簡易檢索 / 詳目顯示

研究生: 吳玥箖
Wu, Yueh-Lin
論文名稱: 石榴子石於高溫高壓下之熱傳導係數及其對於地球內部熱演化之影響
Thermal conductivity of garnet under high-temperature and high-pressure conditions and its implications for the thermal evolution of Earth’s interior
指導教授: 龔慧貞
Kung, Hui-Chen
共同指導教授: 謝文斌
Hsieh, Wen-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 81
中文關鍵詞: 石榴子石鎂質石榴子石熱傳導係數熱演化
外文關鍵詞: garnet, majorite, thermal conductivity, thermal evolution
相關次數: 點閱:15下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石榴子石 (garnet) 為地球內部重要的礦物組成之一,存在於海洋地殼、上部地函以及過渡帶中,其深度範圍約在200~700公里。Ringwood (1962) 的高壓實驗模擬地球內部的礦物組成,建立了輝橄欖岩模型 (pyrolite model),其中橄欖石 (olivine)、輝石 (pyroxene) 及石榴子石為上部地函主要的礦物組成,並表示石榴子石與其高壓相鎂質石榴子石 (majorite) 在地函過渡帶中的體積占比達到約30~40%。Irifune et al. (1986) 於隱沒板塊深度與矽酸鹽類礦物相平衡關係實驗中,將榴輝岩 (eclogite) 作為模型中隱沒海洋地殼於深部受壓力擠壓轉變為變質岩時的主要成分,在此模型中,石榴子石與其高壓相 (majorite) 的體積占比高達80%,且能夠穩定存在於最深800公里處。石榴子石的熱傳導性質對於了解上部地函熱演化至關重要,本研究透過高溫高壓及光學實驗方法,量測石榴子石於海洋地殼中的熱傳導係數變化,並結合數值模擬模型,藉此窺探其對地球內部熱演化過程之影響。

    In this study, we created high-pressure and high-temperature conditions using a diamond anvil cell, focusing on Py80Gr20 garnet and majorite as the research subjects. The thermal conductivity of garnet under mantle conditions was measured using the time-domain thermoreflectance (TDTR) technique. Based on these thermal conductivity data, we developed a thermal modeling framework to simulate heat transfer processes within subducting slabs and to investigate their dynamic behavior. The experimental results show that the thermal conductivity of garnet is lower than previously reported values, suggesting that, at the same depths, subducting slabs may exhibit higher temperatures and lower viscosities, potentially enhancing their ability to penetrate deeper into the mantle.

    學位考試合格證明 i 中文摘要 ii 英文延伸摘要 iii 誌謝 vii 表目錄 10 圖目錄 11 第一章 緒論 13 1.1石榴子石 13 1.2研究動機與前人研究 16 1.3研究方法 16 第二章 實驗原理與方法 17 2.1樣品備製 19 2.2 拉曼光譜儀 21 2.3 掃描式電子顯微鏡及能量色散光譜儀 22 2.4 鑽石高壓砧 24 2.5 熱傳導係數量測 28 2.5.1時間域熱反射技術基本原理 29 2.5.2時間域熱反射技術原始資料分析 (室壓) 32 2.5.3時間域熱反射技術原始資料分析 (高壓) 34 2.5.4 時間域熱反射技術各參數對於擬合結果之敏感度 35 第三章 研究結果 37 3.1樣品之礦物相成分分析 37 3.2樣品之結構分析 37 3.3樣品之化學成分分析 39 3.4 樣品的熱傳導性質 42 3.4.1 鎂-鈣鋁榴石室溫室壓的熱傳導性質 42 3.4.2 鎂-鈣鋁榴石室溫高壓之熱傳導性質 44 3.4.3 鎂-鈣鋁榴石高溫高壓之熱傳導性質 49 3.4.4 鎂質石榴子石室溫室壓之熱傳導性質 50 3.4.5鎂質石榴子石室溫高壓之熱傳導性質 52 3.5 Py80Gr20及鎂質石榴子石熱傳導係數之比較 53 第四章 討論 55 4.1樣品熱傳導係數分析 55 4.1.1熱傳導係數隨溫度及壓力改變之變化 55 4.1.2 Py80Gr20及鎂質石榴子石之熱傳導係數隨溫度及壓力改變之變化 56 4.2 板塊隱沒模擬模型與石榴子石熱傳導係數 57 4.2.1 板塊隱沒模型 57 4.2.2 板塊隱沒模型-礦物體積含量比例 63 4.2.3 板塊隱沒模型-熱擴散數值計算 63 第五章 結論 73 參考文獻 74

    Akaogi, Masaki, Tanaka, Akira, & Ito, Eiji. (2002). Garnet–ilmenite–perovskite transitions in the system Mg4Si4O12–Mg3Al2Si3O12 at high pressures and high temperatures: phase equilibria, calorimetry and implications for mantle structure. Physics of the Earth and Planetary Interiors, 132(4), 303-324.
    Aritan, Serdar. (2006). Bulk Modulus. In Wiley Encyclopedia of Biomedical Engineering.
    Asimow, Paul D., & Ahrens, Thomas J. (2010). Shock compression of liquid silicates to 125 GPa: The anorthite‐diopside join. Journal of Geophysical Research: Solid Earth, 115(B10). doi:10.1029/2009jb007145
    Babuška, Vladislav, Fiala, Jiří, Kumazawa, Mineo, Ohno, Ichiro, & Sumino, Yoshio. (1978). Elastic properties of garnet solid-solution series. Physics of the Earth and Planetary Interiors, 16 (2), 157-176.
    Cardoso, Roberto R, & Hamza, Valiya M. (2011). Finite Half-Space Model of Oceanic Lithosphere. Horizons in Earth Science Research, edited by: Veress, B. and Szigethy, J, 11, 375-395.
    Dachs, E. (2006). Heat capacities and entropies of mixing of pyrope-grossular (Mg3Al2Si3O12-Ca3Al2Si3O12) garnet solid solutions: A low-temperature calorimetric and a thermodynamic investigation. American Mineralogist, 91(5-6), 894-906. doi:10.2138/am.2006.2005
    Dominijanni, Serena. (2022). Physicochemical properties of Fe-bearing minerals and metal alloys at deep Earth conditions: Universitaet Bayreuth (Germany).
    Draper, David S., Xirouchakis, Dimitris, & Agee, Carl B. (2003). Trace element partitioning between garnet and chondritic melt from 5 to 9 GPa: implications for the onset of the majorite transition in the martian mantle. Physics of the Earth and Planetary Interiors, 139(1-2), 149-169. doi:10.1016/s0031-9201(03)00150-x
    Du, Wei, Li, Xuefei, & Li, Baosheng. (2016). Microstrain in pyrope-grossular garnet solid solution at high pressure: a case study of Py90Gr10 and Py10Gr90 up to 15 GPa. Physics and Chemistry of Minerals, 44(6), 377-388. doi:10.1007/s00269-016-0865-y
    Dymshits, A., Sharygin, I., Litasov, K., Shatskiy, A., Gavryushkin, P., Ohtani, E., . . . Funakoshi, K. (2015). In situ observation of the pyroxene-majorite transition in Na2MgSi5O12 using synchrotron radiation and Raman spectroscopy of Na-majorite. American Mineralogist, 100(2-3), 378-384. doi:10.2138/am-2015-4801
    Gassmöller, Rene, Dannberg, Juliane, Bangerth, Wolfgang, Heister, Timo, & Myhill, Robert. (2020). On formulations of compressible mantle convection. Geophysical Journal International, 221(2), 1264-1280. doi:10.1093/gji/ggaa078
    Giesting, P. A., Hofmeister, A. M., Wopenka, B., Gwanmesia, G. D., & Jolliff, B. L. (2004). Thermal conductivity and thermodynamics of majoritic garnets: implications for the transition zone. Earth and Planetary Science Letters, 218(1-2), 45-56. doi:10.1016/s0012-821x(03)00630-7
    Hartwig, Julia, & Galkin, Valeriy. (2020). Heat capacity, thermal expansion, and elastic parameters of pyrope. Journal of Thermal Analysis and Calorimetry, 144(1), 71-79. doi:10.1007/s10973-020-09396-2
    Hsieh, Wen-Pin. (2011). Testing theories for thermal transport using high pressure: University of Illinois at Urbana-Champaign.
    Hsieh, Wen-Pin, Marzotto, Enrico, Tsao, Yi-Chi, Okuchi, Takuo, & Lin, Jung-Fu. (2022). High thermal conductivity of stishovite promotes rapid warming of a sinking slab in Earth's mantle. Earth and Planetary Science Letters, 584. doi:10.1016/j.epsl.2022.117477
    Hsieh, Wen‐Pin, Marzotto, Enrico, Ishii, Takayuki, Dubrovinsky, Leonid, Aslandukova, Alena A., Criniti, Giacomo, . . . Ohtani, Eiji. (2022). Low Thermal Conductivity of Hydrous Phase D Leads to a Self‐Preservation Effect Within a Subducting Slab. Journal of Geophysical Research: Solid Earth, 127(6). doi:10.1029/2022jb024556
    Hung, Yu-Ping Grace, Tsao, Yi-Chi, Lin, Chun-Hung, & Hsieh, Wen-Pin. (2024). Thermal conductivity of aluminous garnets in Earth’s deep interior. American Mineralogist, 109(3), 482-487.
    Ichikawa, Hiroki, Kameyama, Masanori, Senshu, Hiroki, Kawai, Kenji, & Maruyama, Shigenori. (2014). Influence of majorite on hot plumes. Geophysical Research Letters, 41(21), 7501-7507. doi:10.1002/2014gl061477
    Irifune, T, Sekine, T, Ringwood, AE, & Hibberson, WO. (1986). The eclogite-garnetite transformation at high pressure and some geophysical implications. Earth and Planetary Science Letters, 77(2), 245-256.
    Ishii, Takayuki, Frost, Daniel J., Kim, Eun Jeong, Chanyshev, Artem, Nishida, Keisuke, Wang, Biao, . . . Katsura, Tomoo. (2023). Buoyancy of slabs and plumes enhanced by curved post-garnet phase boundary. Nature Geoscience, 16(9), 828-832. doi:10.1038/s41561-023-01244-w
    Jenkins, J., Cottaar, S., White, R. S., & Deuss, A. (2016). Depressed mantle discontinuities beneath Iceland: Evidence of a garnet controlled 660 km discontinuity? Earth and Planetary Science Letters, 433, 159-168. doi:10.1016/j.epsl.2015.10.053
    Jung, EJ, Kim, J, & Lee, YR. (2021). A comparative study on the chloride effectiveness of synthetic rutile and natural rutile manufactured from ilmenite ore. Scientific Reports, 11(1), 4045-4045.
    Kakol, Z, Sabol, J, & Honig, JM. (1991). Magnetic properties of titanomagnetites Fe3− x Ti x O4 (0≤ x< 1). Journal of applied physics, 69(8), 4822-4824.
    Katsura, Tomoo. (2022). A Revised Adiabatic Temperature Profile for the Mantle. Journal of Geophysical Research: Solid Earth, 127(2). doi:10.1029/2021jb023562
    Kavner, A., Sinogeikin, S. V., Jeanloz, Raymond, & Bass, J. D. (2000). Equation of state and strength of natural majorite. Journal of Geophysical Research: Solid Earth, 105(B3), 5963-5971. doi:10.1029/1999jb900374
    Kim, Y. Y. (2017). Thermal Conductivity of a Nanoscale Yttrium Iron Garnet Thin-Film Prepared by the Sol-Gel Process. Nanomaterials (Basel), 7(9). doi:10.3390/nano7090247
    Landau, Rubin H, Páez, Manuel J, & Bordeianu, Cristian C. (2024). Computational physics: Problem solving with Python: John Wiley & Sons.
    Lin, Chih-Ming, Chuu, Der-San, Yang, Tzong-Jer, Chou, Wu-Ching, Xu, Ji-an, & Huang, Eugene. (1997). Raman spectroscopy study of ZnSe and Zn 0.84 Fe 0.16 Se at high pressures. Physical Review B, 55(20), 13641.
    Liu, Hao, Wang, Wenzhong, Jia, Xinghua, Leng, Wei, Wu, Zhongqing, & Sun, Daoyuan. (2018). The combined effects of post-spinel and post-garnet phase transitions on mantle plume dynamics. Earth and Planetary Science Letters, 496, 80-88. doi:10.1016/j.epsl.2018.05.031
    Lou, Yancheng, Stackhouse, Stephen, Walker, Andrew M., & Zhang, Zhigang. (2020). Thermoelastic properties of MgSiO3-majorite at high temperatures and pressures: A first principles study. Physics of the Earth and Planetary Interiors, 303. doi:10.1016/j.pepi.2020.106491
    Mingsheng, Peng, Mao, Ho-kwang, Dien, Li, & Chao, E. (1994). Raman spectroscopy of garnet-group minerals. Chinese Journal of Geochemistry, 13, 176-183. doi:10.1007/BF02838517
    Mookherjee, M. (2014). High-pressure elasticity of sodium majorite garnet, Na2MgSi5O12. American Mineralogist, 99(11-12), 2416-2423. doi:10.2138/am-2014-4956
    Murakami, Motohiko, Sinogeikin, Stanislav V., Litasov, Konstantin, Ohtani, Eiji, & Bass, Jay D. (2008). Single-crystal elasticity of iron-bearing majorite to 26 GPa: Implications for seismic velocity structure of the mantle transition zone. Earth and Planetary Science Letters, 274(3-4), 339-345. doi:10.1016/j.epsl.2008.07.045
    Nishi, Masayuki, Kato, Takumi, Kubo, Tomoaki, & Kikegawa, Takumi. (2008). Survival of pyropic garnet in subducting plates. Physics of the Earth and Planetary Interiors, 170(3-4), 274-280. doi:10.1016/j.pepi.2008.03.013
    Nishi, Masayuki, Kubo, Tomoaki, Ohfuji, Hiroaki, Kato, Takumi, Nishihara, Yu, & Irifune, Tetsuo. (2013). Slow Si–Al interdiffusion in garnet and stagnation of subducting slabs. Earth and Planetary Science Letters, 361, 44-49. doi:10.1016/j.epsl.2012.11.022
    ORLICKÝ, Oto. (2010). Magnetism and magnetic properties of Ti-rich titanomagnetite and its tendency for alteration in favour of titanomaghemite. Contributions to Geophysics and Geodesy, 40(1), 65-86.
    Richards, F. D., Hoggard, M. J., Cowton, L. R., & White, N. J. (2018). Reassessing the Thermal Structure of Oceanic Lithosphere With Revised Global Inventories of Basement Depths and Heat Flow Measurements. Journal of Geophysical Research: Solid Earth, 123(10), 9136-9161. doi:10.1029/2018jb015998
    Ringwood, AE. (1962). A model for the upper mantle. Journal of Geophysical Research, 67(2), 857-867.
    Schoenthal, W, Liu, X, Cox, T, Mesa, JL, Maicas, M, Diaz-Michelena, M, . . . McHenry, ME. (2014). Synthesis and magnetic properties of single phase titanomagnetites. Journal of applied physics, 115(17), 17A934.
    Stixrude, Lars, & Lithgow-Bertelloni, Carolina. (2011). Thermodynamics of mantle minerals - II. Phase equilibria. Geophysical Journal International, 184(3), 1180-1213. doi:10.1111/j.1365-246X.2010.04890.x
    Thiéblot, Laurent, Tequi, Christophe, & Richet, Pascal. (1999). High-temperature heat capacity of grossular (Ca3Al2Si3O12), enstatite (MgSiO3), and titanite (CaTiSiO5). American Mineralogist, 84(5-6), 848-855.
    Tomioka, Naotaka, Fujino, Kiyoshi, Ito, Eiji, Katsura, Tomoo, Sharp, Thomas, & Kato, Takumi. (2002). Microstructures and structural phase transition in (Mg,Fe)SiO3 majorite. European Journal of Mineralogy, 14(1), 7-14. doi:10.1127/0935-1221/2002/0014-0007
    Wijbrans, C. H., Rohrbach, A., & Klemme, S. (2016). An experimental investigation of the stability of majoritic garnet in the Earth’s mantle and an improved majorite geobarometer. Contributions to Mineralogy and Petrology, 171(5). doi:10.1007/s00410-016-1255-7
    Yoshino, Takashi, Nishi, Masayuki, Matsuzaki, Takuya, Yamazaki, Daisuke, & Katsura, Tomoo. (2008). Electrical conductivity of majorite garnet and its implications for electrical structure in the mantle transition zone. Physics of the Earth and Planetary Interiors, 170(3-4), 193-200. doi:10.1016/j.pepi.2008.04.009
    Zhang, Li, Ahsbahs, H, Kutoglu, A, & Geiger, CA. (1999). Single-crystal hydrostatic compression of synthetic pyrope, almandine, spessartine, grossular and andradite garnets at high pressures. Physics and Chemistry of Minerals, 27, 52-58.
    Zhou, Chunyin, Gréaux, Steeve, Liu, Zhaodong, Higo, Yuji, Arimoto, Takeshi, & Irifune, Tetsuo. (2021). Sound Velocity of MgSiO3 Majorite Garnet up to 18 GPa and 2000 K. Geophysical Research Letters, 48(14). doi:10.1029/2021gl093499
    莊勝智. (2021). 以時間域熱反射率 (TDTR) 方式量測單晶直輝石熱傳導係數及其應用.
    陳函郁. (2022). 鎂-鈣鋁榴石的高壓拉曼光譜與熱傳導性質研究.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE