| 研究生: |
楊美怡 Yang, Mei-Yi |
|---|---|
| 論文名稱: |
微構件剖面對蜂巢材料雙軸抗壓行為之影響 |
| 指導教授: |
黃忠信
Huang, Jong-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 破壞包絡面 、蜂巢材料 、雙軸抗壓 、彈性挫曲 |
| 外文關鍵詞: | honeycombs with Plateau borders, biaxial loadings, failure envelop, elastic buckling |
| 相關次數: | 點閱:72 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究主要探討蜂巢材料承受雙軸壓應力作用下,其微構件剖面對蜂巢材料雙軸破壞面之影響。當一蜂巢材料承受雙軸壓應力作用時,其可能破壞機制包括:彈性挫曲、塑性降伏及脆性破裂等,同時考慮上述破壞機制時,可進一步獲得蜂巢材料之雙軸破壞面。利用有限元素套裝軟體ABAQUS,建立具變剖面微構件蜂巢材料之最小重複單元體分析模式,求得蜂巢材料承受單軸壓應力作用時之彈性模數、彈性挫曲強度及塑性強度,並同時建立無限域蜂巢材料分析模式,求得彈性蜂巢材料承受雙軸壓應力作用時之彈性挫曲強度。另外,利用偉布統計,分析脆性蜂巢材料受雙軸壓應力作用時之脆性破裂強度。最後,利用本文所獲得之彈性挫曲強度、塑性降伏強度及脆性破裂強度,建立具變剖面微構件蜂巢材料承受雙軸作用時之破壞包絡面。
none
參考文獻
[1] L. J. Gibson and M. F. Ashby, “Cellular Solid: Structure and properties,” 2nd edition, Cambridge University Press. (1997).
[2] L. J. Gibson, M. F. Ashby, J. Zhang, and T. C. Triantafillou, “Failure surfaces for cellular materials under multiaxial loads I: modeling,” Int. J. Mech. Sci. 31: 635-663, (1989)
[3] S. P. Timoshenko and J. M. Gere, “ Theory of Elastic Stability,” 2nd edition, McGraw-Hill, New York, Toronto and London. (1961).
[4] T. C. Triantafillou, J. Zhang, T. L. Shercliff, L. J. Gibson and M. F. Ashby, “Failure surfaces for cellular materials under multiaxial loads II: Comparison of models with experiment,” Int. J. Mech. Sci. 31: 665-678, (1989)
[5] A. E. Simone and L. J. Gibson, “Effects of solid distribution on the stiffness and strength of metallic foams,” Acta Mater. 46(6): 2139-2150, (1998)
[6] C. H. Chuang and J. S. Huang, “ Elastic moduli and plastic collapse strength of hexagonal honeycomb with plateau border.” Int. J. Mech. Sci. 2001, submitted.
[7] A. M. Kraynik and W. E. Warren, “Low Density Cellular Plastics: Physical Basis of Behavior,” ed. N. C. Hilyard and A. Cunningham. Chapman and Hall, London, (1994).
[8] Jibbitt, Karlsson and Sorensen, Inc. “Abaqus/Standard user’s manual.”
[9] C. H. Chuang and J. S. Huang, “Yield surfaces of hexagonal honeycombs with Plateau borders under in-plane biaxial loads,” Acta Mech., (2002), accepted.
[10] J. S. Huang and C. Y. Chou, “Survival probability for brittle honeycombs under in-plane biaxial loading,” J. Mater. Sci. 34: 4945-4954, (1999).
[11] J. S. Huang and T. W. Chen, “Survival probability for brittle honeycombs with plateau borders under uniaxial compression,” Acta Mech., 2002, submitted.
[12] H. X. Zhu and N. J. Mills, “The in-plane non-linear compression of regular honeycombs,” Int. J. Solids Struc. 37: 1931-1949, (2000).
[13] N. J. Mills and H. X. Zhu, “The high strain compression of closed-cell polymer foams,” J. Mech. Phys. Solids. 47: 669-695, (1999).
[14] S. K. Maiti, L. J. Gibson and M. F. Ashby, “Deformation and energy absorption diagrams for cellular solids,” Acta Metall. 32(11): 1963-1975, (1984).
[15] S. D. Papka and S. Kyriakides, “ In-plane compressive response and crushing of honeycomb,” J. Mech. Phys. Solids. 42(10): 1499-1532, (1994).
[16] J. W. Klintworth and W. J. Stronge, “Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs,” Int. J. Mech. Sci. 30(3/4): 273-292, (1988).
[17] J. Zhang and M. F. Ashby, “ Buckling of honeycombs under in-plane biaxial stress,” Int. J. Mech. Sci. 34: 491-509, (1992b).
[18] W. E. Warren and A. M. Kraynik, “Foams mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials,” Mech. Mater. 6: 27-37, (1987).