| 研究生: |
吳玥箖 Wu, Yueh-Lin |
|---|---|
| 論文名稱: |
石榴子石於高溫高壓下之熱傳導係數及其對於地球內部熱演化之影響 Thermal conductivity of garnet under high-temperature and high-pressure conditions and its implications for the thermal evolution of Earth’s interior |
| 指導教授: |
龔慧貞
Kung, Hui-Chen |
| 共同指導教授: |
謝文斌
Hsieh, Wen-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 石榴子石 、鎂質石榴子石 、熱傳導係數 、熱演化 |
| 外文關鍵詞: | garnet, majorite, thermal conductivity, thermal evolution |
| 相關次數: | 點閱:15 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石榴子石 (garnet) 為地球內部重要的礦物組成之一,存在於海洋地殼、上部地函以及過渡帶中,其深度範圍約在200~700公里。Ringwood (1962) 的高壓實驗模擬地球內部的礦物組成,建立了輝橄欖岩模型 (pyrolite model),其中橄欖石 (olivine)、輝石 (pyroxene) 及石榴子石為上部地函主要的礦物組成,並表示石榴子石與其高壓相鎂質石榴子石 (majorite) 在地函過渡帶中的體積占比達到約30~40%。Irifune et al. (1986) 於隱沒板塊深度與矽酸鹽類礦物相平衡關係實驗中,將榴輝岩 (eclogite) 作為模型中隱沒海洋地殼於深部受壓力擠壓轉變為變質岩時的主要成分,在此模型中,石榴子石與其高壓相 (majorite) 的體積占比高達80%,且能夠穩定存在於最深800公里處。石榴子石的熱傳導性質對於了解上部地函熱演化至關重要,本研究透過高溫高壓及光學實驗方法,量測石榴子石於海洋地殼中的熱傳導係數變化,並結合數值模擬模型,藉此窺探其對地球內部熱演化過程之影響。
In this study, we created high-pressure and high-temperature conditions using a diamond anvil cell, focusing on Py80Gr20 garnet and majorite as the research subjects. The thermal conductivity of garnet under mantle conditions was measured using the time-domain thermoreflectance (TDTR) technique. Based on these thermal conductivity data, we developed a thermal modeling framework to simulate heat transfer processes within subducting slabs and to investigate their dynamic behavior. The experimental results show that the thermal conductivity of garnet is lower than previously reported values, suggesting that, at the same depths, subducting slabs may exhibit higher temperatures and lower viscosities, potentially enhancing their ability to penetrate deeper into the mantle.
Akaogi, Masaki, Tanaka, Akira, & Ito, Eiji. (2002). Garnet–ilmenite–perovskite transitions in the system Mg4Si4O12–Mg3Al2Si3O12 at high pressures and high temperatures: phase equilibria, calorimetry and implications for mantle structure. Physics of the Earth and Planetary Interiors, 132(4), 303-324.
Aritan, Serdar. (2006). Bulk Modulus. In Wiley Encyclopedia of Biomedical Engineering.
Asimow, Paul D., & Ahrens, Thomas J. (2010). Shock compression of liquid silicates to 125 GPa: The anorthite‐diopside join. Journal of Geophysical Research: Solid Earth, 115(B10). doi:10.1029/2009jb007145
Babuška, Vladislav, Fiala, Jiří, Kumazawa, Mineo, Ohno, Ichiro, & Sumino, Yoshio. (1978). Elastic properties of garnet solid-solution series. Physics of the Earth and Planetary Interiors, 16 (2), 157-176.
Cardoso, Roberto R, & Hamza, Valiya M. (2011). Finite Half-Space Model of Oceanic Lithosphere. Horizons in Earth Science Research, edited by: Veress, B. and Szigethy, J, 11, 375-395.
Dachs, E. (2006). Heat capacities and entropies of mixing of pyrope-grossular (Mg3Al2Si3O12-Ca3Al2Si3O12) garnet solid solutions: A low-temperature calorimetric and a thermodynamic investigation. American Mineralogist, 91(5-6), 894-906. doi:10.2138/am.2006.2005
Dominijanni, Serena. (2022). Physicochemical properties of Fe-bearing minerals and metal alloys at deep Earth conditions: Universitaet Bayreuth (Germany).
Draper, David S., Xirouchakis, Dimitris, & Agee, Carl B. (2003). Trace element partitioning between garnet and chondritic melt from 5 to 9 GPa: implications for the onset of the majorite transition in the martian mantle. Physics of the Earth and Planetary Interiors, 139(1-2), 149-169. doi:10.1016/s0031-9201(03)00150-x
Du, Wei, Li, Xuefei, & Li, Baosheng. (2016). Microstrain in pyrope-grossular garnet solid solution at high pressure: a case study of Py90Gr10 and Py10Gr90 up to 15 GPa. Physics and Chemistry of Minerals, 44(6), 377-388. doi:10.1007/s00269-016-0865-y
Dymshits, A., Sharygin, I., Litasov, K., Shatskiy, A., Gavryushkin, P., Ohtani, E., . . . Funakoshi, K. (2015). In situ observation of the pyroxene-majorite transition in Na2MgSi5O12 using synchrotron radiation and Raman spectroscopy of Na-majorite. American Mineralogist, 100(2-3), 378-384. doi:10.2138/am-2015-4801
Gassmöller, Rene, Dannberg, Juliane, Bangerth, Wolfgang, Heister, Timo, & Myhill, Robert. (2020). On formulations of compressible mantle convection. Geophysical Journal International, 221(2), 1264-1280. doi:10.1093/gji/ggaa078
Giesting, P. A., Hofmeister, A. M., Wopenka, B., Gwanmesia, G. D., & Jolliff, B. L. (2004). Thermal conductivity and thermodynamics of majoritic garnets: implications for the transition zone. Earth and Planetary Science Letters, 218(1-2), 45-56. doi:10.1016/s0012-821x(03)00630-7
Hartwig, Julia, & Galkin, Valeriy. (2020). Heat capacity, thermal expansion, and elastic parameters of pyrope. Journal of Thermal Analysis and Calorimetry, 144(1), 71-79. doi:10.1007/s10973-020-09396-2
Hsieh, Wen-Pin. (2011). Testing theories for thermal transport using high pressure: University of Illinois at Urbana-Champaign.
Hsieh, Wen-Pin, Marzotto, Enrico, Tsao, Yi-Chi, Okuchi, Takuo, & Lin, Jung-Fu. (2022). High thermal conductivity of stishovite promotes rapid warming of a sinking slab in Earth's mantle. Earth and Planetary Science Letters, 584. doi:10.1016/j.epsl.2022.117477
Hsieh, Wen‐Pin, Marzotto, Enrico, Ishii, Takayuki, Dubrovinsky, Leonid, Aslandukova, Alena A., Criniti, Giacomo, . . . Ohtani, Eiji. (2022). Low Thermal Conductivity of Hydrous Phase D Leads to a Self‐Preservation Effect Within a Subducting Slab. Journal of Geophysical Research: Solid Earth, 127(6). doi:10.1029/2022jb024556
Hung, Yu-Ping Grace, Tsao, Yi-Chi, Lin, Chun-Hung, & Hsieh, Wen-Pin. (2024). Thermal conductivity of aluminous garnets in Earth’s deep interior. American Mineralogist, 109(3), 482-487.
Ichikawa, Hiroki, Kameyama, Masanori, Senshu, Hiroki, Kawai, Kenji, & Maruyama, Shigenori. (2014). Influence of majorite on hot plumes. Geophysical Research Letters, 41(21), 7501-7507. doi:10.1002/2014gl061477
Irifune, T, Sekine, T, Ringwood, AE, & Hibberson, WO. (1986). The eclogite-garnetite transformation at high pressure and some geophysical implications. Earth and Planetary Science Letters, 77(2), 245-256.
Ishii, Takayuki, Frost, Daniel J., Kim, Eun Jeong, Chanyshev, Artem, Nishida, Keisuke, Wang, Biao, . . . Katsura, Tomoo. (2023). Buoyancy of slabs and plumes enhanced by curved post-garnet phase boundary. Nature Geoscience, 16(9), 828-832. doi:10.1038/s41561-023-01244-w
Jenkins, J., Cottaar, S., White, R. S., & Deuss, A. (2016). Depressed mantle discontinuities beneath Iceland: Evidence of a garnet controlled 660 km discontinuity? Earth and Planetary Science Letters, 433, 159-168. doi:10.1016/j.epsl.2015.10.053
Jung, EJ, Kim, J, & Lee, YR. (2021). A comparative study on the chloride effectiveness of synthetic rutile and natural rutile manufactured from ilmenite ore. Scientific Reports, 11(1), 4045-4045.
Kakol, Z, Sabol, J, & Honig, JM. (1991). Magnetic properties of titanomagnetites Fe3− x Ti x O4 (0≤ x< 1). Journal of applied physics, 69(8), 4822-4824.
Katsura, Tomoo. (2022). A Revised Adiabatic Temperature Profile for the Mantle. Journal of Geophysical Research: Solid Earth, 127(2). doi:10.1029/2021jb023562
Kavner, A., Sinogeikin, S. V., Jeanloz, Raymond, & Bass, J. D. (2000). Equation of state and strength of natural majorite. Journal of Geophysical Research: Solid Earth, 105(B3), 5963-5971. doi:10.1029/1999jb900374
Kim, Y. Y. (2017). Thermal Conductivity of a Nanoscale Yttrium Iron Garnet Thin-Film Prepared by the Sol-Gel Process. Nanomaterials (Basel), 7(9). doi:10.3390/nano7090247
Landau, Rubin H, Páez, Manuel J, & Bordeianu, Cristian C. (2024). Computational physics: Problem solving with Python: John Wiley & Sons.
Lin, Chih-Ming, Chuu, Der-San, Yang, Tzong-Jer, Chou, Wu-Ching, Xu, Ji-an, & Huang, Eugene. (1997). Raman spectroscopy study of ZnSe and Zn 0.84 Fe 0.16 Se at high pressures. Physical Review B, 55(20), 13641.
Liu, Hao, Wang, Wenzhong, Jia, Xinghua, Leng, Wei, Wu, Zhongqing, & Sun, Daoyuan. (2018). The combined effects of post-spinel and post-garnet phase transitions on mantle plume dynamics. Earth and Planetary Science Letters, 496, 80-88. doi:10.1016/j.epsl.2018.05.031
Lou, Yancheng, Stackhouse, Stephen, Walker, Andrew M., & Zhang, Zhigang. (2020). Thermoelastic properties of MgSiO3-majorite at high temperatures and pressures: A first principles study. Physics of the Earth and Planetary Interiors, 303. doi:10.1016/j.pepi.2020.106491
Mingsheng, Peng, Mao, Ho-kwang, Dien, Li, & Chao, E. (1994). Raman spectroscopy of garnet-group minerals. Chinese Journal of Geochemistry, 13, 176-183. doi:10.1007/BF02838517
Mookherjee, M. (2014). High-pressure elasticity of sodium majorite garnet, Na2MgSi5O12. American Mineralogist, 99(11-12), 2416-2423. doi:10.2138/am-2014-4956
Murakami, Motohiko, Sinogeikin, Stanislav V., Litasov, Konstantin, Ohtani, Eiji, & Bass, Jay D. (2008). Single-crystal elasticity of iron-bearing majorite to 26 GPa: Implications for seismic velocity structure of the mantle transition zone. Earth and Planetary Science Letters, 274(3-4), 339-345. doi:10.1016/j.epsl.2008.07.045
Nishi, Masayuki, Kato, Takumi, Kubo, Tomoaki, & Kikegawa, Takumi. (2008). Survival of pyropic garnet in subducting plates. Physics of the Earth and Planetary Interiors, 170(3-4), 274-280. doi:10.1016/j.pepi.2008.03.013
Nishi, Masayuki, Kubo, Tomoaki, Ohfuji, Hiroaki, Kato, Takumi, Nishihara, Yu, & Irifune, Tetsuo. (2013). Slow Si–Al interdiffusion in garnet and stagnation of subducting slabs. Earth and Planetary Science Letters, 361, 44-49. doi:10.1016/j.epsl.2012.11.022
ORLICKÝ, Oto. (2010). Magnetism and magnetic properties of Ti-rich titanomagnetite and its tendency for alteration in favour of titanomaghemite. Contributions to Geophysics and Geodesy, 40(1), 65-86.
Richards, F. D., Hoggard, M. J., Cowton, L. R., & White, N. J. (2018). Reassessing the Thermal Structure of Oceanic Lithosphere With Revised Global Inventories of Basement Depths and Heat Flow Measurements. Journal of Geophysical Research: Solid Earth, 123(10), 9136-9161. doi:10.1029/2018jb015998
Ringwood, AE. (1962). A model for the upper mantle. Journal of Geophysical Research, 67(2), 857-867.
Schoenthal, W, Liu, X, Cox, T, Mesa, JL, Maicas, M, Diaz-Michelena, M, . . . McHenry, ME. (2014). Synthesis and magnetic properties of single phase titanomagnetites. Journal of applied physics, 115(17), 17A934.
Stixrude, Lars, & Lithgow-Bertelloni, Carolina. (2011). Thermodynamics of mantle minerals - II. Phase equilibria. Geophysical Journal International, 184(3), 1180-1213. doi:10.1111/j.1365-246X.2010.04890.x
Thiéblot, Laurent, Tequi, Christophe, & Richet, Pascal. (1999). High-temperature heat capacity of grossular (Ca3Al2Si3O12), enstatite (MgSiO3), and titanite (CaTiSiO5). American Mineralogist, 84(5-6), 848-855.
Tomioka, Naotaka, Fujino, Kiyoshi, Ito, Eiji, Katsura, Tomoo, Sharp, Thomas, & Kato, Takumi. (2002). Microstructures and structural phase transition in (Mg,Fe)SiO3 majorite. European Journal of Mineralogy, 14(1), 7-14. doi:10.1127/0935-1221/2002/0014-0007
Wijbrans, C. H., Rohrbach, A., & Klemme, S. (2016). An experimental investigation of the stability of majoritic garnet in the Earth’s mantle and an improved majorite geobarometer. Contributions to Mineralogy and Petrology, 171(5). doi:10.1007/s00410-016-1255-7
Yoshino, Takashi, Nishi, Masayuki, Matsuzaki, Takuya, Yamazaki, Daisuke, & Katsura, Tomoo. (2008). Electrical conductivity of majorite garnet and its implications for electrical structure in the mantle transition zone. Physics of the Earth and Planetary Interiors, 170(3-4), 193-200. doi:10.1016/j.pepi.2008.04.009
Zhang, Li, Ahsbahs, H, Kutoglu, A, & Geiger, CA. (1999). Single-crystal hydrostatic compression of synthetic pyrope, almandine, spessartine, grossular and andradite garnets at high pressures. Physics and Chemistry of Minerals, 27, 52-58.
Zhou, Chunyin, Gréaux, Steeve, Liu, Zhaodong, Higo, Yuji, Arimoto, Takeshi, & Irifune, Tetsuo. (2021). Sound Velocity of MgSiO3 Majorite Garnet up to 18 GPa and 2000 K. Geophysical Research Letters, 48(14). doi:10.1029/2021gl093499
莊勝智. (2021). 以時間域熱反射率 (TDTR) 方式量測單晶直輝石熱傳導係數及其應用.
陳函郁. (2022). 鎂-鈣鋁榴石的高壓拉曼光譜與熱傳導性質研究.