簡易檢索 / 詳目顯示

研究生: 楊美怡
Yang, Mei-Yi
論文名稱: 微構件剖面對蜂巢材料雙軸抗壓行為之影響
指導教授: 黃忠信
Huang, Jong-Shin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 105
中文關鍵詞: 破壞包絡面蜂巢材料雙軸抗壓彈性挫曲
外文關鍵詞: honeycombs with Plateau borders, biaxial loadings, failure envelop, elastic buckling
相關次數: 點閱:72下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本研究主要探討蜂巢材料承受雙軸壓應力作用下,其微構件剖面對蜂巢材料雙軸破壞面之影響。當一蜂巢材料承受雙軸壓應力作用時,其可能破壞機制包括:彈性挫曲、塑性降伏及脆性破裂等,同時考慮上述破壞機制時,可進一步獲得蜂巢材料之雙軸破壞面。利用有限元素套裝軟體ABAQUS,建立具變剖面微構件蜂巢材料之最小重複單元體分析模式,求得蜂巢材料承受單軸壓應力作用時之彈性模數、彈性挫曲強度及塑性強度,並同時建立無限域蜂巢材料分析模式,求得彈性蜂巢材料承受雙軸壓應力作用時之彈性挫曲強度。另外,利用偉布統計,分析脆性蜂巢材料受雙軸壓應力作用時之脆性破裂強度。最後,利用本文所獲得之彈性挫曲強度、塑性降伏強度及脆性破裂強度,建立具變剖面微構件蜂巢材料承受雙軸作用時之破壞包絡面。

    none

    目錄 摘要 I 誌謝 II 目錄 IV 表目錄 VI 圖目錄 VIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 本文組織與內容 1 第二章 相關理論與文獻回顧 3 2.1 細胞型材料 3 2.2 蜂巢材料之變形機制 3 2.3 蜂巢材料之單軸抗壓行為 5 2.3.1 線彈性變形 5 2.3.2 彈性挫曲 7 2.3.3 塑性破壞 9 2.3.4 脆性破壞強度 11 第三章 具變剖面微構件之蜂巢材料單軸抗壓行為 23 3.1 變剖面微構件幾何分析 23 3.2楊氏模數與塑性降伏強度 24 3.3 彈性挫曲強度 26 第四章 具變剖面微構件之蜂巢材料雙軸抗壓行為 48 4.1 彈性挫曲 48 4.2 塑性降伏 50 4.3 脆性破裂 51 4.4 破壞包絡面 55 第五章 結論 101 參考文獻 103

    參考文獻

    [1] L. J. Gibson and M. F. Ashby, “Cellular Solid: Structure and properties,” 2nd edition, Cambridge University Press. (1997).

    [2] L. J. Gibson, M. F. Ashby, J. Zhang, and T. C. Triantafillou, “Failure surfaces for cellular materials under multiaxial loads I: modeling,” Int. J. Mech. Sci. 31: 635-663, (1989)

    [3] S. P. Timoshenko and J. M. Gere, “ Theory of Elastic Stability,” 2nd edition, McGraw-Hill, New York, Toronto and London. (1961).

    [4] T. C. Triantafillou, J. Zhang, T. L. Shercliff, L. J. Gibson and M. F. Ashby, “Failure surfaces for cellular materials under multiaxial loads II: Comparison of models with experiment,” Int. J. Mech. Sci. 31: 665-678, (1989)

    [5] A. E. Simone and L. J. Gibson, “Effects of solid distribution on the stiffness and strength of metallic foams,” Acta Mater. 46(6): 2139-2150, (1998)

    [6] C. H. Chuang and J. S. Huang, “ Elastic moduli and plastic collapse strength of hexagonal honeycomb with plateau border.” Int. J. Mech. Sci. 2001, submitted.

    [7] A. M. Kraynik and W. E. Warren, “Low Density Cellular Plastics: Physical Basis of Behavior,” ed. N. C. Hilyard and A. Cunningham. Chapman and Hall, London, (1994).
    [8] Jibbitt, Karlsson and Sorensen, Inc. “Abaqus/Standard user’s manual.”

    [9] C. H. Chuang and J. S. Huang, “Yield surfaces of hexagonal honeycombs with Plateau borders under in-plane biaxial loads,” Acta Mech., (2002), accepted.

    [10] J. S. Huang and C. Y. Chou, “Survival probability for brittle honeycombs under in-plane biaxial loading,” J. Mater. Sci. 34: 4945-4954, (1999).

    [11] J. S. Huang and T. W. Chen, “Survival probability for brittle honeycombs with plateau borders under uniaxial compression,” Acta Mech., 2002, submitted.

    [12] H. X. Zhu and N. J. Mills, “The in-plane non-linear compression of regular honeycombs,” Int. J. Solids Struc. 37: 1931-1949, (2000).

    [13] N. J. Mills and H. X. Zhu, “The high strain compression of closed-cell polymer foams,” J. Mech. Phys. Solids. 47: 669-695, (1999).

    [14] S. K. Maiti, L. J. Gibson and M. F. Ashby, “Deformation and energy absorption diagrams for cellular solids,” Acta Metall. 32(11): 1963-1975, (1984).

    [15] S. D. Papka and S. Kyriakides, “ In-plane compressive response and crushing of honeycomb,” J. Mech. Phys. Solids. 42(10): 1499-1532, (1994).

    [16] J. W. Klintworth and W. J. Stronge, “Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs,” Int. J. Mech. Sci. 30(3/4): 273-292, (1988).

    [17] J. Zhang and M. F. Ashby, “ Buckling of honeycombs under in-plane biaxial stress,” Int. J. Mech. Sci. 34: 491-509, (1992b).

    [18] W. E. Warren and A. M. Kraynik, “Foams mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials,” Mech. Mater. 6: 27-37, (1987).

    下載圖示 校內:立即公開
    校外:2002-07-19公開
    QR CODE