簡易檢索 / 詳目顯示

研究生: 張永信
Chang, Yung-Hsin
論文名稱: 薄膜程序用於工業區廢水回收之研究
Membrane process for industrial waste water reclamation
指導教授: 葉宣顯
Yeh, Hsuan-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 120
中文關鍵詞: 前處理UF膜RO膜水回收阻塞通量
外文關鍵詞: RO membrane, UF membrane, pretreatment, fouling, flux, water reuse
相關次數: 點閱:135下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以楠梓加工出口區廢水處理廠之海洋放流水為對象,首先探討以RO(Reverse osmosis)膜處理回收該放流水為工業製程用水之可行性,並比較混凝及UF(Ultrafiltration)前處理對RO阻塞控制之影響,接著則藉由各種不同前處理對不同規格UF膜阻塞控制之實驗,以推論各種不同前處理之進流水中對UF膜阻塞之探討。
    研究結果顯示,海放水經RO處理之出水水質相當良好,應具有回收做為製程用水之潛勢。而混凝前處理可大幅降低SDI(Silt Density Index),增加UF的使用效率,所以成敗之關鍵在於阻塞之控制,良好之混凝再加上UF前處理為可行之策略。
    在探討不同前處理對UF阻塞之控制方面,研究結果顯示鋁鹽優於鐵鹽,主要是因鋁鹽混凝去除較多顆粒性及膠體性物質,使鋁鹽混凝後之處理水再過UF膜時有較大之通量(Flux)。以不同孔徑濾膜之前濾來探討UF阻塞物之粒徑範圍,研究結果顯示粒徑大小在100 kDa(約20 nm) ~ 1 μm之間的物質,是UF膜的主要阻塞物。而由Hermia阻塞模式評估UF之阻塞機制,可以發現10 kDa UF膜由於孔洞較小(約5~7 nm),造成阻塞之情形是以形成泥餅之過濾模式(Cake filtration)為主;而100 kDa UF膜之阻塞機制則包括顆粒進入薄膜孔洞內吸附之標準阻塞(Standard blocking)及在薄膜表面形成一薄粒子層之中間阻塞(Intermediate blocking)模式為主。

    The objective of this research is to study the feasibility of treating the effluent from the wastewater treatment plant(WTP)of an industrial park for reuse. First, coagulation, with or without UF, followed by reverse osmosis(RO)were used to treat the effluent. The permeate quality and the flux decline of the RO system were monitored. Then sequential filtration by combining various kind of ultrafiltration(UF)membrane were used to test the coagulated effluent, in order to evaluate the characteristics of the major foulants.
    The results show that the water quality of RO permeate was excellent, and can be easily used as process water supplement. However, as the fouling potential of the WTP effluent was quite high, the smooth operation of the RO system will depend on successful fouling control. Coagulation followed by UF could significantly reduce the Silt Density Index(SDI) value, and, therefore, are the feasible pretreatment process for RO.
    In the study of coagulation for UF fouling control, alum was found to be superior to ferric chloride. The alum treated water generated high flux for the UF than ferric chloride, as the former removed more colloidal and particulate matters. Further, based on sequential filtration by various UF membrane, the size of the major foulants for 10 kDa regenerated cellulose UF membrane was found to be between 100 kDa(20 nm)to 1μm.
    Based on Hermia's model, the major fouling mechanisms for 10 kDa and 100 kDa UF membranes were found to be cake formation on the membrane surface, and particles deposition on pore walls, respectively.

    中文摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 XI 表目錄 XIII 第一章 前言 1 1-1 研究緣起 1 1-2 研究目的與內容 2 第二章 文獻回顧 3 2-1 工業廢水處理回收再利用現況 3 2-1-1 工業廢水處理與工業用水分類 3 2-1-2 再生水用途的規劃 4 2-1-3 國外再生水利用現況 5 2-1-4 國內再生水利用現況 8 2-2 薄膜系統 9 2-2-1 薄膜的定義與結構 9 2-2-2 薄膜分離程序 11 2-2-3 薄膜種類 12 2-2-4 薄膜的材質 14 2-2-5 薄膜的組件 16 2-2-6 薄膜的操作參數 17 2-2-7 薄膜的過濾方式 19 2-3 薄膜所遭遇到之問題 20 2-3-1 薄膜積垢 20 2-3-2 濃度極化 24 2-3-3 薄膜性質的改變 24 2-4 薄膜阻塞係數 25 2-4-1 SDI(Silt Density Index) 25 2-4-2 MFI(Modified Fouling Index) 26 2-4-3 MPFI(Mini Plugging Factor Index) 26 2-4-4 三種阻塞係數對薄膜進流水之參考值比較 27 2-5 薄膜阻塞控制方法 28 2-5-1 進流水之前處理 28 2-5-2 適時的清洗薄膜 29 2-5-3 薄膜材質的改良 29 2-6 混凝前處理 30 2-6-1 混凝理論 30 2-6-2 影響混凝作用之因素 31 2-6-3 鋁鹽之混凝 32 2-6-4 鐵鹽之混凝 33 2-6-5 混凝劑殘餘對薄膜阻塞之影響 34 2-6-6 混凝前處理對UF阻塞之影響 36 2-7 膜表面阻塞物分析 37 2-7-1 ATR-FTIR於膜表面之阻塞物分析 37 2-7-2 SEM於膜表面之阻塞物分析 38 第三章 實驗材料及研究方法 39 3-1 實驗流程規劃 39 3-2 實驗材料 39 3-2-1 廢水來源 39 3-2-2 UF薄膜 42 3-2-3 RO薄膜 43 3-3 實驗儀器與設備 44 3-3-1 中空纖維UF設備 44 3-3-2 快速桌上型薄膜試驗設備 45 3-3-3 平板UF設備 47 3-4 實驗項目與步驟 48 3-4-1 混凝程序處理放流水 48 3-4-2 中空纖維UF程序處理放流水之探討 48 3-4-3 RO程序處理放流水之探討 49 3-4-4 平板UF程序對不同前處理之探討 49 3-5 分析項目及方法 51 3-5-1 水質分析方法 52 3-5-2 薄膜表面分析方法 57 第四章 實驗結果與討論 59 4-1 混凝前處理之探討 59 4-1-1 原水水質特性 59 4-1-2 不同pH值和混凝劑量下之濁度去除效果 60 4-1-3 不同初始pH值之溶解性殘餘鋁、殘餘鐵比較 60 4-1-4 不同混凝劑及初始pH值下之溶解性矽酸鹽去除之比較 63 4-1-5 不同混凝劑及初始pH值下之NPDOC去除之比較 63 4-2 混凝前處理對UF/RO程序之影響 65 4-2-1 混凝前處理對中空纖維UF膜阻塞之影響 65 4-2-2 混凝及中空纖維UF膜前處理對RO膜阻塞之影響 65 4-2-3 RO膜之SEM觀測及SEM-EDS分析 68 4-2-4 RO出水之水質比較 71 4-3 平板UF膜阻塞之探討 72 4-3-1 混凝前處理對平板UF(RC 10 kDa)阻塞之影響 72 4-3-2 混凝前處理後以1 μm前濾對平板UF(RC 10 kDa)阻塞之影響 78 4-3-3 混凝前處理後以1 μm前濾再以UF(RC 100 kDa)過濾對平板UF(RC 10 kDa)膜阻塞之影響 81 4-3-4 海放水經不同前處理對UF(RC 100 kDa)阻塞之影響 84 4-3-5 Hermia model評估薄膜阻塞機制 86 4-3-6 UF(RC 10 kDa)濾液水質之比較 89 4-3-7 不同形式UF阻塞之探討 91 4-4 ATR-FTIR之分析結果探討 94 4-4-1 UF膜(RC材質)經不同前處理之官能基變化 94 4-4-2 UF膜(PES材質)經前處理之官能基變化 96 第五章 結論與建議 97 5-1 結論 97 5-2 建議 98 參考文獻 99 附錄A 檢量線 105 附錄B 原始數據 108 自述 120

    Allison, R. P. (1995). Electrodialysis reversal in water reuse applications. Desalination, 103(1-2): 11-18.
    Amirtharajah, A. & Mills, K. M. (1982). Rapid-mix design for mechanisms of alum coagulation. Journal American Water Works Association, 74(4): 210-216.
    Aptel, P. & Buckley, C. A. (1996). "Categories of membrane operations" Chapter 2 in Water treatment membrane processes: American Water Works Association Research Foundation.
    AWWA. (2003). "Membrane Processes" Chapter 15 in Water Treatment: American Water Works Association.
    Bowen, W. R., Calvo, J. I., & Hernandez, A. (1995). Steps of membrane blocking in flux decline during protein microfiltration. Journal of Membrane Science, 101(1-2): 153-165.
    Cheryan, M. (1998). Ultrafiltration and microfiltration handbook. Lancaster, Pennsylvania: Technomic Publishing.
    Cho, J., Amy, G., Pellegrino, J., & Yoon, Y. (1998). Characterization of clean and natural organic matter (NOM) fouled NF and UF membranes, and foulants characterization. Desalination, 118(1-3): 101-108.
    Choi, Y. H., Kim, H. S., & Kweon, J. H. (2008). Role of hydrophobic natural organic matter flocs on the fouling in coagulation-membrane processes. Separation and Purification Technology, In Press, Corrected Proof.
    Edzwald, J. K. & Benschoten, J. E. V. (1990). Aluminum coagulation of natural organic material. In Chemical Water and Wastewater Treatment, H.H.Hahn and R.Klute,eds.Berlin:Springer-Verlag,1990.
    Edzwald, J. K. & Tobiason, J. E. (1999). Enhanced coagulation: Us requirements and a broader view. Water Science and Technology, 40(9): 63-70.
    Gabelich, C. J., Yun, T. I., Coffey, B. M., & Suffet, I. H. M. (2002). Effects of aluminum sulfate and ferric chloride coagulant residuals on polyamide membrane performance. Desalination, 150(1): 15-30.
    Gabelich, C. J., Chen, W. R., Yun, T. I., Coffey, B. M., & Mel" Suffet, I. H. (2005). The role of dissolved aluminum in silica chemistry for membrane processes. Desalination, 180(1-3): 307-319.
    Gabelich, C. J., Ishida, K. P., Gerringer, F. W., Evangelista, R., Kalyan, M., & Suffet, I. H. M. (2006). Control of residual aluminum from conventional treatment to improve reverse osmosis performance. Desalination, 190(1-3): 147-160.
    Hermia, J. (1982). Constant pressure blocking filtration laws-application to power-law non-newtonian fluids. Institution of Chemical Engineers, 60: 183-187.
    Howe, K. J. & Clark, M. M. (2002). Fouling of microfiltration and ultrafiltration membranes by natural waters. Environmental Science & Technology, 36(16): 3571-3576.
    Howe, K. J., Ishida, K. P., & Clark, M. M. (2002). Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters. Desalination, 147(1-3): 251-255.
    Howe, K. J., Marwah, A., Chiu, K. P., & Adham, S. S. (2006). Effect of coagulation on the size of MF and UF membrane foulants. Environmental Science & Technology, 40(24): 7908-7913.
    Huang, R. Y. M., Pal, R., & Moon, G. Y. (2000). Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two ply composite membranes supported by poly(vinylidene fluoride) porous membrane. Journal of Membrane Science, 167(2): 275-289.
    Jacangelo, Joseph G., Chellam, Shankararaman, Trussel, & Rhodes, R. (1998). The membrane treatment. Civil Engineering, 68(9): 42-45.
    Johnson, P. N. & Amirtharajah, A. (1982). Ferric chloride and alum as single and dual coagulants. Journal American Water Works Association, 75(5): 232-239.
    Kawamura, S. (1991). Integrated Design and Operation of Water Treatment Facilities. John Wiley & Sons.
    Kim, H.-C. & Dempsey, B. A. (2008). Effects of wastewater effluent organic materials on fouling in ultrafiltration. Water Research, 42(13): 3379-3384.
    Kim, S. L., Paul Chen, J., & Ting, Y. P. (2002). Study on feed pretreatment for membrane filtration of secondary effluent. Separation and Purification Technology, 29(2): 171-179.
    Laine, J. M. & Anselme, C. (1995). Ultrafiltration Technology Status Overview in Municipal Drinking Water. 20th Congress IWSA Conference: September 9-15, Durban, South Africa.
    Lee, Y. & Clark, M. M. (1998). Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions. Journal of Membrane Science, 149(2): 181-202.
    Letterman, R. D., Amirtharajah, A., & O'Melia, C. R. (1999). "Coagulation and Flocculation" Chapter 6 in Water Quality and Treatment (5th ed.): McGraw-Hill.
    Osmonics, G. (1996). The Filtration Spectrum. GE Osmonics, Minnesota USA.
    Qin, J.-J., Oo, M.-H., Wai, M.-N., Ang, C. M., Wong, F.-S., & Lee, H. (2003). A dual membrane UF/RO process for reclamation of spent rinses from a nickel-plating operation--a case study. Water Research, 37(13): 3269-3278.
    Sablani, S. S., Goosen, M. F. A., Al-Belushi, R., & Wilf, M. (2001). Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination, 141(3): 269-289.
    Sakol, D. & Konieczny, K. (2004). Application of coagulation and conventional filtration in raw water pretreatment before microfiltration membranes. Desalination, 162: 61-73.
    Schippers, J. C. & Verdouw, J. (1980). The modified fouling index, a method of determining the fouling characteristics of water. Desalination, 32: 137-148.
    Skoog, D. A. & Leary, J. J. (1992). Principles of instrumental analysis(4th Edition). Saunders College Publishing.
    Snoeyink, V. L. & Jenkins, D. 1980. Water Chemistry: John Wiley & Sons.
    Stumm, W. & O'Melia, C. R. (1968). Stoichiometry of coagulation Journal American Water Works Association 60(5): 514-539.
    Tang, C. Y., Kwon, Y.-N., & Leckie, J. O. (2007). Probing the nano- and micro-scales of reverse osmosis membranes--A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements. Journal of Membrane Science, 287(1): 146-156.
    Taylor, J. S. & Jacobs, E. P. (1996). Water Treatment Membane Processes:Reverse Osmosis and Nanofiltration. American Water Works Association: 20.
    Teng, M. Y., Lee, K. R., Liaw, D. J., & Lai, J. Y. (2000). Preparation and pervaporation performance of poly(3-alkylthiophene) membrane. Polymer, 41(6): 2047-2052.
    Wakeman, R. (1996). Fouling in crossflow ultra- and micro-filtration. Membrane Technology, 1996(70): 5-8.
    Wang, D., Li, K., & Teo, W. K. (1996). Polyethersulfone hollow fiber gas separation membranes prepared from NMP/alcohol solvent systems. Journal of Membrane Science, 115(1): 85-108.

    莊典謨. (1990). 水中鋁含量分析方法之研究及其在淨水工程上之應用. 碩士學位論文, 國立成功大學環境工程學系.

    方進忠. (1996). 薄膜技術於水處理之應用. 技術與訓練, 23(6): 18~33.

    林士正, 楊子岳, & 盧文章. (2000). 薄膜程序前處理技術應用於廢水回收利用之評估. 第五屆水再生及再利用研討會論文集: 200-210.

    林青郁. (2000). 人體角質層脂肪含量與藥品滲透性之關係:應用紅外光譜之分析研究. 碩士學位論文, 國立成功大學臨床藥學研究所.

    陳重男, 倪振鴻, 黃財榮, & 金艾棣. (2001). 薄膜程序在自來水淨水工程上之應用(第二年). 中華民國自來水協會90年度研究報告.

    葉宣顯, 鄭幸雄, 曾怡禎, 黃志彬, & 林財富. (2001). 澄清湖高級淨水處理模型廠試驗研究(第二年). 台灣省自來水股份有限公司.

    周珊珊. (2001). 淤泥指數(SDI)的測定方法及在淨水處理上的應用. 自來水會刊, 第二十卷(第三期): 16-21.

    陳彥旻. (2003). 半導體業化學機械研磨廢水回收處理再利用技術研究. 碩士學位論文, 國立成功大學環境工程學系.

    鄭領英 & 王學松. (2003). 膜的高科技應用. 五南圖書出版股份有限公司.

    陳筱華, 葉宣顯, 林宏儒, 孫昀, 邵信, & 曾治乾. (2004). 工業區廢水廠放流水再生可行性整體評估研究. 工業污染防治, 89.

    范舒晴. (2004). 聚醯胺與聚醯亞胺膜於滲透蒸發與蒸氣揮發之研究. 博士學位論文, 中原大學化學工程學系.

    經濟部水利署水利規劃試驗所. (2006) .廢水處理廠水再生事業試驗研究-台南地區工業區為例.

    林哲昌. (2006). 薄膜防垢除垢技術與應用性回顧. 中興工程, 91: 33-42.

    林哲昌. (2007). 淨水薄膜前處理程序評估與應用. 中興工程, 96: 75-84.

    陳弘凷, 王國樑, & 黃泳塘. (2007). 台灣地區都市污水廠現況暨放流水利用潛勢. 節水季刊, 47: 9~21.

    經濟部水利署水利規劃試驗所. (2007) .台南市安平污水廠放流水再利用規劃.

    下載圖示 校內:2009-08-08公開
    校外:2009-08-08公開
    QR CODE