| 研究生: |
徐惠得 Syalindra, Wita |
|---|---|
| 論文名稱: |
鐵金屬有機骨架及其衍生物之製備與特性研究 Preparation and Characterization of Fe-MOF and Its Derivatives |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 光催化 、亞甲基藍 (MB) 、UV光 、MIL-100(Fe) 、FeO /Fe3O4/Fe3C 、氧化鐵 |
| 外文關鍵詞: | Photocatalysis, Methylene blue (MB), UV-light, MIL-100 (Fe), FeO/Fe3O4/Fe3C, Iron oxides, MOFs derived |
| 相關次數: | 點閱:82 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此研究中,藉由MIL-100(Fe)的一步還原鍛燒,成功製備出FeO/Fe3O4/Fe3C磁性複合物。此複合物保有原MIL-100(Fe)的形態,並且具備磁力和吸收紫外光的特性。因此本研究藉由在紫外光下降解亞甲藍(methylene blue, MB)來證實FeO/Fe3O4/Fe3C複合物的光觸媒性能。結果發現此複合物在中性環境下具備優良的光觸媒性能,且此吸附/催化複合程序可以Langmuir–Hinshelwood模型來描述。藉由相關速率常數與平衡常數的決定,顯示所得FeO/Fe3O4/Fe3C複合材料作為可磁性回收之光觸媒,在染料廢水處理有良好的應用潛力
In this study, the FeO/Fe3O4/Fe3C magnetic composite has been successfully prepared by the one-step reductive calcination of MIL-100(Fe). The FeO/ Fe3O4/Fe3C composite had the morphology inherited from the pristine MIL-100 (Fe), could be separated using a magnet and exhibited strong absorption in the ultra-violet (UV) region. Its photocatalytic performance was demonstrated by investigating its capability for the photocatalytic degradation of methylene blue (MB) under UV light irradiation. It was found that the FeO/Fe3O4/Fe3C composite had a better photocatalytic performance at near-neutral solution pH value. Also, the adsorption/catalysis combined process could be described by the Langmuir–Hinshelwood kinetic model. The corresponding rate constant and equilibrium constant was determined. This revealed that the resulting FeO/Fe3O4/Fe3C composite had potential as the magnetically recoverable photocatalyst in the treatment of textile printing and dyeing wastewaters.
[1] J. Hao, X. Xu, H. Fei, L. Li, and B. Yan, “Functionalization of Metal-Organic Frameworks for Photoactive Materials,” Advanced Materials, vol. 30, no. 17, pp. e1705634, Apr, 2018.
[2] G. Maurin, C. Serre, A. Cooper, and G. Ferey, “The new age of MOFs and of their porous-related solids,” Chemical Society Reviews, vol. 46, no. 11, pp. 3104-3107, Jun 6, 2017.
[3] H. C. Zhou, J. R. Long, and O. M. Yaghi, “Introduction to metal-organic frameworks,” Chemical Reviews, vol. 112, no. 2, pp. 673-4, Feb 8, 2012.
[4] Y. Georgiou, J. A. Perman, A. B. Bourlinos, and Y. Deligiannakis, “Highly Efficient Arsenite [As(III)] Adsorption by an [MIL-100(Fe)] Metal–Organic Framework: Structural and Mechanistic Insights,” The Journal of Physical Chemistry C, vol. 122, no. 9, pp. 4859-4869, 2018.
[5] K. K. Gangu, S. Maddila, S. B. Mukkamala, and S. B. Jonnalagadda, “A review on contemporary Metal–Organic Framework materials,” Inorganica Chimica Acta, vol. 446, pp. 61-74, 2016.
[6] A. Dhakshinamoorthy, Z. Li, and H. Garcia, “Catalysis and photocatalysis by metal organic frameworks,” Chemical Society Reviews, vol. 47, no. 22, pp. 8134-8172, Nov 12, 2018.
[7] I. Chorkendorff, and J. W. Niemantsverdriet, Concepts of modern catalysis and kinetics, second ed., Weinheim Wiley-VCH, 2007.
[8] M. L. Personick, M. M. Montemore, E. Kaxiras, R. J. Madix, J. Biener, and C. M. Friend, “Catalyst design for enhanced sustainability through fundamental surface chemistry,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2061, Feb 28, 2016.
[9] H. Furukawa, K. E. Cordova, M. O'Keeffe, and O. M. Yaghi, “The chemistry and applications of metal-organic frameworks,” Science, vol. 341, no. 6149, pp. 1230444, Aug 30, 2013.
[10] J. Heveling, “Heterogeneous Catalytic Chemistry by Example of Industrial Applications,” Journal of Chemical Education, vol. 89, no. 12, pp. 1530-1536, 2012.
[11] S. Wacławek, V. V. T. Padil, and M. Černík, “Major Advances and Challenges in Heterogeneous Catalysis for Environmental Applications: A Review,” Ecological Chemistry and Engineering S, vol. 25, no. 1, pp. 9-34, 2018.
[12] J. Zhang, B. Tian, L. Wang, M. Xing, and J. Lei, " Photocatalysis. Fundamentals, Materials and Applications," Springer Nature Singapore Pte Ltd, 2018.
[13] S. N. Ahmed, and W. Haider, “Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review,” Nanotechnology, vol. 29, no. 34, pp. 342001, Aug 24, 2018.
[14] J. D. Xiao, and H. L. Jiang, “Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis,” Accounts of Chemical Research, vol. 52, no. 2, pp. 356-366, Feb 19, 2019.
[15] J. Bedia, V. Muelas-Ramos, M. Peñas-Garzón, A. Gómez-Avilés, J. J. Rodríguez, and C. Belver, “A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification,” Catalysts, vol. 9, no. 1, 2019.
[16] P. Horcajada, S. Surble, C. Serre, D. Y. Hong, Y. K. Seo, J. S. Chang, J. M. Greneche, I. Margiolaki, and G. Ferey, “Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores,” Chemical Communications, no. 27, pp. 2820-2, Jul 19, 2007.
[17] S. Abdpour, E. Kowsari, M. R. Alavi Moghaddam, L. Schmolke, and C. Janiak, “MIL-100(Fe) nanoparticles supported on urchin like Bi2S3 structure for improving photocatalytic degradation of rhodamine-B dye under visible light irradiation,” Journal of Solid State Chemistry, vol. 266, pp. 54-62, 2018.
[18] J. Tang, and J. Wang, “Fe-based metal organic framework/graphene oxide composite as an efficient catalyst for Fenton-like degradation of methyl orange,” RSC Advances, vol. 7, no. 80, pp. 50829-50837, 2017.
[19] H. U. Rasheed, X. Lv, S. Zhang, W. Wei, N. ullah, and J. Xie, “Ternary MIL-100(Fe)@Fe3O4/CA magnetic nanophotocatalysts (MNPCs): Magnetically separable and Fenton-like degradation of tetracycline hydrochloride,” Advanced Powder Technology, vol. 29, no. 12, pp. 3305-3314, 2018.
[20] X. Ma, S. Wen, X. Xue, Y. Guo, J. Jin, W. Song, and B. Zhao, “Controllable Synthesis of SERS-Active Magnetic Metal-Organic Framework-Based Nanocatalysts and Their Application in Photoinduced Enhanced Catalytic Oxidation,” ACS Applied Materials & Interfaces, vol. 10, no. 30, pp. 25726-25736, Aug 1, 2018.
[21] N. M. Mahmoodi, J. Abdi, M. Oveisi, M. Alinia Asli, and M. Vossoughi, “Metal-organic framework (MIL-100 (Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling,” Materials Research Bulletin, vol. 100, pp. 357-366, 2018.
[22] B. Xu, Z. Chen, B. Han, and C. Li, “Glycol assisted synthesis of MIL-100(Fe) nanospheres for photocatalytic oxidation of benzene to phenol,” Catalysis Communications, vol. 98, pp. 112-115, 2017.
[23] K. Guesh, C. A. D. Caiuby, Á. Mayoral, M. Díaz-García, I. Díaz, and M. Sanchez-Sanchez, “Sustainable Preparation of MIL-100(Fe) and Its Photocatalytic Behavior in the Degradation of Methyl Orange in Water,” Crystal Growth & Design, vol. 17, no. 4, pp. 1806-1813, 2017.
[24] B. Yuan, X. Wang, X. Zhou, J. Xiao, and Z. Li, “Novel room-temperature synthesis of MIL-100(Fe) and its excellent adsorption performances for separation of light hydrocarbons,” Chemical Engineering Journal, vol. 355, pp. 679-686, 2019.
[25] P. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C. Huang, G. X. Xie, and Z. F. Liu, “Use of iron oxide nanomaterials in wastewater treatment: a review,” Science of the Total Environment, vol. 424, pp. 1-10, May 1, 2012.
[26] S. H. Huo, H. Y. An, J. Yu, X. F. Mao, Z. Zhang, L. Bai, Y. F. Huang, and P. X. Zhou, “Pyrolytic in situ magnetization of metal-organic framework MIL-100 for magnetic solid-phase extraction,” Journal of Chromatography A, vol. 1517, pp. 18-25, Sep 29, 2017.
[27] K. Wang, M. Chen, Z. He, L.-a. Huang, S. Zhu, S. Pei, J. Guo, H. Shao, and J. Wang, “Hierarchical Fe3O4@C nanospheres derived from Fe2O3/MIL-100(Fe) with superior high-rate lithium storage performance,” Journal of Alloys and Compounds, vol. 755, pp. 154-162, 2018.
[28] J. Tang, and J. Wang, “Fenton-like degradation of sulfamethoxazole using Fe-based magnetic nanoparticles embedded into mesoporous carbon hybrid as an efficient catalyst,” Chemical Engineering Journal, vol. 351, pp. 1085-1094, 2018.
[29] Z. Wang, J. Yang, Y. Li, Q. Zhuang, and J. Gu, “In situ Carbothermal Synthesis of Nanoscale Zero-Valent Iron Functionalized Porous Carbon from Metal-Organic Frameworks for Efficient Detoxification of Chromium(VI),” European Journal of Inorganic Chemistry, vol. 2018, no. 1, pp. 23-30, 2018.
[30] W. U. N. W. W. A. Programme)/UN-Water, The United Nations World Water Development Report 2018: Nature-Based Solutions for Water, Paris: United Nations Educational, Scientific and Cultural Organization, 2018.
[31] P. D. J. Hagen, Industrial Catalysis: A Practical Approach, Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA,, 2006.
[32] K. P. d. Jong, Synthesis of Solid Catalysts, Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2009.
[33] H. S. Fogler, Elements of Chemical Reaction Engineering, Fourth ed., United States: Prentice Hall Professional Technical Reference, 2006.
[34] D. I. Kondarides. "CATALYSIS – Photocatalysis," http://www.eolss.net/Sample-Chapters/C06/E6-190-16-00.pdf.
[35] C. Chen, W. Ma, and J. Zhao, “Semiconductor-mediated photodegradation of pollutants under visible-light irradiation,” Chemical Society Reviews, vol. 39, no. 11, pp. 4206-19, Nov, 2010.
[36] M. A. Rauf, and S. S. Ashraf, “Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution,” Chemical Engineering Journal, vol. 151, no. 1-3, pp. 10-18, 2009.
[37] D. Wang, and Z. Li, “Iron-based metal–organic frameworks (MOFs) for visible-light-induced photocatalysis,” Research on Chemical Intermediates, vol. 43, no. 9, pp. 5169-5186, 2017.
[38] X. Liu, Y. Zhou, J. Zhang, L. Tang, L. Luo, and G. Zeng, “Iron Containing Metal-Organic Frameworks: Structure, Synthesis, and Applications in Environmental Remediation,” ACS Applied Materials & Interfaces, vol. 9, no. 24, pp. 20255-20275, Jun 21, 2017.
[39] Y.-F. Huang, M. Liu, Y.-Q. Wang, Y. Li, J.-M. Zhang, and S.-H. Huo, “Hydrothermal synthesis of functionalized magnetic MIL-101 for magnetic enrichment of estrogens in environmental water samples,” RSC Advances, vol. 6, no. 19, pp. 15362-15369, 2016.
[40] H. Zhao, L. Qian, H. Lv, Y. Wang, and G. Zhao, “Introduction of a Fe3O4Core Enhances the Photocatalytic Activity of MIL-100(Fe) with Tunable Shell Thickness in the Presence of H2O2,” ChemCatChem, vol. 7, no. 24, pp. 4148-4155, 2015.
[41] F. Ke, L.-G. Qiu, Y.-P. Yuan, X. Jiang, and J.-F. Zhu, “Fe3O4@MOF core–shell magnetic microspheres with a designable metal–organic framework shell,” Journal of Materials Chemistry, vol. 22, no. 19, 2012.
[42] L. Pang, P. Yang, H. Yang, L. Ge, J. Xiao, and Y. Zhou, “Application of Fe3O4@MIL-100 (Fe) core-shell magnetic microspheres for evaluating the sorption of organophosphate esters to dissolved organic matter (DOM),” Science of the Total Environment, vol. 626, pp. 42-47, Jun 1, 2018.
[43] J. W. Yoon, Y. K. Seo, Y. K. Hwang, J. S. Chang, H. Leclerc, S. Wuttke, P. Bazin, A. Vimont, M. Daturi, E. Bloch, P. L. Llewellyn, C. Serre, P. Horcajada, J. M. Greneche, A. E. Rodrigues, and G. Ferey, “Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption,” Angewandte Chemie International Edition, vol. 49, no. 34, pp. 5949-52, Aug 9, 2010.
[44] Y.-Z. Chen, R. Zhang, L. Jiao, and H.-L. Jiang, “Metal–organic framework-derived porous materials for catalysis,” Coordination Chemistry Reviews, vol. 362, pp. 1-23, 2018.
[45] D. Chen, S. Chen, Y. Jiang, S. Xie, H. Quan, L. Hua, X. Luo, and L. Guo, “Heterogeneous Fenton-like catalysis of Fe-MOF derived magnetic carbon nanocomposites for degradation of 4-nitrophenol,” RSC Advances, vol. 7, no. 77, pp. 49024-49030, 2017.
[46] L. Cui, D. Zhao, Y. Yang, Y. Wang, and X. Zhang, “Synthesis of highly efficient α-Fe2O3 catalysts for CO oxidation derived from MIL-100(Fe),” Journal of Solid State Chemistry, vol. 247, pp. 168-172, 2017.
[47] Z. Liu, J. Chen, Y. Wu, Y. Li, J. Zhao, and P. Na, “Synthesis of magnetic orderly mesoporous alpha-Fe2O3 nanocluster derived from MIL-100(Fe) for rapid and efficient arsenic(III,V) removal,” Journal of Hazardous Materials, vol. 343, pp. 304-314, Feb 5, 2018.
[48] C. D. Raman, and S. Kanmani, “Textile dye degradation using nano zero valent iron: A review,” Journal of Environmental Management, vol. 177, pp. 341-55, Jul 15, 2016.
[49] B. Liu, X. Zhao, C. Terashima, A. Fujishima, and K. Nakata, “Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems,” Physical Chemistry Chemical Physics, vol. 16, no. 19, pp. 8751-60, May 21, 2014.
[50] P. Chowdhury, J. Moreira, H. Gomaa, and A. K. Ray, “Visible-Solar-Light-Driven Photocatalytic Degradation of Phenol with Dye-Sensitized TiO2: Parametric and Kinetic Study,” Industrial & Engineering Chemistry Research, vol. 51, no. 12, pp. 4523-4532, 2012.
[51] N. F. S. Mott, and E. A. Davis, Electronic processes in non-crystalline materials Oxford : New York: Clarendon Press ; Oxford University Press, 1979.
[52] F. Lu, L. Wen, J. Li, J. Wei, J. Xu, and S. Zhang, “Numerical simulation of iron whisker growth with changing oxygen content in iron oxide using phase-field method,” Computational Materials Science, vol. 125, pp. 263-270, 2016.
[53] X. Yang, C. Li, J. Huang, Y. Liu, W. Chen, J. Shen, Y. Zhu, and C. Li, “Nitrogen-doped Fe3C@C particles as an efficient heterogeneous photo-assisted Fenton catalyst,” RSC Advances, vol. 7, no. 25, pp. 15168-15175, 2017.
[54] Y.-F. Zhang, L.-G. Qiu, Y.-P. Yuan, Y.-J. Zhu, X. Jiang, and J.-D. Xiao, “Magnetic Fe3O4@C/Cu and Fe3O4@CuO core–shell composites constructed from MOF-based materials and their photocatalytic properties under visible light,” Applied Catalysis B: Environmental, vol. 144, pp. 863-869, 2014.
[55] C. Xiao, J. Li, and G. Zhang, “Synthesis of stable burger-like α-Fe2O3 catalysts: Formation mechanism and excellent photo-Fenton catalytic performance,” Journal of Cleaner Production, vol. 180, pp. 550-559, 2018.
[56] D. Ao, J. Zhang, and H. Liu, “Visible-light-driven photocatalytic degradation of pollutants over Cu-doped NH2-MIL-125(Ti),” Journal of Photochemistry and Photobiology A: Chemistry, vol. 364, pp. 524-533, 2018.
[57] J. Yang, X. Niu, S. An, W. Chen, J. Wang, and W. Liu, “Facile synthesis of Bi2MoO6–MIL-100(Fe) metal–organic framework composites with enhanced photocatalytic performance,” RSC Advances, vol. 7, no. 5, pp. 2943-2952, 2017.
[58] J. Hong, C. Chen, F. E. Bedoya, G. H. Kelsall, D. O'Hare, and C. Petit, “Carbon nitride nanosheet/metal–organic framework nanocomposites with synergistic photocatalytic activities,” Catalysis Science & Technology, vol. 6, no. 13, pp. 5042-5051, 2016.
[59] M. Zhang, L. Wang, T. Zeng, Q. Shang, H. Zhou, Z. Pan, and Q. Cheng, “Two pure MOF-photocatalysts readily prepared for the degradation of methylene blue dye under visible light,” Dalton Trans, vol. 47, no. 12, pp. 4251-4258, Mar 28, 2018.
[60] M. Qiu, R. Wang, and X. Qi, “Hollow polyhedral α-Fe2O3 prepared by self-assembly and its photocatalytic activities in degradation of RhB,” Journal of the Taiwan Institute of Chemical Engineers, vol. 102, pp. 394-402, 2019.
[61] S. Wu, X. Shen, G. Zhu, H. Zhou, Z. Ji, K. Chen, and A. Yuan, “Synthesis of ternary Ag/ZnO/ZnFe2O4 porous and hollow nanostructures with enhanced photocatalytic activity,” Applied Catalysis B: Environmental, vol. 184, pp. 328-336, 2016.
[62] W. Xiong, Z. Zeng, G. Zeng, Z. Yang, R. Xiao, X. Li, J. Cao, C. Zhou, H. Chen, M. Jia, Y. Yang, W. Wang, and X. Tang, “Metal-organic frameworks derived magnetic carbon-αFe/Fe3C composites as a highly effective adsorbent for tetracycline removal from aqueous solution,” Chemical Engineering Journal, vol. 374, pp. 91-99, 2019.
[63] W. Huang, F. Wang, N. Qiu, X. Wu, C. Zang, A. Li, and L. Xu, “Enteromorpha prolifera-derived Fe3C/C composite as advanced catalyst for hydroxyl radical generation and efficient removal for organic dye and antibiotic,” J Hazard Mater, vol. 378, pp. 120728, Jun 3, 2019.
[64] R. López de Arroyabe Loyo, S. I. Nikitenko, A. C. Scheinost, and M. Simonoff, “Immobilization of Selenite on Fe3O4and Fe/Fe3C Ultrasmall Particles,” Environmental Science & Technology, vol. 42, no. 7, pp. 2451-2456, 2008.