| 研究生: |
薛逸齊 Syue, Yi-Ci |
|---|---|
| 論文名稱: |
梁柱剪力接頭構架之高溫數值模擬 Numerical Simulations for the Beam-to-Column Shear Connections at Elevated Temperatures |
| 指導教授: |
鍾興陽
Chung, Hsin-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 251 |
| 中文關鍵詞: | 有限元素 、剪力接頭構架 、高溫 、懸垂效應 、軸力 、耐火鋼 |
| 外文關鍵詞: | Finite-Element Method, Shear Connection Frames, Elevated Temperatures, Catenary Effect, Axial Force, Fire-Resistant Steel |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是利用三維非線性有限元素程式,進行梁柱剪力接頭構架之高溫數值模擬,探討不同載重、梁長、初始冷卻溫度、剪力片厚度、螺栓孔數和鋼板邊界水平距離等五種參數對於整體梁柱剪力接頭構架在高溫火害下結構行為之影響,並觀察整體構架在升溫過程中剪力接頭受力變化的情形與鋼梁發生懸垂效應後構架與接頭的破壞模式,進而歸納出梁柱剪力接頭構架在高溫火害下的破壞機制,此外,藉由此破壞機制研究所獲得之結論,本論文更積極利用耐火鋼和其他接頭補強方法針對梁柱剪力接頭構架進行補強,並探討這些補強方法對於構架耐火性能提升之可行性,找出最具有經濟效益之補強方法。研究結果顯示:鋼梁在高溫下之勁度對於剪力接頭構架之耐火性能影響甚鉅,提升鋼梁在高溫下的勁度將可降低鋼梁在高溫變形下的撓度,進而提升鋼梁進入懸垂效應的破壞溫度,間接提升構架剪力接頭的耐火性能,若只增強剪力接頭處之強度,對於整體構架耐火性能的提升有限,另外若將耐火鋼補強於鋼梁中點處,將能大幅提升剪力接頭構架在高溫下之耐火性能。
This thesis utilized three-dimensional nonlinear finite-element program to perform numerical simulations of steel beam-to-column shear connection frames at elevated temperatures. The influences of five kinds of parameters, including beam loading, beam length, initial cooling temperature, shear plate thickness, bolt number and horizontal edge distance of bolt hole, to the structural behaviors of shear connection frames at elevated temperatures were discussed. The internal force variations of shear connections at elevated temperatures and the failure modes of shear connection frames after the occurrence of catenary effect were carefully investigated to understand the failure mechanisms of shear connection frames in fire. This thesis also employed fire-resistant steel and the other methods to strengthen the shear connection frames in high temperatures using the findings from failure mechanism study. The feasibility of using these high temperature strengthening methods to improve the fire-resistant performance of shear connection frames were studied through finite element simulations. The numerical simulation results showed that the stiffness of steel beam in high temperatures significantly affected the fire-resistant performance of shear connection frame. Improving the stiffness of steel beam reduced the beam deflection in high temperatures and therefore increased the failure temperature of steel beam, which is defined by the high temperature entering catenary effect, and fire-resistant performance of shear connections. Only strengthening the shear connections had limited fire-resistant improvement for the whole steel frame. Besides, using fire-resistant steel in the middle section of a steel beam greatly enhanced the fire-resistant performance of shear connection frame in high temperatures.
Astaneh-Asl A, Liu J, McMullin KM, “Behavior and Design of Single Plate Shear Connections” Journal of Constructional Steel Research, Vol. 58, pp.1121-1141, (2002).
ABAQUS, HTML Documentation, User’s Manuel Version 6.8, Dassault Systèmes Simulia Corp., Providence, RI, USA, (2008)
British Standard Institution (BSI), “British Standard BS476, Part 20: Method for Determination of the Fire Resistance of Elements of Construction”, London, (1987).
ISO 834-1, “Fire-Resistance Tests, Elements of Building Construction-Part 1:General Requirements,” (1999).
Liu T.C.H., Fahad M.K., and Davies J.M., “Experimental Investigation of Behaviour of Axially Restrained Steel Beams in Fire,” Journal of Constructional Steel Research, Vol. 58, pp.1211–1230, (2002).
Li, G. Q., and Guo, S. X., “Experiment on Restrained Steel Beams Subjected to Heating and Cooling,” Journal of Constructional Steel Research, Vol. 64, pp.268-274, (2008).
Luecke W.E., McCowan C.N., and Banovic S.W., “Mechanical Properties of Structural Steels,” Federal Building and Fire Safety Investigation of the World Trade Center Disaster, National institute of Standards and Technology, (2005).
Qian, Z. H.; Tan, K. H. and Burgess, I. W., “Behavior of Steel Beam-to-Column Joints at Elevated Temperature: Experimental Investigation,” Journal of Structural Engineering, Vol. 134, No.5, pp.713-726, (2008).
Sarraj M., Burgess I.W., Davison J.B., and Plank R.J., “Finite Element Modelling of Fin Plate Steel Connections in Fire,” Fire Safety Journal, Vol. 42, pp.408-415, (2006).
Sarraj M, Burgess IW, Davison JB, and Plankb RJ, “Finite Element Analysis and Modeling of Structure with Bolted Joints” Applied Mathematical Modelling, Vol. 31, pp.895-911, (2007).
Tan K.H. and Huang Z.F., “Structural Responses of Axially Restrained Steel Beams with Semirigid Moment Connection in Fire,” Journal of Structural Engineering, Vol. 131, No. 4, pp.541-551, (2005).
Yin Y.Z. and Wang Y.C., “A numerical Study of Large Deflection Behavior of Restrained Steel Beams at Elevated Temperatures,” Journal of Constructional Steel Research , Vol. 60, pp.1029-1047, (2004).
Yin Y.Z. and Wang Y.C., “Analysis of Catenary Action in Steel Beams Using a Simplified Hand Calculation Method, Part 1: Theory and Validation for Uniform Temperature Distribution,” Journal of constructional steel research, Vol. 61, pp.183-211, (2005).
中華民國結構工程學會「鋼結構設計手冊(極限設計法)」,科技圖書股份有限公司,(2005)。
方朝俊,「火害對耐火鋼構件銲接及栓接行為影響」,國立台灣科技大學營建學工程系,碩士論文,台北(2000)
林子賓,「高溫下螺栓孔承壓能力之研究」,國立成功大學土木工程學系,台南(2006)。
林日增,「H型梁-箱型柱耐火彎矩接頭高溫行為之數值模擬」,國立成功大學土木工程學系,台南(2008)。
林振吉,「H型梁-箱型柱彎矩接頭之火害行為研究」,國立成功大學土木工程學系,台南(2008)。
吳家豪,「補強式梁柱韌性接頭高溫抗彎行為之數值模擬」,國立成功大學土木工程學系,台南(2009)。
周俊融,「剪力片接頭於高溫下之破壞分析」,國立成功大學土木工程學系,台南(2009)。
洪健晉,「高強度螺栓於高溫下之抗剪行為量測與數值模擬」,國立成功大學土木工程學系,台南(2008)。
陳諺輝,「螺栓孔於高溫下承壓行為之量測與數值分析」,國立成功大學土木工程學系,台南(2006)。
陳景智,「實尺寸H型鋼構架高溫火害行為之數值模擬」,國立成功大學土木工程學系,台南(2009)。
愛發股份有限公司編著,「ABAQUS實務入門引導」,全華科技圖書股份有限公司印行,台北(2005)。
蘇文傑,「實尺寸H型梁-箱型柱彎矩接頭之火害實驗研究」,國立成功大學土木工程學系,台南(2008)。
校內:2015-08-30公開