簡易檢索 / 詳目顯示

研究生: 賴薏如
Lai, Yi-Ju
論文名稱: 整合隨機性與模糊性概念建立模糊迴歸式
Constructing Fuzzy Regression Models by Aggregating the Concepts of Randomness and Fuzziness
指導教授: 陳梁軒
Chen, Liang-Hsuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 91
中文關鍵詞: 模糊迴歸模糊隨機變數隨機性模糊性距離測度權重模糊算術
外文關鍵詞: fuzzy regression, fuzzy random variable, randomness, fuzziness, distance criterion, weighted fuzzy arithmetic
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 迴歸分析為重要決策工具之一,提供決策者分析投入因子與產出因子的關聯性。不論是建立在統計學上的傳統迴歸,或是以模糊理論為根基的模糊迴歸,都廣泛應用於各領域。統計迴歸期望在一群遵循機率分配、隨機出現的變數中,找出彼此之間的關係,認為資料的不確定性來自於隨機性;模糊迴歸則處理變數本身具有不明確性質或是變數彼此關聯性無法明確定義的情況,將這類的不確定稱之為模糊性。然而隨著資訊日趨複雜,現實中資料時常是隨機性與模糊性兩種不確定性並存的,但是,在目前文獻中,甚少有研究同時探討隨機性與模糊性概念的迴歸模式。
    本研究整合隨機性與模糊性概念,建立一個能夠同時處理隨機性與模糊性的迴歸式。首先以模糊隨機變數表示兼具兩種不確定性的資料,並將模糊數最可能值視為隨機性之表徵,展幅做為模糊性之表徵,接著,提出兩種求解模式。第一種為權重模糊算術法,參考Chang (2001)所提出之權重模糊算術的概念,計算觀察值與預測值之誤差,在迴歸式平方誤差最小的情況下,求得明確值迴歸係數。第二種為目標規劃法,以距離測度做為觀察值與預測值誤差的衡量指標,建立相對應之目標式與限制式,求取明確值迴歸係數。而本研究提出之模糊迴歸式皆加入一模糊調整項,使模式更具一般性並同時達到降低誤差之成效。

    Regression analysis is one of the most important decision making tools allowing decision makers to analyze the relationship between input variables and output variables. Statistical regressions are expected to determine the relationships among a group of variables using probability distributions, assuming the uncertainty of data is due to randomness. In contrast, fuzzy regressions deal with imprecise data or indefinite relationships between variables, viewing this kind of uncertainty as fuzziness. Both statistical regressions and fuzzy regressions are widely applied in specific applicable fields. However, in a real world with complicated information, data is often accompanied with randomness and fuzziness simultaneously. Yet, there have been few studies of regression models that have discussed these two types of uncertainty at the same time.
    In this research, the concepts of randomness and fuzziness are aggregated and a fuzzy regression model concerning two types of uncertainty is built. First, fuzzy random variables (FRV) are represented as data with twofold uncertainty, viewing the most likely value of FRVs as randomness and the spread of FRVs as fuzziness. Then, two approaches for constructing a regression model are proposed. The first approach uses weighted fuzzy arithmetic to estimate the sum of deviations between predicted values and the observed values. Subsequently, regression coefficients are obtained under the least-squares criterion. The second approach is called the goal programming method. This approach uses distance criterion for error estimation between a predicted value and an observed value and constructs objective function and constraints, respectively. Furthermore, a fuzzy adjustment term is added in the proposed fuzzy regression model in this research in order to increase generalization and to reduce the total estimation error of the model.

    摘要I AbstractII 致謝IV 目錄V 表目錄VII 圖目錄IX 第一章 緒論1 1.1 研究背景與動機1 1.2 研究目的2 1.3 研究流程2 1.4 論文架構3 第二章 文獻探討5 2.1 模糊集合理論5 2.2 模糊隨機變數10 2.3 迴歸分析11 2.4 模糊迴歸誤差式17 2.5 目標規劃20 2.6 本章小結22 第三章 建立具隨機性與模糊性之迴歸式23 3.1 研究構想與假設23 3.2 區分模糊隨機變數之隨機性與模糊性24 3.3 符號定義27 3.4 以模糊算術建構迴歸式30 3.5 以目標規劃建構迴歸式39 3.6 本章小結47 第四章 範例演算與分析48 4.1 求解概述48 4.2 簡單迴歸範例49 4.3 複迴歸範例55 4.4 特殊範例演算與分析62 4.5 大筆資料之實證案例69 4.6 本章小結74 第五章 結論與建議75 5.1 研究結論75 5.2 未來研究方向76 參考文獻77 附錄一 WFA原始模式之微分方程式推導81 附錄二 WFA擴展模式之微分方程式推導82 附錄三 自變數為明確值、應變數為模糊值之範例84 附錄四 變數退化之範例86 附錄五 CO濃度範例 87 附錄六 美國證券商評分範例90

    Celmiņš, A. (1987). Multidimensional least-squares fitting of fuzzy models. Mathematical Modelling, 9(9), 669-690. doi: 10.1016/0270-0255(87)90468-4
    Chachi, J., & Taheri, S. M. (2011). Fuzzy confidence intervals for mean of Gaussian fuzzy random variables. Expert Systems with Applications, 38(5), 5240-5244. doi: 10.1016/j.eswa.2010.10.034
    Chang, P.-T. , & Stanley Lee, E. (1996). A generalized fuzzy weighted least-squares regression. Fuzzy Sets and Systems, 82(3), 289-298. doi: 10.1016/0165-0114(95)00284-7
    Chang, Y.-H. O. (2001). Hybrid fuzzy least-squares regression analysis and its reliability measures. Fuzzy Sets and Systems, 119(2), 225-246. doi: 10.1016/S0165-0114(99)00092-5
    Charnes, A., & Cooper, W. W. (1957). Management Models and Industrial Applications of Linear Programming. Management Science, 4(1), 38-91.
    Chen, L.-H. , & Hsueh, C.-C. . (2009). Fuzzy Regression Models Using the Least-Squares Method Based on the Concept of Distance. Fuzzy Systems, IEEE Transactions on, 17(6), 1259-1272. doi: 10.1109/TFUZZ.2009.2026891
    Chen, L.-H., & Hsueh, C.-C. (2007). A Mathematical Programming Method for Formulating a Fuzzy Regression Model Based on Distance Criterion. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 37(3), 705-712. doi: 10.1109/TSMCB.2006.889609
    Chen, S.-P., & Dang, Jr F. (2008). A variable spread fuzzy linear regression model with higher explanatory power and forecasting accuracy. Information Sciences, 178(20), 3973-3988. doi: 10.1016/j.ins.2008.06.005
    Coppi, R., D’Urso, P., Giordani, P., & Santoro, A. (2006). Least squares estimation of a linear regression model with LR fuzzy response. Computational Statistics & Data Analysis, 51(1), 267-286. doi: 10.1016/j.csda.2006.04.036
    D’Urso, P., Massari, R., & Santoro, A. (2010). A class of fuzzy clusterwise regression models. Information Sciences, 180(24), 4737-4762. doi: 10.1016/j.ins.2010.08.018
    Dang, Jr F., & Hong, I.-H. (2010, 25-28 July 2010). The Cournot production game with entropy spreads. Paper presented at the Computers and Industrial Engineering (CIE), 2010 40th International Conference on.
    de Andrés-Sánchez, J., & González-Vila Puchades, L. (2012). Using fuzzy random variables in life annuities pricing. Fuzzy Sets and Systems, 188(1), 27-44. doi: 10.1016/j.fss.2011.05.024
    Delgado, M., Vila, M. A., & Voxman, W. (1998). A fuzziness measure for fuzzy numbers: Applications. Fuzzy Sets and Systems, 94(2), 205-216. doi: 10.1016/S0165-0114(96)00247-3
    Dey, O., & Chakraborty, D. (2009). Fuzzy periodic review system with fuzzy random variable demand. European Journal of Operational Research, 198(1), 113-120. doi: 10.1016/j.ejor.2008.07.043
    Diamond, P. (1988). Fuzzy least squares. Information Sciences, 46(3), 141-157. doi: 10.1016/0020-0255(88)90047-3
    Diamond, P., & Körner, R. (1997). Extended fuzzy linear models and least squares estimates. Computers & Mathematics with Applications, 33(9), 15-32. doi: 10.1016/S0898-1221(97)00063-1
    Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9(6), 613-626. doi: 10.1080/00207727808941724
    Dunyak, J. P., & Wunsch, D. (2000). Fuzzy regression by fuzzy number neural networks. Fuzzy Sets and Systems, 112(3), 371-380. doi: 10.1016/s0165-0114(97)00393-x
    Faraz, A., & Shapiro, A. F. (2010). An application of fuzzy random variables to control charts. Fuzzy Sets and Systems, 161(20), 2684-2694. doi: 10.1016/j.fss.2010.05.004
    Feng, Y.-H. (2000). Gaussian fuzzy random variables. Fuzzy Sets and Systems, 111(3), 325-330. doi: 10.1016/S0165-0114(98)00033-5
    Feng, Y.-H., Hu, L.-J., & Shu, H.-S. (2001). The variance and covariance of fuzzy random variables and their applications. Fuzzy Sets and Systems, 120(3), 487-497. doi: 10.1016/S0165-0114(99)00060-3
    Gong, Z., & Wang, L. (2007). The numerical calculus of expectations of fuzzy random variables. Fuzzy Sets and Systems, 158(7), 722-738. doi: 10.1016/j.fss.2006.09.018
    Hojati, M., Bector, C. R., & Smimou, K. (2005). A simple method for computation of fuzzy linear regression. European Journal of Operational Research, 166(1), 172-184. doi: 10.1016/j.ejor.2004.01.039
    Hwang, C.-M., & Yao, J.-S. (1996). Independent fuzzy random variables and their application. Fuzzy Sets and Systems, 82(3), 335-350. doi: 10.1016/0165-0114(96)84976-1
    Ignizio, J. P. (1976). Goal programming and extensions: Lexington Books.
    Jones, D., & Tamiz, M. (2010). History and Philosophy of Goal Programming Vol. 141. (pp. 1-9). doi:10.1007/978-1-4419-5771-9_1
    Körner, R. (1997). On the variance of fuzzy random variables. Fuzzy Sets and Systems, 92(1), 83-93. doi: 10.1016/S0165-0114(96)00169-8
    Kao, C., & Chyu, C.-L. (2002). A fuzzy linear regression model with better explanatory power. Fuzzy Sets and Systems, 126(3), 401-409. doi: 10.1016/S0165-0114(01)00069-0
    Kelkinnama, M., & Taheri, S. M. (2012). Fuzzy least-absolutes regression using shape preserving operations. Information Sciences, 214, 105-120. doi: 10.1016/j.ins.2012.04.017
    Kim, B., & Bishu, R. R. (1998). Evaluation of fuzzy linear regression models by comparing membership functions. Fuzzy Sets and Systems, 100(1–3), 343-352. doi: 10.1016/S0165-0114(97)00100-0
    Kwakernaak, H. (1978). Fuzzy random variables—I. definitions and theorems. Information Sciences, 15(1), 1-29. doi: 10.1016/0020-0255(78)90019-1
    Kwong, C. K., Chen, Y., Chan, K. Y., & Wong, H. (2008). The Hybrid Fuzzy Least-Squares Regression Approach to Modeling Manufacturing Processes. Fuzzy Systems, IEEE Transactions on, 16(3), 644-651. doi: 10.1109/TFUZZ.2007.903324
    Lee, S. M. (1972). Goal programming for decision analysis: Auerbach Publishers.
    Liu, Y.-K., & Liu, B. (2003). A class of fuzzy random optimization: expected value models. Information Sciences, 155(1–2), 89-102. doi: 10.1016/S0020-0255(03)00079-3
    Ma, M. , Menahem, F. , & Abraham, K. (1997). General fuzzy least squares. Fuzzy Sets and Systems, 88(1), 107-118. doi: 10.1016/S0165-0114(96)00051-6
    Modarres, M., Nasrabadi, E., & Nasrabadi, M. M. (2005). Fuzzy linear regression models with least square errors. Applied Mathematics and Computation, 163(2), 977-989. doi: 10.1016/j.amc.2004.05.004
    Nather, W. (1995, 17-19 Sep 1995). Linear statistical inference for fuzzy data. Paper presented at the Proceedings of ISUMA - NAFIPS '95 The Third International Symposium on Uncertainty Modeling and Analysis and Annual Conference of the North American Fuzzy Information Processing Society.
    Puri, M. L., & Ralescu, D. A. (1986). Fuzzy random variables. Journal of Mathematical Analysis and Applications, 114(2), 409-422. doi: 10.1016/0022-247X(86)90093-4
    Redden, D. T., & Woodall, W. H. (1994). Properties of certain fuzzy linear regression methods. Fuzzy Sets and Systems, 64(3), 361-375. doi: 10.1016/0165-0114(94)90159-7
    Romero, C. (1991). Handbook of critical issues in goal programming: Pergamon Press.
    Sakawa, M., & Yano, H. (1992). Multiobjective fuzzy linear regression analysis for fuzzy input-output data. Fuzzy Sets and Systems, 47(2), 173-181. doi: 10.1016/0165-0114(92)90175-4
    Savic, D. A., & Pedrycz, W. (1991). Evaluation of fuzzy linear regression models. Fuzzy Sets and Systems, 39(1), 51-63. doi: 10.1016/0165-0114(91)90065-X
    Stein, W. E., & Talati, K. (1981). Convex fuzzy random variables. Fuzzy Sets and Systems, 6(3), 271-283. doi: 10.1016/0165-0114(81)90005-1
    Stojaković, M. (1992). Fuzzy conditional expectation. Fuzzy Sets and Systems, 52(1), 53-60. doi: 10.1016/0165-0114(92)90036-4
    Tanaka, H., Hayashi, I., & Watada, J. (1989). Possibilistic linear regression analysis for fuzzy data. European Journal of Operational Research, 40(3), 389-396. doi: 10.1016/0377-2217(89)90431-1
    Tanaka, H., Uegima, S., & Asai, K. (1982). Linear Regression Analysis with Fuzzy Model. Systems, Man and Cybernetics, IEEE Transactions on, 12(6), 903-907. doi: 10.1109/TSMC.1982.4308925
    Tanaka, H., & Watada, J. (1988). Possibilistic linear systems and their application to the linear regression model. Fuzzy Sets and Systems, 27(3), 275-289. doi: 10.1016/0165-0114(88)90054-1
    Van Hop, N. (2007). Solving linear programming problems under fuzziness and randomness environment using attainment values. Information Sciences, 177(14), 2971-2984. doi: 10.1016/j.ins.2007.01.032
    Watada, J., Wang, S. , & Pedrycz, W. (2009). Building Confidence-Interval-Based Fuzzy Random Regression Models. Fuzzy Systems, IEEE Transactions on, 17(6), 1273-1283. doi: 10.1109/TFUZZ.2009.2028331
    Wu, B., & Tseng, N.-F. (2002). A new approach to fuzzy regression models with application to business cycle analysis. Fuzzy Sets and Systems, 130(1), 33-42. doi: 10.1016/S0165-0114(01)00175-0
    Yang, M.-S., & Lin, T.-S. (2002). Fuzzy least-squares linear regression analysis for fuzzy input–output data. Fuzzy Sets and Systems, 126(3), 389-399. doi: 10.1016/S0165-0114(01)00066-5
    Yen, K. K., Ghoshray, S., & Roig, G. (1999). A linear regression model using triangular fuzzy number coefficients. Fuzzy Sets and Systems, 106(2), 167-177. doi: 10.1016/S0165-0114(97)00269-8
    Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi: 10.1016/S0019-9958(65)90241-X

    無法下載圖示 校內:2020-07-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE