簡易檢索 / 詳目顯示

研究生: 李政勳
Li, Zheng-Syun
論文名稱: 人類腸病毒A71型感染纖溶酶原基因剔除小鼠的病理表現
Biological Characteristics of Human Enterovirus A71 in Plasminogen Knockout Mice
指導教授: 張權發
Chang, Chuan-Fa
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 57
中文關鍵詞: 腸病毒71型血纖維蛋白溶酶原血纖維蛋白溶酶原基因剔除小鼠細胞激素
外文關鍵詞: Human enterovirus A71 species, Plasminogen (PLG), Plasminogen knock-out mice, cytokines
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腸病毒A71型(EV-A71)是一種高致病性的微小RNA病毒,在兒童感染症之中會引起嚴重的手足口病(HFMD)或神經系統併發症。目前,腸病毒A71型的流行已造成了許多幼童罹患腦膜炎,在過去的二十年中也已有數千例幼兒因此而死亡。但迄今為止,並沒有特別有效的疫苗或治療方法可以預防或治療腸病毒A71型的感染。因此,目前仍需迫切尋找新的腸病毒A71型治療手段。在近期的研究之中,SCARB2和PSGL是腸病毒A71型的細胞受體。通過識別這些受體,病毒可以增加對宿主細胞的感染性。在我們的實驗室中利用醣蛋白質體的方式,鑑定出16種腸病毒A71型相互作用醣類蛋白可作為腸病毒A71型的新型結合受體,包括人類核仁蛋白(NCL)和血纖溶酶原(PLG)。除此之外,我們使用酵素結合免疫吸附分析法(ELISA)和表面等離子體共振(SPR),發現了腸病毒A71型直接與PLG結合的證據。這些證據強烈表明血纖溶酶原可以協調並幫助腸病毒A71型感染宿主細胞。在我的研究中,利用PLG knock-out (PLG-KO)小鼠(C57BL / 6)設計動物實驗模型監測生物體內MP4(EV-A71小鼠適應病毒株)感染。我們分析了EV-A71感染後的PLG-KO小鼠的臨床症狀和存活率。然後,測量了PLG-KO小鼠的中樞神經和肌肉中的病毒量並利用組織病理學觀察肌肉,脊髓,腦幹切片中的腸病毒A71型及腦膜炎病癥。我們的研究結果發現,去除PLG基因表現的小鼠不僅會表現出較輕微的臨床疾病症狀,而且在不同器官中會表現出較低的病毒量和腸病毒A71型抗體訊號。基於這些結果,我們認為血纖溶酶原可能涉及小鼠體內腸病毒A71型的結合和以及促進疾病發展。下一步,我們想要測定血纖溶酶原和腸病毒A71型免疫反應的作用。在不同的神經器官中觀察PLG-KO和野生型小鼠的細胞激素表現量。發現MCP-1在這兩隻小鼠的神經系統中最具有顯著差異。這些細胞激素在臨床上與腸病毒A71型感染後腦炎和肺水腫有關,暗示這兩種細胞激素和血纖溶酶原之間的交互作用可能影響腸病毒A71型感染後的炎症反應。我們的發現不僅證實了血纖溶酶原可能在體內腸病毒A71型發病機制中起重要作用的事實,而且還為治療腸病毒A71型感染提供了新的靶點。

    Enterovirus A71 (EV-A71) is a highly pathogenic Picornaviridae that causes hand, foot, and mouth disease (HFMD) or severe neurological complications in children. Outbreaks of EV-A71 infection have cause several cases of aseptic meningitis and deaths in young children in last 2 decades. To date, few licensed vaccines exist against EV-A71, and there are no approved therapeutics for treatment. Therefore, there is an urgent need for a new treatment for EV-A71 infection. Recent research has confirmed that human scavenger receptor class B, member 2 (SCARB2), and P-selectin glycoprotein ligand-1 (PSGL1) are the cellular receptors for enterovirus A71 (EV-A71). By recognizing these receptors, the virus can increase infectivity to host cells. Our previous works employed glycoproteomic approaches to identify 16 types of EV-A71-interacting proteins as novel binding receptors for EV-A71, including human nucleolin (NCL) and plasminogen (PLG). By using ELISA and a surface plasmon resonance (SPR) assay, we found that EV-A71 can directly bind to PLG. These findings strongly suggest that PLG can be used as a coordinator to help spread EV-A71 infection. In this thesis, PLG knockout mice (C57BL/6) were used to monitor an MP4 (EV-A71 mouse adapted virus) infection in vivo. We analyzed the clinical scores and survival rates of EV-A71-infected PLG knockout and wild type mice. Then, we analyzed the viral load in the central nervous system and muscle of both types of mice. EV-A71 distribution in the muscle, spinal cord, and brain stem sections of the mice was observed through a histopathological examination. Our findings indicated that PLG-KO mice not only displayed lower clinical scores, but also showed a lower virus titer and IHC signal in different organs. Based on these results, we suggested that PLG might be involved in the binding and infection of EV-A71. In addition, we revealed the immune responses of EV-A71-infected PLG knockout and wild type mice. Cytokines levels of PLG-KO and wild-type mice were investigated in different nerve organs. We found that such cytokines, especially MCP-1, were significantly elevated in the nervous system of the mice. These cytokines are clinically related to encephalitis and pulmonary edema, which implied that the reaction of these cytokines and PLG may affect the inflammatory response after EV-A71 infection. Our findings not only confirm that PLG may play an important part in EV-A71 pathogenesis in vivo, but also provide a novel target for treating EV-A71 infection.

    English Abstract III Chinese Abstract VI 誌謝 VII Table of content VIII Figure Index XI Table Index XII Appendix Index XIII Abbreviations XIV Chapter 1. Introduction 1 1. Human enterovirus A71 (EV-A71) 1 1.1 Clinical symptoms and epidemiology 1 1.2 Classification and structure 1 2. EV-A71 Receptors and attachment factors 2 3. Plasminogen (PLG) 4 3.1 Structure 4 3.2 Function 5 3.3 Relationship between PLG and viruses 6 4. Animal models 6 Chapter 2. Objective 8 Chapter 3. Materials and methods 10 1. Cell culture 10 2. Virus amplification 10 3. Plaque assay 10 4. Animal model 11 4.1 Infection 11 4.2 Genotyping 11 4.3 Clinical scores and survival rate 12 4.4 Viral load in tissues 12 5. Histopathological and immunohistochemical (IHC) staining. 13 6. Cytokine measurement 13 7. Statistical analysis 14 Chapter 4. Results 15 Previous studies 15 Establishing a PLG-KO mice animal model 15 Evaluation of the paralysis mechanism of observing protein quantification and tissue section 15 1. Total PLG protein expression was greater in the wild-type mice than in the PLG-KO mice 15 2. PLG deficiency increases the survival rates of mice infected with EV-A71 16 3.PLG deficiency decreases the virus titers in mice organ16 4.The disease progression of the PLG-KO and WT mice after infection with EV-A71 17 Immunologic response of PLG-KO mice by cytokine detection in the serum 18 Immunologic response of PLG-KO mice by cytokine detection in the spinal cords 19 Chapter 5. Discussion 20 Cytokines response in the mice 21 PLG combines with other attachment factor in the EV-A71 infection. 22 EV-A71-infected PLG-KO mice models 23 Establish a new hPLG-Tg mice model to investigate EV-A71 infection. 24 Chapter 6. Conclusion 26 References 27 Figure 1. Establishing animal model of PLG-KO mice 50 Figure 2. Mouse endogenous plasminogen protein expression analyzed in the PLG-KO mice and wild type mice. 37 Figure 3. The clinical scores and survival rates of PLG knockout mice in EV-A71 infection 38 Figure 4. The viral load in central nervous and muscle of PLG knockout mice 19 Figure 5. Histopathological examination of muscle, spinal cord, brain stem sections in two different mouse models. 40 Figure 6. Cytokine concentrations (pg/organ(g)) in the serum samples from the 2 groups of the mice including WT mice and PLG-KO mice. 41 Figure 7. Cytokine concentrations (pg/organ(g)) of MCP-1 in the spinal cord from the 2 groups of the mice including WT mice and PLG-KO mice 42 Table 1. Genotyping conditions 43 Table 2. Comparison of MCP-1 cytokines level and clinical symptom in two mice 44 Appendix 1. Summary of the picornavirus life cycle 45 Appendix 2. Schematic view of EV-A71 activities in rhabdomyosarcoma cells 46 Appendix 3. Schematic of the enterovirus genome, the polyprotein products and their major functions. 47 Appendix 4. Mechanism of fibrinolysis 48 Appendix 5. X-ray crystal structure of closed plasminogen glycoform II 49 Appendix 6. List of EV71-interacting proteins identified by glycoproteomic approaches 50 Appendix 7. Schematic procedure of glycoproteomics approach 51 Appendix 8. The clinical scores of WT mice evaluated with different titers of MP4 52 Appendix 9. The binding of different genotypes of EV-A71 to RD cells. 53 Appendix 10. The protein-protein interaction was detected by SPR assay reader 54 Appendix 11. PLG facilitates EV71 binding to RD cells 55 Appendix 12. Knockdown of PLG attenuates EV71 binding to RD cells 56 Appendix 13. The association between PLG and NCL or Anx2 57

    1.Schmidt NJ, Lennette EH, Ho HH. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis 129:304-309.
    2. Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T. 2010. Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol 9:1097-1105.
    3. Ho, M., et al., An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med, 1999. 341(13): p. 929-35
    4. Huang SW, Hsu YW, Smith DJ, Kiang D, Tsai HP, Lin KH, Wang SM, Liu CC, Su IJ, Wang JR. 2009. Reemergence of enterovirus 71 in 2008 in taiwan: dynamics of genetic and antigenic evolution from 1998 to 2008. J Clin Microbiol 47:3653-3662.
    5. Fowlkes, A.L., et al., Enterovirus-associated encephalitis in the California encephalitis project, 1998-2005. J Infect Dis, 2008. 198(11): p. 1685-91.
    6. Ortner, B., et al., Epidemiology of enterovirus types causing neurological disease in Austria 1999-2007: detection of clusters of echovirus 30 and enterovirus 71 and analysis of prevalent genotypes. J Med Virol, 2009. 81(2): p. 317-24.
    7. Wang, S.M., et al., Acute chemokine response in the blood and cerebrospinal fluid of children with enterovirus 71-associated brainstem encephalitis. J Infect Dis, 2008. 198(7): p. 1002-6.
    8. Mcminn, P.C., An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev, 2002. 26(1): p. 91-107.
    9. Nikonov, O.S., et al., Enteroviruses: Classification, Diseases They Cause, and Approaches to Development of Antiviral Drugs. Biochemistry (Mosc), 2017. 82(13): p. 1615-1631.
    10. Whitton JL, Cornell CT, Feuer R. 2005. Host and virus determinants of picornavirus pathogenesis and tropism. Nat Rev Microbiol 3:765-776.
    11. Lu J, Yi L, Zhao J, Yu J, Chen Y, Lin MC, Kung HF, He ML. 2012. Enterovirus 71 disrupts interferon signaling by reducing the level of interferon receptor 1. J Virol 86:3767-3776.
    12. Wang B, Xi X, Lei X, Zhang X, Cui S, Wang J, Jin Q, Zhao Z. 2013. Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog 9:e1003231.
    13. Zheng Z, Li H, Zhang Z, Meng J, Mao D, Bai B, Lu B, Mao P, Hu Q, Wang H. 2011. Enterovirus 71 2C protein inhibits TNF-alpha-mediated activation of NF-kappaB by suppressing IkappaB kinase beta phosphorylation. J Immunol 187:2202-2212.
    14. Lei X, Liu X, Ma Y, Sun Z, Yang Y, Jin Q, He B, Wang J. 2010. The 3C protein of enterovirus 71 inhibits retinoid acid-inducible gene I-mediated interferon regulatory factor 3 activation and type I interferon responses. J Virol 84:8051-8061.
    15. Lei X, Sun Z, Liu X, Jin Q, He B, Wang J. 2011. Cleavage of the adaptor protein TRIF by enterovirus 71 3C inhibits antiviral responses mediated by Toll-like receptor 3. J Virol 85:8811-8818.
    16. Lei X, Xiao X, Xue Q, Jin Q, He B, Wang J. 2013. Cleavage of interferon regulatory factor 7 by enterovirus 71 3C suppresses cellular responses. J Virol 87:1690-1698.
    17. Lei X, Han N, Xiao X, Jin Q, He B, Wang J. 2014. Enterovirus 71 3C inhibits cytokine expression through cleavage of the TAK1/TAB1/TAB2/TAB3 complex. J Virol 88:9830-9841.
    18.Wang LC, Chen SO, Chang SP, Lee YP, Yu CK, Chen CL, Tseng PC, Hsieh CY, Chen SH, Lin CF. 2015. Enterovirus 71 Proteins 2A and 3D Antagonize
    19.Baggen, J., et al., The life cycle of non-polio enteroviruses and how to target it. Nat Rev Microbiol, 2018.
    20. Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, Koike S. 2009. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med 15:798-801.
    21. Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu H. 2009. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med 15:794-797.
    22. Lu, J., et al., Viral kinetics of enterovirus 71 in human abdomyosarcoma cells. World J Gastroenterol, 2011. 17(36): p. 4135-42.
    23. Kuronita T, Eskelinen EL, Fujita H, Saftig P, Himeno M, Tanaka Y. 2002. A role for the lysosomal membrane protein LGP85 in the biogenesis and maintenance of endosomal and lysosomal morphology. J Cell Sci 115:4117-4131.
    24. Yamayoshi S, Koike S. 2011. Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection. J Virol 85:4937-4946.
    25. Carmo AA., et al., Plasmin induces in vivo monocyte recruitment through protease-activated receptor-1-, MEK/ERK-, and CCR2-mediated signaling.. J Immunol, , 2014, 193 (7) 3654-3663;
    26. Laszik Z, Jansen PJ, Cummings RD, Tedder TF, McEver RP, Moore KL. 1996. P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells. Blood 88:3010-3021.
    27. Somers, W.S., et al., Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell, 2000. 103(3): p. 467-79.
    28. Nishimura Y, Wakita T, Shimizu H. 2010. Tyrosine sulfation of the amino terminus of PSGL-1 is critical for enterovirus 71 infection. PLoS Pathog 6:e1001174.
    29. Yamayoshi S, Ohka S, Fujii K, Koike S. 2013. Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. J Virol 87:3335-3347.
    30.Tan, C.W., et al., Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol, 2013. 87(1): p. 611-20.
    31.Yang, S.L., et al., Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J Virol, 2011. 85(22): p. 11809-20.
    32. Yang B, Chuang H, Yang KD. 2009. Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol J 6:141.
    33. Su PY, Liu YT, Chang HY, Huang SW, Wang YF, Yu CK, Wang JR, Chang CF. 2012. Cell surface sialylation affects binding of enterovirus 71 to rhabdomyosarcoma and neuroblastoma cells. BMC Microbiol 12:162.
    34. Du N, Cong H, Tian H, Zhang H, Zhang W, Song L, Tien P. 2014. Cell surface vimentin is an attachment receptor for enterovirus 71. J Virol 88:5816-5833.
    35.Su, P.Y., et al., Cell surface nucleolin facilitates enterovirus 71 binding and infection. J Virol, 2015. 89(8): p. 4527-38.
    36. Raum D, Marcus D, Alper CA, Levey R, Taylor PD, Starzl TE. 1980. Synthesis of human plasminogen by the liver. Science 208:1036-1037.
    37. Zhang L, Seiffert D, Fowler BJ, Jenkins GR, Thinnes TC, Loskutoff DJ, Parmer RJ, Miles LA. 2002. Plasminogen has a broad extrahepatic distribution. Thromb Haemost 87:493-501.
    38. Miles LA, Castellino FJ, Gong Y. 2003. Critical role for conversion of glu-plasminogen to Lys-plasminogen for optimal stimulation of plasminogen activation on cell surfaces. Trends Cardiovasc Med 13:21-30.
    39. de Souza LR, P MM, Paschoalin T, Carmona AK, Kondo M, Hirata IY, Blaber M, Tersariol I, Takatsuka J, Juliano MA, Juliano L, Gomes RA, Puzer L. 2013. Human tissue kallikreins 3 and 5 can act as plasminogen activator releasing active plasmin. Biochem Biophys Res Commun 433:333-337.
    40. Suenson E, Thorsen S. 1981. Secondary-site binding of Glu-plasmin, Lys-plasmin and miniplasmin to fibrin. Biochem J 197:619-628.
    41. Urano T, Chibber BA, Castellino FJ. 1987. The reciprocal effects of epsilon-aminohexanoic acid and chloride ion on the activation of human [Glu1]plasminogen by human urokinase. Proc Natl Acad Sci U S A 84:4031-4034.
    42. Miles LA, Dahlberg CM, Plow EF. 1988. The cell-binding domains of plasminogen and their function in plasma. J Biol Chem 263:11928-11934.
    43. Wistedt AC, Kotarsky H, Marti D, Ringdahl U, Castellino FJ, Schaller J, Sjobring U. 1998. Kringle 2 mediates high affinity binding of plasminogen to an internal sequence in streptococcal surface protein PAM. J Biol Chem 273:24420-24424.
    44. Castellino FJ, Ploplis VA. 2005. Structure and function of the plasminogen/plasmin system. Thromb Haemost 93:647-654.
    45. Gavrilovic J, Murphy G. 1989. The role of plasminogen in cell-mediated collagen degradation. Cell Biol Int Rep 13:367-375.
    46. Daci E, Udagawa N, Martin TJ, Bouillon R, Carmeliet G. 1999. The role of the plasminogen system in bone resorption in vitro. J Bone Miner Res 14:946-952.
    47. Ogiwara K, Nogami K, Nishiya K, Shima M. 2010. Plasmin-induced procoagulant effects in the blood coagulation: a crucial role of coagulation factors V and VIII. Blood Coagul Fibrinolysis 21:568-576.
    48. Pryzdial EL, Lavigne N, Dupuis N, Kessler GE. 1999. Plasmin converts factor X from coagulation zymogen to fibrinolysis cofactor. J Biol Chem 274:8500-8505.
    49. Barthel D, Schindler S, Zipfel PF. 2012. Plasminogen is a complement inhibitor. J Biol Chem 287:18831-18842.
    50. Almonte AG, Qadri LH, Sultan FA, Watson JA, Mount DJ, Rumbaugh G, Sweatt JD. 2013. Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. J Neurochem 124:109-122.
    51. Creemers E, Cleutjens J, Smits J, Heymans S, Moons L, Collen D, Daemen M, Carmeliet P. 2000. Disruption of the plasminogen gene in mice abolishes wound healing after myocardial infarction. Am J Pathol 156:1865-1873.
    52. Ploplis VA, French EL, Carmeliet P, Collen D, Plow EF. 1998. Plasminogen deficiency differentially affects recruitment of inflammatory cell populations in mice. Blood 91:2005-2009.
    53. Ranson M, Andronicos NM, O'Mullane MJ, Baker MS. 1998. Increased plasminogen binding is associated with metastatic breast cancer cells: differential expression of plasminogen binding proteins. Br J Cancer 77:1586-1597.
    54. Weide I, Tippler B, Syrovets T, Simmet T. 1996. Plasmin is a specific stimulus of the 5-lipoxygenase pathway of human peripheral monocytes. Thromb Haemost 76:561-568.
    55. Syrovets T, Jendrach M, Rohwedder A, Schule A, Simmet T. 2001. Plasmin-induced expression of cytokines and tissue factor in human monocytes involves AP-1 and IKKbeta-mediated NF-kappaB activation. Blood 97:3941-3950.
    56. Majumdar M, Tarui T, Shi B, Akakura N, Ruf W, Takada Y. 2004. Plasmin-induced migration requires signaling through protease-activated receptor 1 and integrin alpha(9)beta(1). J Biol Chem 279:37528-37534.
    57. Hajjar KA, Harpel PC, Jaffe EA, Nachman RL. 1986. Binding of plasminogen to cultured human endothelial cells. J Biol Chem 261:11656-11662.
    58. Gonzalez-Gronow M, Gawdi G, Pizzo SV. 1994. Characterization of the plasminogen receptors of normal and rheumatoid arthritis human synovial fibroblasts. J Biol Chem 269:4360-4366.
    59. Hembrough TA, Vasudevan J, Allietta MM, Glass WF, 2nd, Gonias SL. 1995. A cytokeratin 8-like protein with plasminogen-binding activity is present on the external surfaces of hepatocytes, HepG2 cells and breast carcinoma cell lines. J Cell Sci 108 ( Pt 3):1071-1082.
    60. Chuang YC, Lei HY, Lin YS, Liu HS, Wu HL, Yeh TM. 2011. Dengue virus induced autoantibodies bind to plasminogen and enhance its activation. J Immunol 187:6483-6490.
    61. LeBouder F, Morello E, Rimmelzwaan GF, Bosse F, Pechoux C, Delmas B, Riteau B. 2008. Annexin II incorporated into influenza virus particles supports virus replication by converting plasminogen into plasmin. J Virol 82:6820-6828.
    62. Derry MC, Sutherland MR, Restall CM, Waisman DM, Pryzdial EL. 2007. Annexin 2-mediated enhancement of cytomegalovirus infection opposes inhibition by annexin 1 or annexin 5. J Gen Virol 88:19-27.
    63. Gonzalez-Reyes S, Garcia-Manso A, del Barrio G, Dalton KP, Gonzalez-Molleda L, Arrojo-Fernandez J, Nicieza I, Parra F. 2009. Role of annexin A2 in cellular entry of rabbit vesivirus. J Gen Virol 90:2724-2730.
    64. Harrist AV, Ryzhova EV, Harvey T, Gonzalez-Scarano F. 2009. Anx2 interacts with HIV-1 Gag at phosphatidylinositol (4,5) bisphosphate-containing lipid rafts and increases viral production in 293T cells. PLoS One 4:e5020.
    65.Fujii, K., et al., Transgenic mouse model for the study of enterovirus 71 neuropathogenesis. Proc Natl Acad Sci U S A, 2013. 110(36): p. 14753-8.
    66.Liu, J., et al., Transgenic expression of human P-selectin glycoprotein ligand-1 is not sufficient for enterovirus 71 infection in mice. Arch Virol, 2012. 157(3): p. 539-43.
    67.Khong, W.X., et al., A non-mouse-adapted enterovirus 71 (EV71) strain exhibits neurotropism, causing neurological manifestations in a novel mouse model of EV71 infection. J Virol, 2012. 86(4): p. 2121-31.
    68.Liou, A.T., et al., A new animal model containing human SCARB2 and lacking stat-1 is highly susceptible to EV71. Sci Rep, 2016. 6: p. 31151.
    69. Ploplis VA, Cornelissen I, Sandoval-Cooper MJ, Weeks L, Noria FA, Castellino FJ. 2001. Remodeling of the vessel wall after copper-induced injury is highly attenuated in mice with a total deficiency of plasminogen activator inhibitor-1. Am J Pathol 158:107-117.
    70. Kitching AR, Holdsworth SR, Ploplis VA, Plow EF, Collen D, Carmeliet P, Tipping PG. 1997. Plasminogen and plasminogen activators protect against renal injury in crescentic glomerulonephritis. J Exp Med 185:963-968.
    71. Romer J, Bugge TH, Pyke C, Lund LR, Flick MJ, Degen JL, Dano K. 1996. Impaired wound healing in mice with a disrupted plasminogen gene. Nat Med 2:287-292.
    72. Kao WW, Kao CW, Kaufman AH, Kombrinck KW, Converse RL, Good WV, Bugge TH, Degen JL. 1998. Healing of corneal epithelial defects in plasminogen- and fibrinogen-deficient mice. Invest Ophthalmol Vis Sci 39:502-508.
    73. Li Z, Ploplis VA, French EL, Boyle MD. 1999. Interaction between group A streptococci and the plasmin(ogen) system promotes virulence in a mouse skin infection model. J Infect Dis 179:907-914.
    74. Goguen JD, Bugge T, Degen JL. 2000. Role of the pleiotropic effects of plasminogen deficiency in infection experiments with plasminogen-deficient mice. Methods 21:179-183.
    75. Nordstrand A, Shamaei-Tousi A, Ny A, Bergstrom S. 2001. Delayed invasion of the kidney and brain by Borrelia crocidurae in plasminogen-deficient mice. Infect Immun 69:5832-5839.
    76. Wang, Y.F., et al., A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J Virol, 2004. 78(15): p. 7916-24.
    77. Zhang, S.Y., et al., Immunologic Characterization of Cytokine Responses to Enterovirus 71 and Coxsackievirus A16 Infection in Children. Medicine (Baltimore), 2015. 94(27): p. e1137.
    78.Weng TY, Chen LC, Shyu HW, Chen SH, Wang JR, Yu CK, Lei HY, Yeh TM. 2005. Lactoferrin inhibits enterovirus 71 infection by binding to VP1 protein and host cells. Antiviral Res 67:31-37.
    79. Wang RY, Kuo RL, Ma WC, Huang HI, Yu JS, Yen SM, Huang CR, Shih SR. 2013. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly. Virology 443:236-247.
    80. Yi-Wen Lin., et al. 2013. Human SCARB2 Transgenic Mice as an Infectious Animal Model for Enterovirus 71. Public Library of Science (PLoS) 10.1371

    無法下載圖示 校內:2024-07-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE