency for Drugs and Technologies in Health. J Comp Eff Res. May 2024;13(5):e230178.
23. Griffiths EA, Hendrich JK, Stoddart SD, Walsh SC. Acceptance of health technology assessment submissions with incremental cost-effectiveness ratios above the cost-effectiveness threshold. Clinicoecon Outcomes Res. 2015;7:463-76.
24. Allen N, Walker SR, Liberti L, Salek S. Health Technology Assessment (HTA) Case Studies: Factors Influencing Divergent HTA Reimbursement Recommendations in Australia, Canada, England, and Scotland. Value Health. Mar 2017;20(3):320-328.
25. McDougall JA, Furnback WE, Wang BCM, Mahlich J. Understanding the global measurement of willingness to pay in health. J Mark Access Health Policy. 2020;8(1):1717030.
26. Lu JR, Sheu JT, Lee TJ. A Tale of Two Social Insurance Systems in South Korea and Taiwan: A Financial Risk Protection Perspective. Health Syst Reform. Jan 1 2022;8(1):2114648.
27. Kim JH, Chun SY, Lee DE, et al. Cost-effectiveness of hyperthermic intraperitoneal chemotherapy following interval cytoreductive surgery for stage III-IV ovarian cancer from a randomized controlled phase III trial in Korea (KOV-HIPEC-01). Gynecol Oncol. Mar 2023;170:19-24.
28. Kambhampati S, Shumilov E, Saumoy M, et al. Cost-effectiveness of polatuzumab vedotin in combination with chemoimmunotherapy (pola-R-CHP) in previously untreated diffuse large B-cell lymphoma in Germany. Br J Haematol. Aug 2023;202(4):771-775.
29. Choi HY, Kim KA, Park BY, Choi BY, Ki M. Economic evaluation of mass screening as a strategy for hepatitis C virus elimination in South Korea. J Infect Public Health. Mar 2025;18(3):102662.
30. Scholz SM, Weidemann F, Damm O, Ultsch B, Greiner W, Wichmann O. Cost-Effectiveness of Routine Childhood Vaccination Against Seasonal Influenza in Germany. Value Health. Jan 2021;24(1):32-40.
31. Chi YL, Blecher M, Chalkidou K, et al. What next after GDP-based cost-effectiveness thresholds? Gates Open Res. 2020;4:176.
32. Bertram MY, Lauer JA, De Joncheere K, et al. Cost-effectiveness thresholds: pros and cons. Bull World Health Organ. Dec 1 2016;94(12):925-930.
33. 衛生福利部. 核定114年度全民健康保險醫療給付費用總額. Updated 1月9日. Accessed 8月10日, 2025. Available from: https://www.mohw.gov.tw/cp-16-81144-1.html
34. 財團法人醫藥品查驗中心. 加速健保藥品給付作業. Updated 11月21日. Accessed 8月10日, 2025. Available from: https://www.cde.org.tw/HTA/1444/1832/1992/2001/18266/
35. 財團法人醫藥品查驗中心. 暫時性支付藥品再評估計畫書審查重點. Accessed 8月10日, 2025. Available from: https://www.nhi.gov.tw/ch/dl-82813-d7e162929c2c4e2090ca91074be7d5a3-1.pdf
36. Duma N, Santana-Davila R, Molina JR. Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin Proc. Aug 2019;94(8):1623-1640.
37. 國民健康署. 110年癌症登記報告. Updated 11月12日, 2024. Accessed 4月14日, 2025. Available from: https://www.hpa.gov.tw/Pages/List.aspx?nodeid=119
38. Ochalek J, Wang H, Gu Y, Lomas J, Cutler H, Jin C. Informing a Cost-Effectiveness Threshold for Health Technology Assessment in China: A Marginal Productivity Approach. Pharmacoeconomics. Dec 2020;38(12):1319-1331.
39. Peng Q, Yin Y, Liang M, et al. Estimating the cost-effectiveness threshold of advanced non-small cell lung cancer in China using mean opportunity cost and contingent valuation method. Cost Eff Resour Alloc. Nov 2 2023;21(1):80.
40. Lin LY, Warren-Gash C, Smeeth L, Chen PC. Data resource profile: the National Health Insurance Research Database (NHIRD). Epidemiol Health. 2018;40:e2018062.
41. 台灣癌症登記中心. 癌症登記長表資料分析指引. Updated 1月2日, 2025. Accessed 4月28日, 2025. Available from: https://twcr.tw/?p=3284
42. 衛生福利部. 死因統計檔資料庫使用手冊. Updated 9月24日, 2024. Accessed 4月28日, 2025. Available from: https://www.mohw.gov.tw/dl-16091-d39af7e8-e7d7-4e44-ba82-979c658d2562.html
43. 衛生福利部. 承保檔資料庫使用手冊. Updated 1月21日, 2025. Accessed 5月9日, 2025. Available from: https://www.mohw.gov.tw/dl-23931-f1cd6d12-8675-47e6-8221-e5a1c81df208.html
44. Yang SC, Lai WW, Chang HY, Su WC, Chen HH, Wang JD. Estimation of loss of quality-adjusted life expectancy (QALE) for patients with operable versus inoperable lung cancer: adjusting quality-of-life and lead-time bias for utility of surgery. Lung Cancer. Oct 2014;86(1):96-101.
45. Liao CH, Yu S, Lin KC, Wu YC, Wang TJ, Wang KY. The determinants of health-related quality of life among patients with newly diagnosed lung cancer in Taiwan: A cross-sectional study. J Chin Med Assoc. Mar 1 2023;86(3):338-344.
46. Lee LJ, Chung CW, Chang YY, et al. Comparison of the quality of life between patients with non-small-cell lung cancer and healthy controls. Qual Life Res. Apr 2011;20(3):415-23.
47. Yang SC, Kuo CW, Lai WW, et al. Dynamic Changes of Health Utility in Lung Cancer Patients Receiving Different Treatments: A 7-Year Follow-up. J Thorac Oncol. Nov 2019;14(11):1892-1900.
48. O'Kane GM, Su J, Tse BC, et al. The Impact of Brain Metastases and Associated Neurocognitive Aspects on Health Utility Scores in EGFR Mutated and ALK Rearranged NSCLC: A Real World Evidence Analysis. The Oncologist. 2019;24(7):e501-e509.
49. Guo Y, Li L, Zheng K, et al. Development and validation of a survival prediction model for patients with advanced non-small cell lung cancer based on LASSO regression. Front Immunol. 2024;15:1431150.
50. Edney LC, Lomas J, Karnon J, et al. Empirical Estimates of the Marginal Cost of Health Produced by a Healthcare System: Methodological Considerations from Country-Level Estimates. Pharmacoeconomics. Jan 2022;40(1):31-43.
51. Jovanoski N, Abogunrin S, Di Maio D, et al. Health State Utility Values in Early-Stage Non-small Cell Lung Cancer: A Systematic Literature Review. Pharmacoecon Open. Sep 2023;7(5):723-738.
52. Hays RD, Reeve BB, Smith AW, Clauser SB. Associations of cancer and other chronic medical conditions with SF-6D preference-based scores in Medicare beneficiaries. Qual Life Res. Mar 2014;23(2):385-91.
53. 中央健康保險署. 門住診醫療費用申報狀況. Updated 5月26日, 2025. Accessed 6月12日, 2025. Available from: https://www.nhi.gov.tw/ch/cp-6015-0907b-3023-1.html
54. Bathke A, Brunner E. A Nonparametric Alternative to Analysis of Covariance. 2003:109-120.
55. Steyerberg E. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. vol 19. 2009.
56. Newhouse JP, McClellan M. Econometrics in outcomes research: the use of instrumental variables. Annu Rev Public Health. 1998;19:17-34.
57. Edney LC, Haji Ali Afzali H, Cheng TC, Karnon J. Estimating the Reference Incremental Cost-Effectiveness Ratio for the Australian Health System. Pharmacoeconomics. Feb 2018;36(2):239-252.
58. Wooldridge JM. Introductory Econometrics: A Modern Approach. 4th ed. 2009.
59. 中央健康保險署. 全民健康保險藥品給付規定歷史檔. Updated 1月10日, 2024. Accessed 6月19日, 2025. Available from: https://www.nhi.gov.tw/ch/cp-2192-9951a-2509-1.html
60. Roustaei N. Application and interpretation of linear-regression analysis. Med Hypothesis Discov Innov Ophthalmol. Fall 2024;13(3):151-159.
61. 中華民國統計資訊網. 國民所得及經濟成長統計資料庫. Updated 4月20日. Accessed 4月20日, 2025. Available from: https://nstatdb.dgbas.gov.tw/dgbasAll/webMain.aspx?sys=100&funid=dgmaind
62. Whitehead SJ, Ali S. Health outcomes in economic evaluation: the QALY and utilities. Br Med Bull. 2010;96:5-21.
63. B KJMTP. WTP THRESHOLD: A REVIEW OF INTERNATIONAL APPROACHES AND INSPIRATION FOR CULTIVATION OF CURRENT SITUATION IN THE CZECH REPUBLIC. presented at: ISPOR Europe; November 2023; Denmark.
64. MacKean G, Noseworthy T, Elshaug AG, et al. Health technology reassessment: the art of the possible. Int J Technol Assess Health Care. Oct 2013;29(4):418-23.
65. Nafees B, Stafford M, Gavriel S, Bhalla S, Watkins J. Health state utilities for non small cell lung cancer. Health Qual Life Outcomes. Oct 21 2008;6:84.
66. 中央健康保險署. 健保5月1日起給付癌症精準醫療「實體癌/血癌次世代基因定序檢測(NGS)」2萬多名癌友受惠. Updated 6月13日. Accessed 6月28日, 2025. Available from: https://www.mohw.gov.tw/cp-16-78416-1.html
67. Claxton K, Martin S, Soares M, et al. Methods for the estimation of the National Institute for Health and Care Excellence cost-effectiveness threshold. Health Technol Assess. Feb 2015;19(14):1-503, v-vi.
68. Siverskog J, Henriksson M. Estimating the marginal cost of a life year in Sweden's public healthcare sector. Eur J Health Econ. Jul 2019;20(5):751-762.
69. Vallejo-Torres L, García-Lorenzo B, Serrano-Aguilar P. Estimating a cost-effectiveness threshold for the Spanish NHS. Health Econ. Apr 2018;27(4):746-761.
70. Feng X, Kim DD, Cohen JT, Neumann PJ, Ollendorf DA. Using QALYs versus DALYs to measure cost-effectiveness: How much does it matter? Int J Technol Assess Health Care. Apr 2020;36(2):96-103.
71. Ball G, Levine MAH, Thabane L, Tarride JE. Appraisals by Health Technology Assessment Agencies of Economic Evaluations Submitted as Part of Reimbursement Dossiers for Oncology Treatments: Evidence from Canada, the UK, and Australia. Curr Oncol. Oct 13 2022;29(10):7624-7636.
72. Nimdet K, Chaiyakunapruk N, Vichansavakul K, Ngorsuraches S. A systematic review of studies eliciting willingness-to-pay per quality-adjusted life year: does it justify CE threshold? PLoS One. 2015;10(4):e0122760.
73. NICE health technology evaluations: the manual. National Institute for Health and Care Excellence; 2022.
74. Cai R, Tokarz A, Jain A, Libanore A. Exploring the Impact of the New NICE Disease Severity Modifier on HTA Oncology Submissions: A Retrospective Analysis of Technology Appraisals. presented at: ISPOR Europe 2024; November 17-20 2024; Spain.
75. Charlton V. Does NICE apply the rule of rescue in its approach to highly specialised technologies? J Med Ethics. Feb 2022;48(2):118-125.
76. Hale G, Morris J, Barker-Yip J. Flexibility in assessment of rare disease technologies via NICE's single technology appraisal route: a thematic analysis. J Comp Eff Res. Nov 2023;12(11):e230093.
77. Hsu W, Yang CH, Fan WP. A Study of Patients' Willingness to Pay for a Basic Outpatient Copayment and Medical Service Quality in Taiwan. Int J Environ Res Public Health. Jun 19 2021;18(12)
78. Chen YT, Ying YH, Chang K, Hsieh YH. Study of Patients' Willingness to Pay for a Cure of Chronic Obstructive Pulmonary Disease in Taiwan. Int J Environ Res Public Health. Mar 1 2016;13(3)
79. Lang HC, Chang K, Ying YH. Quality of life, treatments, and patients' willingness to pay for a complete remission of cervical cancer in Taiwan. Health Econ. Oct 2012;21(10):1217-33.
80. Lizheng X, Mingsheng C, Blake A, et al. Establishing cost-effectiveness threshold in China: a community survey of willingness to pay for a healthy life year. BMJ Global Health. 2024;9(1):e013070.
81. Cubi-Molla P, Errea M, Zhang K, Garau M. Are Cost-Effectiveness Thresholds fit for Purpose for Real-World Decision Making? Updated 2月1日. Accessed 6月24日, 2025. Available from: https://www.ohe.org/publications/are-cost-effectiveness-thresholds-fit-for-purpose/
82. Lipton RB, Brennan A, Palmer S, et al. Estimating the clinical effectiveness and value-based price range of erenumab for the prevention of migraine in patients with prior treatment failures: a US societal perspective. J Med Econ. Jul 2018;21(7):666-675.
83. Chalkidou K, Claxton K, Silverman R, Yadav P. Value-based tiered pricing for universal health coverage: an idea worth revisiting. Gates Open Res. 2020;4:16.
84. Malaviya S, Shajarizadeh A, Tremblay G. Is Cost-Effectiveness Analysis a Tool to Exercise Value-Based Pricing or Monopsony Power?Evidence from Canada and Other Countries. presented at: ISPOR; May 7–10 2023; Boston.
85. 國民健康署. 民國106年國民健康訪問調查. Updated 5月30日. Accessed 6月28日, 2025. Available from: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=364&pid=13636&sid=18514
86. 中央健康保險署. Pre-ESRD病人照護與衛教計畫. Updated 6月9日. Accessed 6月15日, 2025. Available from: https://www.nhi.gov.tw/ch/cp-7595-38b11-2834-1.html?preview=1
87. Tesfaye WH, Erku D, Mekonnen A, et al. Medication non-adherence in chronic kidney disease: a mixed-methods review and synthesis using the theoretical domains framework and the behavioural change wheel. J Nephrol. Aug 2021;34(4):1091-1125.
88. Tangkiatkumjai M, Walker DM, Praditpornsilpa K, Boardman H. Association between medication adherence and clinical outcomes in patients with chronic kidney disease: a prospective cohort study. Clin Exp Nephrol. Jun 2017;21(3):504-512.
89. Baker M, Perazella MA. NSAIDs in CKD: Are They Safe? Am J Kidney Dis. Oct 2020;76(4):546-557.
90. Markossian TW, Boyda J, Taylor J, et al. A Mobile App to Support Self-management of Chronic Kidney Disease: Development Study. JMIR Hum Factors. Dec 15 2021;8(4):e29197.
91. Toapanta N, Sánchez-Gavilan E, Guirao C, et al. Pilot monitoring study in patients with diabetic kidney disease using NORA application. Nefrologia (Engl Ed). Jul-Aug 2024;44(4):519-526.
92. Chen NJ, Huang CM, Fan CC, et al. User Evaluation of a Chat-Based Instant Messaging Support Health Education Program for Patients With Chronic Kidney Disease: Preliminary Findings of a Formative Study. JMIR Form Res. Sep 19 2023;7:e45484.
93. Liu Y, Lu X, Zhao G, Li C, Shi J. Adoption of mobile health services using the unified theory of acceptance and use of technology model: Self-efficacy and privacy concerns. Front Psychol. 2022;13:944976.
94. 蕭佩妮. 探討慢性腎臟病病人對於行動醫療服務使用意圖之影響因素. master. 國立高雄師範大學; 2017.
95. Venkatesh V, Morris MG, Davis GB, Davis FD. User Acceptance of Information Technology: Toward a Unified View. Institutions & Transition Economics: Microeconomic Issues eJournal. Sep 1 2003;27:425-478.
96. DeLone WH, McLean ER. Information Systems Success: The Quest for the Dependent Variable. Information Systems Research. 1992;3(1):60-95.
97. Delone WH, and ERM. The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems. 2003/04/01 2003;19(4):9-30.
98. 國民健康署. 慢性腎臟病健康管理手冊. Accessed 6月16日, 2025. Available from: https://www.hpa.gov.tw/Pages/EBook.aspx?nodeid=1157
99. 國立成功大學附設醫院藥劑部. 藥劑部部門網頁. Accessed 6月16日, 2025. Available from: https://nckupharmacy.hosp.ncku.edu.tw/newhomepage/index.asp
100. 國家高速網路與計算中心. 國網中心建構生醫資料可信賴研究環境 滿足健康大數據永續平台隱私與研究兩大需求. Updated 4月26日. Accessed 6月26日, 2025. Available from: https://www.nchc.org.tw/Active/ActiveView/676?mid=172&page=1
101. Sullivan GM, Artino AR, Jr. Analyzing and interpreting data from likert-type scales. J Grad Med Educ. Dec 2013;5(4):541-2.
102. Zamanzadeh V, Ghahramanian A, Rassouli M, Abbaszadeh A, Alavi-Majd H, Nikanfar AR. Design and Implementation Content Validity Study: Development of an instrument for measuring Patient-Centered Communication. J Caring Sci. Jun 2015;4(2):165-78.
103. Shi J, Mo X, Sun Z. [Content validity index in scale development]. Zhong Nan Da Xue Xue Bao Yi Xue Ban. Feb 2012;37(2):152-5.
104. Mao B, Jia X, Huang Q. How do information overload and message fatigue reduce information processing in the era of COVID-19? An ability–motivation approach. J Inf Sci. Sep 5 2022;
校內:2030-08-18公開