簡易檢索 / 詳目顯示

研究生: 吳清瀜
Wu, Ching-Jung
論文名稱: 台灣南部GPS網路即時動態定位之精度分析
Positioning Accuracy Analysis of GPS Network RTK in Southern Taiwan
指導教授: 饒瑞鈞
Rau, Ruey-Juin
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系碩士在職專班
Department of Earth Sciences (on the job class)
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 95
中文關鍵詞: 網路即時動態定位全球定位系統虛擬參考站
外文關鍵詞: Network RTK, GPS, Virtual Reference Station RTK
相關次數: 點閱:101下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Real Time Kinematic(RTK)測量具有施測迅速、無需後處理的計算作業,具有高精度即時定位效能的優點。然而當參考站和移動站間的距離增加時,則會因電離層、對流層、軌道誤差等系統誤差的影響,使得空間相關性之差異增大而降低定位精度,所以 RTK 施測的有效距離有一定的限制,主站與移動站施測時之基線間距在10 ㎞,只能達到公分級精度。
    本研究以台灣南部地區為測試區域,應用現行內政部土地測量局所建置之全國性電子化 e-GPS 衛星定位測量基準網,計6個連續觀測站,配合中央地質調查所之連續觀測站觀測資料計8個連續觀測站(GS28~GS35)。對2006年第276天之觀測資料檔(30秒一筆)進行解算。以網路 RTK 定位之模式,建構區域性定位誤差模式,並配合虛擬參考站VRS-RTK 技術,進行 VRS 動態定位與傳統單站 RTK 動態定位比較;在各種網形實驗結果顯示, VRS-RTK 於所規劃之網形3(主站間距平均基線距離為34㎞),其內插網形之平面精度為3公分以內,高程精度4.5公分以內,且其解算成功率可達99%,涵蓋面積可達約550平方公里;除了應該有最合適的網型間距,而且從各外插網形來看移動站距離基線越近,其精度越高,極限外插距離約6到7公里。另從各網形之定位精度、解算成功率及PDOP數值圖之表現來看,其PDOP與定位精度並無絕對相關性。

    The advantage of GPS RTK positioning technique is the high-accuracy in positioning and fast surveying without post-processing. But it has disadvantage that when the distance between the reference station and the rover station increases, the systematic errors of ionosphere, troposphere, and orbit may affect the accuracy of positioning. The rover is usually required to locate within about 10 kilometers of the reference station, in order to acquire the centimeter-level accuracy.
    The study used southern Taiwan as the test area for VRS-RTK analysis. There are total ten continuous GPS stations for the analysis; three are part of the Land Survey Bureau eGPS network and eight (GS28-GS35) are from the Central Geological Survey. The observation data (one data per 30sec) on the 276th day in the Year 2006 is used. Comparing VRS-RTK with traditional single station RTK; VRS-RTK results are less affected by the atmosphere factor, however the test results show that a maximum station interval of 34 kilometers revealing the horizontal positioning accuracy within 3 cm, and within 4.5 cm for the height component and the success rate reaches 99%,the area of the covered field can reach to 550 kilometer square. Besides the size of the network, the range for successful VRS-RTK positioning outside the network is about 6 ~ 7 kilometer. Comparing the positioning accuracy, success rate and PDOP numbers of all networks show that the PDOP numbers do not seem to affect the positioning accuracy.

    摘要(中文)………………Ⅲ 摘要(英文)……………Ⅳ 誌謝…………………………Ⅴ 目錄…………………………Ⅵ 圖目錄………………………Ⅸ 表目錄……………………ⅩⅢ 第一章 緒論……………1 第一節 前言……………1 第二節 研究目的與動機………………3 壹、研究目的………………………3 貳、研究動機……………………3 第三節 前人研究與國外相關實例……………6 壹、前人研究…………………………6 貳、國外相關研究實例之系統建置……………7 第四節 問題陳述 ………………………10 第二章 研究理論與方法……………12 第一節 GPS定位原理 ………………… 12 壹、虛擬距離觀測量………………12 貳、載波相位觀測量…………………14 第二節 GPS觀測量之誤差來源 ……………… 16 壹、與衛星有關之誤差……………16 貳、訊號傳播之誤差……………………17 參、接收儀部份之誤差…………………18 肆、消除誤差之施測方法-差分……………20 第三節 即時動態測量………………24 壹、 RTK 之架構…………………24 貳、 RTK 之作業原理…………………25 第四節 網路RTK定位 ………………30 壹、網路 RTK……………………………31 貳、單一時刻網型 RTK…………………32 參、虛擬參考站………………………35 第五節 研究範圍………………………38 第六節 研究流程與限制………………41 壹、研究流程………………………41 貳、研究限制與定義……………………41 第七節 品質檢核…………………………………43 第三章 實證分析………………45 第一節 網形規劃……………………………45 第二節 計算成果……………………………46 壹、網形內VRS-RTK與傳統RTK之精度表現……………46 貳、網形外VRS-RTK與傳統RTK之精度表現……………62 第四章 討論 …………………………75 第一節、網形內衛星數量解算比較………………75 第二節、網形內衛星PDOP值解算比較………………79 第三節、網形內移動站座標解算成功率之比較………83 第四節、網形外衛星數量解算比較…………84 第五節、網形外移動站座標解算成功率之比較……………86 第五章 結論與建議 ……………88 第一節 結論…………………………88 第二節 建議……………………………89 參考文獻 ……………………………90 圖 目 錄 圖1.1全球定位系統相對定位方法分類圖 ……………1 圖1.2 電離層中帶電之電離子移動週期圖…………10 圖2.1 虛擬距離之時間延遲量測示意圖 ………… 13 圖2.2 載波相位測量示意圖 …………… 15 圖2.3 GPS差分示意圖………………20 圖2.4 空中一次差分示意圖 ……………… 21 圖2.5 地面一次差分示意圖 ………………… 22 圖2.6 二次差分示意圖………………22 圖2.7 三次差分示意圖……………………23 圖2.8 單一主站RTK架構圖 ……………25 圖2.9 RTK誤差影響示意圖 ……………… 29 圖2.10 在電離層活耀下單一參考站的覆蓋範圍示意圖…………… 30 圖2.11 在一般情況下網路RTK參考站的覆蓋範圍示意圖…………30 圖2.12 傳統RTK與區域參考網路示意圖 …………32 圖2.13 誤差模式化示意圖…………… 34 圖2.14 改正數效力示意圖…………… 34 圖2.15 移動站殘差改正示意圖………… 35 圖2.16 虛擬參考站架構圖………………… 36 圖2.17 土地測量局EGPS 連續追蹤站位置圖 …………38 圖2.18 土地測量局MOI 之國際框架連續追蹤站位置圖……………38 圖2.19 CGS觀測台灣西部斷層之連續追蹤站位置圖…………39 圖2.20 NTU觀測台灣東部斷層之連續追蹤站位置圖 …………39 圖2.21 其他相關單位之連續追蹤站位置圖…………39 圖2.22 研究區域位置圖………………39 圖2.23 研究範圍圖……………………40 圖2.24 研究流程圖……………………… 41 圖2.25 GS28站GS29站於2006.10月之TEQC品質檢核成果圖………………44 圖3.1 三種不同間距及主站、移動站之網形圖………45 圖3.2 網形1的位置分布圖……………46 圖3.3 CK01站於網形1內的VRS-RTK與傳統RTK之三軸表現圖…………47 圖3.4 GS30站於網形1內的VRS-RTK與傳統RTK之三軸表現圖………48 圖3.5 網形2的位置分布圖……………49 圖3.6 CK01站於網形2內的VRS-RTK與傳統RTK之三軸表現圖………50 圖3.7 GS31站於網形2內的VRS-RTK與傳統RTK之三軸表現圖………51 圖3.8 GS34站於網形2內的VRS-RTK與傳統RTK之三軸表現圖……………52 圖3.9網形3的位置分布圖…………………53 圖3.10 CK01站於網形3內的VRS-RTK與傳統RTK之三軸表現圖…………54 圖3.11 GS29站於網形3內的VRS-RTK與傳統RTK之三軸表現圖……………55 圖3.12 GS30站於網形3內的VRS-RTK與傳統RTK之三軸表現圖…………56 圖3.13 GS31站於網形3內的VRS-RTK與傳統RTK之三軸表現圖……………57 圖3.14 GS32站於網形3內的VRS-RTK與傳統RTK之三軸表現圖………58 圖3.15 GS34站於網形3內的VRS-RTK與傳統RTK之三軸表現圖……………60 圖3.16 GS35站於網形3內的VRS-RTK與傳統RTK之三軸表現圖…………61 圖3.17網形1的位置分布圖………………62 圖3.18 網形1外對GS29站的VRS-RTK與傳統RTK之三軸表現圖………63 圖3.19網形1外對GS32站的VRS-RTK與傳統RTK之三軸表現圖……………64 圖3.20網形1外對GS34站的VRS-RTK與傳統RTK之三軸表現圖…………65 圖3.21網形1外對GS35站的VRS-RTK與傳統RTK之三軸表現圖………66 圖3.22 網形2的位置分布圖 …………………67 圖3.23網形2外對GS28站的VRS-RTK與傳統RTK之三軸表現圖…………68 圖3.24網形2外對GS30站的VRS-RTK與傳統RTK之三軸表現圖………69 圖3.25網形2外對GS32站的VRS-RTK與傳統RTK之三軸表現圖……………70 圖3.26 網形2外對WUST站的VRS-RTK與傳統RTK之三軸表現圖………72 圖3.27 網形3的位置分布圖………………73 圖3.28 網形3外對GS28站的VRS-RTK與傳統RTK之三軸表現圖…………74 圖4.1第276天接收儀所接收衛星之時段統計圖………………75 圖4.2第276天接收儀所接收衛星之數量統計圖…………………75 圖4.3 網形1內之CK01的RTK衛星數量圖…………………76 圖4.4 網形1內之CK01的VRS-RTK衛星數量圖………………76 圖4.5 網形1內之GS30的RTK衛星數量圖……………76 圖4.6 網形1內之 GS30的VRS-RTK衛星數量圖………………76 圖4.7 網形2內之 CK01的RTK衛星數量圖……………76 圖4.8 網形2內之CK01的VRS-RTK衛星數量圖………………76 圖4.9 網形2內之 GS31的RTK衛星數量圖………………76 圖4.10網形2內之 GS31的VRS-RTK衛星數量圖……………76 圖4.11 網形2內之 GS34的RTK衛星數量圖…………77 圖4.12 網形2內之 GS34的VRS-RTK衛星數量圖……………77 圖4.13 網形3內之 CK01的RTK衛星數量圖……………77 圖4.14 網形3內之 CK01的VRS-RTK衛星數量圖………………77 圖4.15 網形3內之 GS29的RTK衛星數量圖……………77 圖4.16 網形3內之 GS29的VRS-RTK衛星數量圖……………77 圖4.17 網形3內之 GS30的RTK衛星數量圖……………77 圖4.18 網形3內之 GS30的VRS-RTK衛星數量圖……………77 圖4.19 網形3內之 GS31的RTK衛星數量圖…………………77 圖4.20 網形3內之 GS31的VRS-RTK衛星數量圖………77 圖4.21 網形3內之 GS32的RTK衛星數量圖……………78 圖4.22 網形3內之 GS32的VRS-RTK衛星數量圖…………78 圖4.23 網形3內之 GS34的RTK衛星數量圖……………78 圖4.24 網形3內之 GS34的VRS-RTK衛星數量圖………………78 圖4.25 網形3內之 GS35的RTK衛星數量圖………………78 圖4.26 網形3內之 GS35的VRS-RTK衛星數量圖………………78 圖4.27 第276天衛星之DOP統計圖 …………………79 圖4.28 網形1內之 CK01站RTK的PDOP值表現圖……………80 圖4.29 網形1內之 CK01站VRS-RTK的PDOP值表現圖………………80 圖4.30 網形1內之 GS30站RTK的PDOP值表現圖………………80 圖4.31 網形1內之 GS30站VRS-RTK的PDOP值表現圖…………80 圖4.32 網形2內之 CK01站RTK的PDOP值表現圖……………80 圖4.33 網形2內之 CK01站VRS-RTK的PDOP值表現圖……………80 圖4.34 網形2內之 GS31站RTK的PDOP值表現圖………………80 圖4.35 網形2內之 GS31站VRS-RTK的PDOP值表現圖…………………80 圖4.36 網形2內之 GS34站RTK的PDOP值表現圖………………80 圖4.37 網形2內之 GS34站VRS-RTK的PDOP值表現圖……………80 圖4.38 網形3內之 CK01站RTK的PDOP值表現圖……………81 圖4.39 網形3內之 CK01站VRS-RTK的PDOP值表現圖…………………81 圖4.40 網形3內之 GS29站RTK的PDOP值表現圖………………81 圖4.41 網形3內之 GS29站VRS-RTK的PDOP值表現圖……………81 圖4.42 網形3內之 GS30站RTK的PDOP值表現圖………………81 圖4.43 網形3內之 GS30站VRS-RTK的PDOP值表現圖……………81 圖4.44 網形3內之 GS31站RTK的PDOP值表現圖………………81 圖4.45 網形3內之 GS31站VRS-RTK的PDOP值表現圖………………81 圖4.46 網形3內之 GS32站RTK的PDOP值表現圖…………………81 圖4.47 網形3內之 GS32站VRS-RTK的PDOP值表現圖…………81 圖4.48 網形3內之 GS34站RTK的PDOP值表現圖…………82 圖4.49 網形3內之 GS34站VRS-RTK的PDOP值表現圖……………82 圖4.50 網形3內之 GS35站RTK的PDOP值表現圖…………82 圖4.51 網形3內之 GS35站VRS-RTK的PDOP值表現圖………………82 圖4.52 各網形內移動站之解算成功率統計圖…………………83 圖4.53 網形1外GS29站RTK的衛星數量圖…………………84 圖4.54 網形1外GS29站VRS-RTK的衛星數量圖…………84 圖4.55 網形1外GS32站RTK的衛星數量圖………………84 圖4.56 網形1外GS32站VRS-RTK的衛星數量圖……………………84 圖4.57 網形1外GS34站RTK的衛星數量圖……………84 圖4.58 網形1外GS34站VRS-RTK的衛星數量圖………84 圖4.59 網形1外GS35站RTK的衛星數量圖…………………84 圖4.60 網形1外GS35站VRS-RTK的衛星數量圖…………………84 圖4.61 網形2外GS28站RTK的衛星數量圖…………………85 圖4.62 網形2外GS28站VRS-RTK的衛星數量圖…………………85 圖4.63 網形2外GS30站RTK的衛星數量圖………………………85 圖4.64 網形2外GS30站VRS-RTK的衛星數量圖……………85 圖4.65 網形2外GS32站RTK的衛星數量圖…………………85 圖4.66 網形2外GS32站VRS-RTK的衛星數量圖……………………85 圖4.67 網形2外WUST站RTK的衛星數量圖………………85 圖4.68 網形2外WUST站VRS-RTK的衛星數量圖………85 圖4.69 網形3外GS28站RTK的衛星數量圖………………85 圖4.70 網形3外GS28站VRS-RTK的衛星數量圖………………85 圖4.71各網形外移動站之解算成功率統計圖 ……………86 表 目 錄 表1.1 傳統RTK與網路RTK比較表 ……………………4 表2.1 Trimble 4000ST Geod 天線率定表……………………19 表3.1 各參考站於 2006.10月以TEQC檢核下之參數表現圖…………………44

    王志豪,虛擬參考站技術在工程測量中的運用,測繪通報,第11期,第64頁,2004。
    史天元,單站GPS觀測量初步品質分析作業,第四屆GPS衛星科技研討會論文集,第109~118頁,台南,2000。
    周忠謨、易杰軍、周琪,GPS衛星測量原理與應用,測繪出版社,北京,1997。
    唐進賢,中距離(10-50公里) GPS即時動態定位演算法之研究,國立成功大學測量工程碩士論文,台南,1999。
    孫連水,即時動態GPS測量應用於控制測量與戶地測量之研究,國立成功大學測量工程研究所碩士論文,1997。
    徐博賢、張仁均、朱森,GPS精密定位時接收儀天線相位中心之校正,第二屆兩岸測繪學術研討會暨第十七屆測量學術及應用研討會論文集,第77-86頁,台南,1998。
    郭隆晨,GPS衛星相對定位誤差之研究,國立成功大學航空測量研究所碩士論文,1991。
    曾清凉、儲慶美,GPS衛星測量原理與應用,國立成功大學衛星資訊研究中心,第二版,台南,1999。
    曾清凉,台灣e-GPS電子基準站規劃設計及測試分析,期中報告,內政部土地測量局,台中,2003。
    曾清凉,台灣e-GPS電子基準站規劃設計及測試分析,期末報告,內政部土地測量局,台中, 2004。
    楊名,公分級GPS衛星即時動態定位系統,測量工程,第三十九卷,第四期,第1-18頁,1997。
    楊名、余致義,即時動態GPS應用於控制測量與戶地測量之設計與實驗,地籍測量,第十六卷,第四期,第1-32頁,1997。
    楊名、唐進賢,10-50公里即時動態GPS演算法之設計與評估,測量工程,第四十卷,第一期,第5-22頁,2000。
    葉大綱、黃勢芳、陳春盛,結合泛歐數位式行動電話系統應用於GPS精密動態定位,測量工程,第44卷,第4期,第127-142,2002。
    蕭志書,快速強鈍即時GPS動態測量系統之研究,國立成功大學測量工程碩士論文,台南,1995。
    Brinker, R. C., and R. Minnick, The surveying handbook. Second Edition, Chapman and Hall, New York, 1995.
    Chen, H. Y., From simulation to practical: Medium-range, Low-cost densification of permanent GPS network in geodetic application. Journal of Geodesy, 75(9-10), 515-526, 2000.
    Fotopoulos, G., and M. E. Cannon, An overview of multi-reference station methods for cm-level positioning, GPS Solutions, 4, 3, 1-10, 2001.
    Gelb, A.(Eds.), Applied optimal estimation, The M.I.T. Press, Cambridge, Massachusetts, and London, England, 1979.
    Goad, C., and L. Goodman, A modified hopfield tropospheric refraction correction Model, Proceedings of the Fall Annual Meeting of the American Geophysical Union, San Francisco, California, 1974.
    Goad, C., and M. Yang, A new approach to precision air bone GPS positioning for photogrammetry, Photogrammetric Engineering and Remote Sensing, 63, 9, 1067-1077, 1997.
    Han, S. W., and C. Rizos, GPS network design and error mitigation for real-time continuous array monitoring system. Institution of Navigation GPS 96, 1827-1836, 1996.
    Han, S. W., and C. Rizos, An instantaneous ambiguity resolution technique for medium-range GPS kinematics positioning. Institution of Navigation GPS 97, 1789-1801, 1997.
    Han, S. W., Carrier phase-based long-range GPS kinematic positioning, The University of New South Wales, 1997.
    Hatch, R., Instantaneous ambiguity resolution, Proceedings of IAG international symposium N0.107 on kinematics system in Geodesy, Surveying and Remote Sensing, pp.299-308, 1990.
    Hiromune, N., Development and experimental study of a network-based RTK-GPS positioning system using a satellite communication line, Electronics and Communications in Japan, Part 1, 89, No. 9, 2006.
    Hopfield, H. S., Two-quartic troposphere refractivity profile for correcting satellite data. Journal of Geophysical Research, 74(18), 4487-4499, 1969.
    Hu, G. R., H. S. Khoo, P. C. Goh, and C. L. Law, Development and assessment of GPS virtual reference stations for RTK positioning, Journal of Geodesy, 77, 5-6, 292-302, 2003.
    Hugentobler, U., S. Schaer, and P. Fridez,(Eds.), Bernese GPS software version 4.2, Astronomical Institute, University of Berne, 515 pp, 2001.
    Jonsson, B., G. Hedling, and P. Wiklund, Some experiences of network-RTK in the SWEPOS™ network, 2003.
    Kashani, I., Towards instantaneous network-base RTK GPS over 100km distance, 2003.
    Landau, H., GPS/GLONASS reference station network, introduce the concept of virtual reference station in real-time positioning. GPS Network 2000, 2000.
    Leick, A., GPS satellite surveying. Second Edition, John Wiley and Sons, New York, 1995.
    Marel, H., Virtual reference stations in Netheland. Institution of Navigation GPS 2000, 49-58, 1999.
    Raquet, J. and G. Lachapelle, Development and testing of a kinematic carrier-phase ambiguity resolution method using a reference receiver network, Navigation, Journal of the Institute of Navigation, 46, 4, 283-295, 1999.
    Seeber, G., Satellite Geodesy: Foundations, Methods, and applications. Walter de Gruyter and Co., Berlin, Germany, 1993.
    Vollath, U., A. Buecherl, H. Langau, C. Pagels, and B. Wanger,(2000a), Multi-base RTK positioning using virtual reference stations,Spectra Precision Terrasat GmbH. Institution Of Navigation GPS 2000, 123-131.
    Vollath, U., A. Buecherl, H. Langau, C. Pagels, and B. Wanger,(2000a), Long-range RTK positioning using virtual reference stations,Spectra Precision Terrasat GmbH. Institution Of Navigation GPS 2000, 1143-1147.
    Wanninger, L., The performance of virtual reference stations in active geodetic GPS-networks under solar maximum conditions。Institution of Navigation GPS 99, 1-9, 1999.
    Wanninger, L., Virtual reference stations for centimeter-level kinematic positioning, Proceedings of ION GPS 2002, Portland, OR,1400-1408, September 24-27, 2002.
    Wells, D. E., N. Beck, D. Delikaraoglou, A. Kleusberg, E.J. Krakiswsky, G. Lachapelle, R.B. Langley, M. Nakiboglou, K.P. Schwarz, J. Tranquilla, and P. Vanicek, Guide to GPS positioning, Canadian GPS Associates, Fredericton, New Brunswick, Canada, 1986.
    Wübbena, G., A. Bagge, and M. Schmitz, RTK networks based on Geo++® GNSMART-Concepts, Implementation, Results,Proceedings of ION GPS 2001, Salt Lake City, Utah, 368-378, September 11-14, 2001.

    下載圖示 校內:2008-08-22公開
    校外:2008-08-22公開
    QR CODE