研究生: |
劉家妤 Liu, Chia-Yu |
---|---|
論文名稱: |
應用於94-GHz CMOS射頻前端與整合GIPD天線之“混頻器優先”次諧波射頻接收機的毫米波混頻器之研製 Research on Millimeter-Wave Mixers for 94-GHz CMOS RF Front-End and “Mixer-First” Sub-Harmonic RF Receiver with Integrated GIPD Antenna |
指導教授: |
莊惠如
Chuang, H.-R. |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 94-GHz 、W-band 、CMOS 、GIPD 、低功耗 、毫米波 、非對稱式可升降頻 、混頻器 、次諧波射頻接收機晶片 |
外文關鍵詞: | 94-GHz, CMOS, GIPD, Low power comsuption, weak inversion, W-band, sub-hormonic mixer, bidirectional, “Mixer fisrt” RF receiver |
相關次數: | 點閱:135 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文第一部份為設計94-GHz低功率消耗及低LO驅動功率之環型降頻混頻器及94-GHz非對稱式可升降頻雙平衡混頻器,兩者皆採用TSMC CMOS 90-nm製程,晶片電路設計以Agilent ADS及全波電磁模擬軟體進行模擬,量測皆採用on-wafer方式進行。94-GHz環型降頻混頻器採用弱反轉區偏壓技術,以達到低功率消耗及低LO驅動功率功能;亦使用基底偏壓控制技術,降低電晶體臨界電壓值,藉以提升轉換增益;輸出級採用轉阻放大器以適度提升轉換增益且改善輸出阻抗匹配。94-GHz非對稱式可升降頻混頻器選擇雙平衡架構,在升頻時設計為主動式混頻器,能提供轉換增益及良好OP1dB;在降頻時設計為被動式混頻器,由中頻放大器提供轉換增益並同時維持其線性度表現;此外,在混頻器電路RF、LO輸入端分別設計變壓器與馬遜平衡器用以饋入差動信號。
論文第二部份主要為研製應用於94-GHz 整合GIPD 對數週期天線及47-GHz壓控振盪器之CMOS“混頻器優先”次諧波射頻接收機的低功耗混頻器。混頻器優先(mixer-first)概念將天線與混頻器直接整合,與傳統射頻接收機架構相比,省去接收低雜訊放大器(LNA)級,可降低系統功率消耗與設計複雜度。次諧波混頻原理可減輕與壓控振盪器整合的頻率設計負擔;對數週期天線採用AFSC GIPD製程,透過覆晶技術(flip-chip)由金凸塊(gold bump)與CMOS混頻器異質整合成94-GHz “混頻器優先”之毫米波次諧波射頻接收機晶片。
This thesis presents the design of two 94-GHz CMOS millimeter-wave (MMW) mixers and the integration design of a CMOS sub-hormonic low power mixer, with a GIPD modified log periodic dipole array (LPDA) antenna and a 47-GHz subhormic VCO, for an integrated “mixer fisrt” RF receiver frontend. The CMOS process is the standard TSMC 90-nm GUTM technology and the GIPD process is from the AFSC. In the first part, to design of a 94-GHz double balance down convert ring mixer, the weak inversion biasing technique is used to achieve low power consumption and lower LO driven power. Then for a 94-GHz asymmetric double balance up/down conversion mixer is designed to be used for the integration in a 94-GHz CMOS single-mixer RF transceiver. For the bidirectional up/down conversion operation, in the TX up-conversion mode, an active mixer is desirable to provide a higher conversion gain and OP1dB to drive the power amplifier (PA). While in the RX down-conversion mode, a passive mixer is preferred for higher receiver linearity and conversion gain (with IF buffer amplifiers). In the second part, a 94 GHz CMOS low-power sub-hormonic mixer (SHM) is designed to integrate with a GIPD modified LPDA antenna and a 47 GHz subhormic VCO to form a 94-GHz “mixer fisrt” receiver RF front end. The “mixer fisrt” RF receiver without a LNA can lower down the power consumption and the design complexity. The SHM can reduce the loading of a much-higher-frequency VCO design. The GIPD antenna array uses the gold bumper of flip chip technology to integrate with the CMOS mixer (connected by a 47-GHz VCO). The chip measurement is performed in a MMW on-wafer probe system.
[1] P. Lacomme, J.-P. Hardange, J.-C. Marchais, and E. Normant, Air and Spaceborne Radar Systems: An Introduction, Inst of Engineering & Technology, Inc., 2001.
[2] T. S. Rappaport, J. N. Murdock, and F. Gutierrez, "State of the Art in 60-GHz Integrated Circuits and Systems for Wireless Communications," Proceedings of the IEEE, vol. 99, no. 8, pp. 1390-1436, Aug. 2011.
[3] M. Marcus, and B. Pattan, “Millimeter wave propagation: spectrum management implications,” IEEE Microw. Mag., vol. 6, no. 2, pp. 54–62, 2005.
[4] C. Marcu, D. Chowdhury, C. Thakkar, J.-D. Park, L.-K. Kong, M. Tabesh, Y. Wang, B. Afshar, A. Gupta, A. Arbabian, S. Gambini, R. Zamani, E. Alon, and Ali M. Niknejad "A 90 nm CMOS Low-Power 60 GHz Transceiver with Integrated Baseband Circuitry," IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3434-3447, Dec. 2009.
[5] J. Lee, Y. Li, M. Hung, and S. Huang, "A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology," IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2746-2756, Dec. 2010.
[6] Y. Yang, T. Sun, X. Ren, and J. Pang, "Application of Non-UV BG Tape on Assembly of Flip-Chip Package with Copper Pillar Bump," International Conference on Electronic Packaging Technology (ICEPT), Shanghai, pp. 599-602, 2018.
[7] S. Massa, D. Shahin, I. Wathuthanthri, A. Drechsler, and R. Basantkumar, "Process Development for Flip Chip Bonding with Different Bump Compositions," International Wafer Level Packaging Conference (IWLPC), San Jose, CA, USA, pp. 1-6, 2019.
[8] S. Weng, C. Shen, and H. Chang, "A wide modulation bandwidth bidirectional CMOS IQ modulator/demodulator for microwave and millimeter-wave gigabit applications," 7th European Microwave Integrated Circuit Conference, Amsterdam, pp. 8-11, 2012.
[9] A. G. Roy et al., "A 37-40 GHz Phased Array Front-end with Dual Polarization for 5G MIMO Beamforming Applications," IEEE RFIC Symp., Boston, MA, USA, pp. 251-254, 2019.
[10] P. Wu, T. Kijsanayotin, and J. F. Buckwalter, "A 71–86-GHz Switchless Asymmetric Bidirectional Transceiver in a 90-nm SiGe BiCMOS," IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4262-4273, Dec. 2016.
[11] C.-S. Choi, J.-H. Seo, W.-Y. Choi, H. Kamitsuna, M. Ida, and K. Kurishima, "60-GHz bidirectional radio-on-fiber links based on InP-InGaAs HPT optoelectronic mixers," IEEE Photonics Technology Letters, vol. 17, no. 12, pp. 2721-2723, Dec. 2005.
[12] T. Kijsanayotin, J. Li, and J. F. Buckwalter, "A 70 GHz Bidirectional Front-End for a Half-Duplex Transceiver in 90-nm SiGe BiCMOS,” IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), New Orleans, LA, pp. 1-4, 2015.
[13] C.-S. Lin, P.-S. Wu, H.-Y. Chang, and H. Wang, “A 9–50-GHz Gilbert-cell down-conversionmixer in 0.13-um CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 293–295, May 2006.
[14] J.-H. Tsai, P.-S. Wu, C.-S. Lin, T.-W. Huang, J. G. J. Chern, W.-C. Huang, and H. Wang, “A 25–75-GHz broadband Gilbert-cell mixer using 90-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 247–249, Apr. 2007.
[15] F. Ellinger, “26.5–30-GHz resistive mixer in 90-nm VLSI SOI CMOS technology with high linearity for WLAN,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 8, pp. 2559–2565, Aug. 2005.
[16] W.-T. Li, H.-Y Yang, Y.-C. Chiang, J.-H. Tsai, M.-H. Wu, and T.-W. Huang, "A 453-/spl mu/W 53 - 70-GHz Ultra-Low-Power Double-Balanced Source-Driven Mixer Using 90-nm CMOS Technology," IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 1903-1912, May 2013.
[17] 張盛富, 張嘉展, “無線通訊射頻晶片模組設計-射頻系統篇,” 全華科技, 2009。
[18] 紀智瀚,60-GHz CMOS超低功耗混頻器及W-band雙向可升降頻混波器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零六年七月。
[19] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. New York, NY, USA: Oxford Univ. Press, 2002.
[20] 任耀傑,60-GHz CMOS低LO功率、低功耗雙平衡式混頻器與94-GHz整合GIPD晶片天線之CMOS可升降頻單端次諧波電阻式混頻器之毫米波射頻前端的研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零八年一月。
[21] H. Chiou and H. Chou, "An Ultra-Low Power V-Band Source-Driven Down-Conversion Mixer with Low-Loss and Broadband Asymmetrical Broadside-Coupled Balun in 90-nm CMOS Technology," IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2620-2631, July 2013.
[22] Shih-Fong Chao; Jhe-Jia Kuo; Chong-Liang Lin; Ming-Da Tsai; Huei Wang, “A DC-11.5 GHz low-power, wideband amplifier using splitting-load inductive peaking technique,” IEEE Trans. Microw. Theory Techn., vol. 18, pp. 482–484, Jul. 2008.
[23] C. H. Wu, C. H. Lee, W. S. Chen, and S. I. Liu, “CMOS wideband amplifiers using mutiple inductive-sereis peaking technique,”IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 548–552, Feb. 2005.
[24] F. Zhu et al., "A Broadband Low-Power Millimeter-Wave CMOS Downconversion Mixer with Improved Linearity," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 3, pp. 138-142, March 2014.
[25] N. Marchand, “Transmission-Line Conversion Transformers,” Electronics, vol. 17, no. 12, pp. 142-145, Dec. 1944.
[26] 林育聖,60-GHz與26-/77-GHz雙頻帶CMOS被動元件及主動濾波器之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十八年七月。
[27] F. Zhu et al., "A Broadband Low-Power Millimeter-Wave CMOS Downconversion Mixer with Improved Linearity," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 3, pp. 138-142, March 2014.
[28] W.-K.-W. Ali and S.-H. AI-Charchafchi, “Using equivalent dielectric constant to simplify the analysis of patch microstrip antenna with multi layer substrates,” in Proc. IEEE AP-S Int. Symp., vol. 2, pp. 676-679, Jun. 1998.
[29] D. M. Pozar, Microwave Engineering, 3rd ed., John Wiley and Sons, Inc., 2005.
[30] E. H. Fooks, R. A. Zakarevicius, Microwave Engineering Using Microstrip Circuits, Prentice hall, 1990.
[31] and H. Chou, "An Ultra-Low Power V-Band Source-Driven Down-Conversion Mixer with Low-Loss and Broadband Asymmetrical Broadside-Coupled Balun in 90-nm CMOS Technology," IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2620-2631, July 2013.
[32] J. Tsai, "Design of 40–108-GHz Low-Power and High-Speed CMOS Up-/Down-Conversion Ring Mixers for Multistandard MMW Radio Applications," IEEE Trans. Microw. Theory Techn, vol. 60, no. 3, pp. 670-678, March 2012.
[33] Y-S Lin, G-H Li, “A W-Band Down-Conversion Mixer in 90 nm CMOS with Excellent Matching and Port-to-Port Isolation for Automotive Radars,” 2014 11th International Symposium on Wireless Communications Systems, Aug. 2014
[34] N. Zhang, H. Xu, H. T. Wu, and Kenneth K. O., "W-Band Active Down-Conversion Mixer in Bulk CMOS," IEEE Microwave and Wireless Components Letters, vol. 19, no. 2, pp. 98-100, Feb. 2009.
[35] T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, NY, USA: Cambridge Univ. Press, 2004.
[36] B. Razavi, RF Microelectronics. Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
[37] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed. New York, NY, USA: Wiley, 2001.
[38] R. Mongia, I. Bahl and P. Bhartia, RF and Microwave Coupled-Line Circuits, Artech House, 1999.
[39] S.-C. Tseng, C. Meng, C.-H. Chang, C.-K. Wu and G.-W. Huang, “Monolithic broadband Gilbert micromixer with an integrated Marchand balun using standard silicon IC process,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, Dec. 2006.
[40] 周建彰, 94-GHz CMOS毫米波單混頻器次諧波射頻收發機晶片及具自動化洩漏迴波消除功能之60-GHz非接觸式人體呼吸心跳訊號CMOS射頻感測晶片系統設計研究,國立成功大學電腦與通信工程研究所博士論文,民國一百零八年七月。
[41] P. Wu, T. Kijsanayotin, and J. F. Buckwalter, "A 71–86-GHz Switchless Asymmetric Bidirectional Transceiver in a 90-nm SiGe BiCMOS," IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4262-4273, Dec. 2016.
[42] J. R. Long, "Monolithic transformers for silicon RF IC design," IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[43] 朱嗣堯,整合GIPD天線之60-GHz四路結合功率放大器與V-及W-band之毫米波功率放大器研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零六年七月。
[44] Charles. K. Alexander, Matthew. N. O. Sadiku, Fundamentals of Electric Circuits, 6rd ed., McGraw-Hill Higher Education, 2009.
[45] I. Aoki, S. D. Kee, D. B. Rutledge and A. Hajimiri, "Distributed active transformer- a new power-combining and impedance-transformation technique," IEEE Trans. Microw. Theory Techn, vol. 50, no. 1, pp. 316-331, Jan 2002.
[46] M. Danesh, J. R. Long, R. A. Hadaway and D. L. Harame, "A Q-factor enhancement technique for MMIC inductors," IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192), Baltimore, MD, USA, 1998, pp. 183-186 vol.1.
[47] J. M. Lopez-Villegas, J. Samitier, C. Cane, P. Losantos and J. Bausells, "Improvement of the quality factor of RF integrated inductors by layout optimization," IEEE Trans. Microw. Theory Techn, vol. 48, no. 1, pp. 76-83, Jan 2000.
[48] C. C. Lim et al., "Fully Symmetrical Monolithic Transformer (True 1: 1) for Silicon RFIC," IEEE Trans. Microw. Theory Techn, vol. 56, no. 10, pp. 2301-2311, Oct. 2008.
[49] 李昂宸,毫米波CMOS壓控振盪器及低功耗多模態微波注入鎖定除頻器晶片研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百零六年七月。
[50] B. W. Cook, A. Berny, A. Molnar, S. Lanzisera, K. S. J. Pister, “Low-power 2.4-GHz transceiver with passive RX front-end and 400-mV Supply,” IEEE J. Solid-State Circuits, vol.41, no. 12, pp.2757-2766, Dec. 2006.
[51] C. Andrews and A. C. Molnar, “A passive mixer-first receiver with digitally controlled and widely tunable RF interface,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2696-2709, Dec. 2010.
[52] P. Bousseaud, E. Novakov, and J. M. Fournier, “A low-power passive mixer receiver for software defined radio (SDR) applications,” 7th Int. Conf. on Digital Telecommunications, 2012., IARIA, pp. 101-104.
[53] Z. Lin, X. Tan, and J. Min, “A CMOS passive mixer-first receiver front-end four UHF RFD Reader,” IEEE Int. Conf. on ASIC (ASICON), 2013, pp.1-4.
[54] R. DuHamel and D. Isbell, "Broadband logarithmically periodic antenna structures," IRE International Convention Record, New York, NY, USA, pp. 119-128, 1957.
[55] D. Isbell, "Log periodic dipole arrays," in IRE Transactions on Antennas and Propagation, vol. 8, no. 3, pp. 260-267, May 1960.
[56] C. A. Balanis, Antenna Theory Analysis and Design, 3rd ed. New York: Wiley, 2005.
[57] Yi Huang, Kevin Boyle, Antenna from Theory to Practice,1st ed, New York: Wiley, 2008.
[58] C. -Y. Hsu, C. -Y. Chen, and H.-R. Chuang, “A 77-GHz CMOS On-Chip Bandpass Filter with Balanced and Unbalanced Outputs,” IEEE Electron Device Lett. vol. 31, no. 11, pp.1205-1207, Nov. 2010.
[59] 岳翰林,毫米波CMOS射頻晶片嵌入式天線及人造磁導體嵌入式天線之研製,國立成功大學電腦與通信工程研究所,碩士論文,民國一百零一年一月。
[60] W. K. Chong, H. Ramiah and N. Vitee, "A 0.12-mm2 2.4-GHz CMOS Inductorless High Isolation Subharmonic Mixer with Effective Current-Reuse Transconductance," IEEE Trans. Microw. Theory Techn., vol. 63, no. 8, pp. 2427-2437, Aug. 2015.
[61] B. R. Jackson and C. E. Saavedra, "A CMOS Ku-Band 4x Subharmonic Mixer," IEEE Journal of Solid-State Circuits, vol. 43, no. 6, pp. 1351-1359, June 2008.
[62] R. M. Kodkani, and L. E. Larson, "A 24-GHz CMOS Passive Subharmonic Mixer/Downconverter for Zero-IF Applications," IEEE Trans. Microw. Theory Techn., vol. 56, no. 5, pp. 1247-1256, May 2008.
[63] K. -C. Kwok, and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652–660, Mar. 2005.
[64] Jeng-Han Tsai, “A 55–64 GHz fully-integrated sub-harmonic wideband transceiver in 130 nm CMOS Process,” IEEE Microw. Wireless Compon. Lett, VOL. 19, NO. 11, November 2009.
[65] S-K Lin, J-L Kuo, and H Wang, “A 60 GHz sub-harmonic resistive FET mixer using 0.13-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett, vol. 21, no. 10, October 2011.
[66] Y.-H. Lin, J.-L. Kuo, and H. Wang, “A 60-GHz sub-harmonic IQ modulator and demodulator using drain-body feedback technique,” in Proc. Eur. Microwave Conf., 2012, pp. 365–368.
[67] Y. H. Chuang, H. L. Yue, C. Y. Hsu and H. R. Chuang, “A 77-GHz integrated on-chip Yagi antenna with unbalanced-to-balanced bandpass filter using IPD technology,” Asia-Pacific Microwave Conference 2011, Melbourne, VIC, 2011, pp. 449-452.
[68] S. Pan, L. Gilreath, P. Heydari and F. Capolino, “Investigation of a wideband BiCMOS fully on-chip W-band bowtie slot antenna,” in IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 706-709, 2013.
[69] Advanced Furnace Systems Corporation, Sinshih, Tainan, Taiwan (R.O.C). Introduction of Integrated Passive Device (IPD) Process [Online]. Available: http://www. afsc. com. tw/sol02.html
[70] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9-31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257–2264, Oct. 2006.
[71] 王向捷,94-GHz毫米波GIPD晶片天線及60-GHz整合CMOS功率放大器之GIPD韋瓦第晶片天線,國立成功大學電腦與通信工程研究所碩士論文,民國一百零六年七月。
[72] Yi Huang and Kevin Boyle, Antenna from Theory to Practice,1st Ed, New York: Wiley, 2008.
[73] S. A. Maas, “A GaAs MESFET mixer with very low intermodulation,” IEEE Trans. Microw. Theory Techn., vol. MTT-35, no.4, pp.425-429, Apr. 1987.
[74] A. S. Sedra, K. C. Smith, Microelectronic Circuits, 6th, Oxford Univ Pr, 2009.