簡易檢索 / 詳目顯示

研究生: 徐惠得
Syalindra, Wita
論文名稱: 鐵金屬有機骨架及其衍生物之製備與特性研究
Preparation and Characterization of Fe-MOF and Its Derivatives
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 80
中文關鍵詞: 光催化亞甲基藍 (MB)UV光MIL-100(Fe)FeO /Fe3O4/Fe3C氧化鐵
外文關鍵詞: Photocatalysis, Methylene blue (MB), UV-light, MIL-100 (Fe), FeO/Fe3O4/Fe3C, Iron oxides, MOFs derived
相關次數: 點閱:82下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此研究中,藉由MIL-100(Fe)的一步還原鍛燒,成功製備出FeO/Fe3O4/Fe3C磁性複合物。此複合物保有原MIL-100(Fe)的形態,並且具備磁力和吸收紫外光的特性。因此本研究藉由在紫外光下降解亞甲藍(methylene blue, MB)來證實FeO/Fe3O4/Fe3C複合物的光觸媒性能。結果發現此複合物在中性環境下具備優良的光觸媒性能,且此吸附/催化複合程序可以Langmuir–Hinshelwood模型來描述。藉由相關速率常數與平衡常數的決定,顯示所得FeO/Fe3O4/Fe3C複合材料作為可磁性回收之光觸媒,在染料廢水處理有良好的應用潛力

    In this study, the FeO/Fe3O4/Fe3C magnetic composite has been successfully prepared by the one-step reductive calcination of MIL-100(Fe). The FeO/ Fe3O4/Fe3C composite had the morphology inherited from the pristine MIL-100 (Fe), could be separated using a magnet and exhibited strong absorption in the ultra-violet (UV) region. Its photocatalytic performance was demonstrated by investigating its capability for the photocatalytic degradation of methylene blue (MB) under UV light irradiation. It was found that the FeO/Fe3O4/Fe3C composite had a better photocatalytic performance at near-neutral solution pH value. Also, the adsorption/catalysis combined process could be described by the Langmuir–Hinshelwood kinetic model. The corresponding rate constant and equilibrium constant was determined. This revealed that the resulting FeO/Fe3O4/Fe3C composite had potential as the magnetically recoverable photocatalyst in the treatment of textile printing and dyeing wastewaters.

    TABLE OF CONTENTS ABSTRACT I 中文摘要 II Extended Abstract III ACKNOWLEDGEMENT VII TABLE OF CONTENTS VIII LIST OF FIGURES X LIST OF TABLES XIV CHAPTER 1 1 1. 1. Introduction of Metal-Organic Frameworks (MOFs) 1 1. 2. Catalyst 5 1. 3. Photocatalyst 7 1. 4. MIL-100 (Fe) and its derivatives for catalyst and photocatalyst 11 1. 5. Motivation 16 CHAPTER 2 18 2.1. Catalysis Theory 18 2.2. Photocatalysis Theory 24 2.3. MIL-100 (Fe) and its derivatives for photocatalysis 30 CHAPTER 3 37 3.1. Experimental Chemicals, Equipment, and Materials. 37 3.1.1. Chemicals 37 3.1.2. Equipment 37 3.1.3. Others materials 38 3.2. Preparation Method 39 3.2.1. Preparation of MIL-100 (Fe) nanospheres 39 3.2.2. Preparation of MIL-100 (Fe) derivatives (FeO/Fe3O4/Fe3C) 40 3.3. Analysis and Characterization Method 42 CHAPTER 4 44 4.1. Material Characterization 44 4.1.1. X-Ray Diffraction (XRD) 44 4.1.2. Transmission Electron Microscope (TEM) 47 4.2. Photocatalytic Application 49 4.2.1. Effect of light irradiation 54 4.2.2. Effect of pH 56 4.2.3. Effect of dye concentration 59 4.3. Photocatalytic Mechanism 63 4.4. Stability and recyclability 66 CHAPTER 5 70 REFERENCES 71

    [1] J. Hao, X. Xu, H. Fei, L. Li, and B. Yan, “Functionalization of Metal-Organic Frameworks for Photoactive Materials,” Advanced Materials, vol. 30, no. 17, pp. e1705634, Apr, 2018.
    [2] G. Maurin, C. Serre, A. Cooper, and G. Ferey, “The new age of MOFs and of their porous-related solids,” Chemical Society Reviews, vol. 46, no. 11, pp. 3104-3107, Jun 6, 2017.
    [3] H. C. Zhou, J. R. Long, and O. M. Yaghi, “Introduction to metal-organic frameworks,” Chemical Reviews, vol. 112, no. 2, pp. 673-4, Feb 8, 2012.
    [4] Y. Georgiou, J. A. Perman, A. B. Bourlinos, and Y. Deligiannakis, “Highly Efficient Arsenite [As(III)] Adsorption by an [MIL-100(Fe)] Metal–Organic Framework: Structural and Mechanistic Insights,” The Journal of Physical Chemistry C, vol. 122, no. 9, pp. 4859-4869, 2018.
    [5] K. K. Gangu, S. Maddila, S. B. Mukkamala, and S. B. Jonnalagadda, “A review on contemporary Metal–Organic Framework materials,” Inorganica Chimica Acta, vol. 446, pp. 61-74, 2016.
    [6] A. Dhakshinamoorthy, Z. Li, and H. Garcia, “Catalysis and photocatalysis by metal organic frameworks,” Chemical Society Reviews, vol. 47, no. 22, pp. 8134-8172, Nov 12, 2018.
    [7] I. Chorkendorff, and J. W. Niemantsverdriet, Concepts of modern catalysis and kinetics, second ed., Weinheim Wiley-VCH, 2007.
    [8] M. L. Personick, M. M. Montemore, E. Kaxiras, R. J. Madix, J. Biener, and C. M. Friend, “Catalyst design for enhanced sustainability through fundamental surface chemistry,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2061, Feb 28, 2016.
    [9] H. Furukawa, K. E. Cordova, M. O'Keeffe, and O. M. Yaghi, “The chemistry and applications of metal-organic frameworks,” Science, vol. 341, no. 6149, pp. 1230444, Aug 30, 2013.
    [10] J. Heveling, “Heterogeneous Catalytic Chemistry by Example of Industrial Applications,” Journal of Chemical Education, vol. 89, no. 12, pp. 1530-1536, 2012.
    [11] S. Wacławek, V. V. T. Padil, and M. Černík, “Major Advances and Challenges in Heterogeneous Catalysis for Environmental Applications: A Review,” Ecological Chemistry and Engineering S, vol. 25, no. 1, pp. 9-34, 2018.
    [12] J. Zhang, B. Tian, L. Wang, M. Xing, and J. Lei, " Photocatalysis. Fundamentals, Materials and Applications," Springer Nature Singapore Pte Ltd, 2018.
    [13] S. N. Ahmed, and W. Haider, “Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review,” Nanotechnology, vol. 29, no. 34, pp. 342001, Aug 24, 2018.
    [14] J. D. Xiao, and H. L. Jiang, “Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis,” Accounts of Chemical Research, vol. 52, no. 2, pp. 356-366, Feb 19, 2019.
    [15] J. Bedia, V. Muelas-Ramos, M. Peñas-Garzón, A. Gómez-Avilés, J. J. Rodríguez, and C. Belver, “A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification,” Catalysts, vol. 9, no. 1, 2019.
    [16] P. Horcajada, S. Surble, C. Serre, D. Y. Hong, Y. K. Seo, J. S. Chang, J. M. Greneche, I. Margiolaki, and G. Ferey, “Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores,” Chemical Communications, no. 27, pp. 2820-2, Jul 19, 2007.
    [17] S. Abdpour, E. Kowsari, M. R. Alavi Moghaddam, L. Schmolke, and C. Janiak, “MIL-100(Fe) nanoparticles supported on urchin like Bi2S3 structure for improving photocatalytic degradation of rhodamine-B dye under visible light irradiation,” Journal of Solid State Chemistry, vol. 266, pp. 54-62, 2018.
    [18] J. Tang, and J. Wang, “Fe-based metal organic framework/graphene oxide composite as an efficient catalyst for Fenton-like degradation of methyl orange,” RSC Advances, vol. 7, no. 80, pp. 50829-50837, 2017.
    [19] H. U. Rasheed, X. Lv, S. Zhang, W. Wei, N. ullah, and J. Xie, “Ternary MIL-100(Fe)@Fe3O4/CA magnetic nanophotocatalysts (MNPCs): Magnetically separable and Fenton-like degradation of tetracycline hydrochloride,” Advanced Powder Technology, vol. 29, no. 12, pp. 3305-3314, 2018.
    [20] X. Ma, S. Wen, X. Xue, Y. Guo, J. Jin, W. Song, and B. Zhao, “Controllable Synthesis of SERS-Active Magnetic Metal-Organic Framework-Based Nanocatalysts and Their Application in Photoinduced Enhanced Catalytic Oxidation,” ACS Applied Materials & Interfaces, vol. 10, no. 30, pp. 25726-25736, Aug 1, 2018.
    [21] N. M. Mahmoodi, J. Abdi, M. Oveisi, M. Alinia Asli, and M. Vossoughi, “Metal-organic framework (MIL-100 (Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling,” Materials Research Bulletin, vol. 100, pp. 357-366, 2018.
    [22] B. Xu, Z. Chen, B. Han, and C. Li, “Glycol assisted synthesis of MIL-100(Fe) nanospheres for photocatalytic oxidation of benzene to phenol,” Catalysis Communications, vol. 98, pp. 112-115, 2017.
    [23] K. Guesh, C. A. D. Caiuby, Á. Mayoral, M. Díaz-García, I. Díaz, and M. Sanchez-Sanchez, “Sustainable Preparation of MIL-100(Fe) and Its Photocatalytic Behavior in the Degradation of Methyl Orange in Water,” Crystal Growth & Design, vol. 17, no. 4, pp. 1806-1813, 2017.
    [24] B. Yuan, X. Wang, X. Zhou, J. Xiao, and Z. Li, “Novel room-temperature synthesis of MIL-100(Fe) and its excellent adsorption performances for separation of light hydrocarbons,” Chemical Engineering Journal, vol. 355, pp. 679-686, 2019.
    [25] P. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C. Huang, G. X. Xie, and Z. F. Liu, “Use of iron oxide nanomaterials in wastewater treatment: a review,” Science of the Total Environment, vol. 424, pp. 1-10, May 1, 2012.
    [26] S. H. Huo, H. Y. An, J. Yu, X. F. Mao, Z. Zhang, L. Bai, Y. F. Huang, and P. X. Zhou, “Pyrolytic in situ magnetization of metal-organic framework MIL-100 for magnetic solid-phase extraction,” Journal of Chromatography A, vol. 1517, pp. 18-25, Sep 29, 2017.
    [27] K. Wang, M. Chen, Z. He, L.-a. Huang, S. Zhu, S. Pei, J. Guo, H. Shao, and J. Wang, “Hierarchical Fe3O4@C nanospheres derived from Fe2O3/MIL-100(Fe) with superior high-rate lithium storage performance,” Journal of Alloys and Compounds, vol. 755, pp. 154-162, 2018.
    [28] J. Tang, and J. Wang, “Fenton-like degradation of sulfamethoxazole using Fe-based magnetic nanoparticles embedded into mesoporous carbon hybrid as an efficient catalyst,” Chemical Engineering Journal, vol. 351, pp. 1085-1094, 2018.
    [29] Z. Wang, J. Yang, Y. Li, Q. Zhuang, and J. Gu, “In situ Carbothermal Synthesis of Nanoscale Zero-Valent Iron Functionalized Porous Carbon from Metal-Organic Frameworks for Efficient Detoxification of Chromium(VI),” European Journal of Inorganic Chemistry, vol. 2018, no. 1, pp. 23-30, 2018.
    [30] W. U. N. W. W. A. Programme)/UN-Water, The United Nations World Water Development Report 2018: Nature-Based Solutions for Water, Paris: United Nations Educational, Scientific and Cultural Organization, 2018.
    [31] P. D. J. Hagen, Industrial Catalysis: A Practical Approach, Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA,, 2006.
    [32] K. P. d. Jong, Synthesis of Solid Catalysts, Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 2009.
    [33] H. S. Fogler, Elements of Chemical Reaction Engineering, Fourth ed., United States: Prentice Hall Professional Technical Reference, 2006.
    [34] D. I. Kondarides. "CATALYSIS – Photocatalysis," http://www.eolss.net/Sample-Chapters/C06/E6-190-16-00.pdf.
    [35] C. Chen, W. Ma, and J. Zhao, “Semiconductor-mediated photodegradation of pollutants under visible-light irradiation,” Chemical Society Reviews, vol. 39, no. 11, pp. 4206-19, Nov, 2010.
    [36] M. A. Rauf, and S. S. Ashraf, “Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution,” Chemical Engineering Journal, vol. 151, no. 1-3, pp. 10-18, 2009.
    [37] D. Wang, and Z. Li, “Iron-based metal–organic frameworks (MOFs) for visible-light-induced photocatalysis,” Research on Chemical Intermediates, vol. 43, no. 9, pp. 5169-5186, 2017.
    [38] X. Liu, Y. Zhou, J. Zhang, L. Tang, L. Luo, and G. Zeng, “Iron Containing Metal-Organic Frameworks: Structure, Synthesis, and Applications in Environmental Remediation,” ACS Applied Materials & Interfaces, vol. 9, no. 24, pp. 20255-20275, Jun 21, 2017.
    [39] Y.-F. Huang, M. Liu, Y.-Q. Wang, Y. Li, J.-M. Zhang, and S.-H. Huo, “Hydrothermal synthesis of functionalized magnetic MIL-101 for magnetic enrichment of estrogens in environmental water samples,” RSC Advances, vol. 6, no. 19, pp. 15362-15369, 2016.
    [40] H. Zhao, L. Qian, H. Lv, Y. Wang, and G. Zhao, “Introduction of a Fe3O4Core Enhances the Photocatalytic Activity of MIL-100(Fe) with Tunable Shell Thickness in the Presence of H2O2,” ChemCatChem, vol. 7, no. 24, pp. 4148-4155, 2015.
    [41] F. Ke, L.-G. Qiu, Y.-P. Yuan, X. Jiang, and J.-F. Zhu, “Fe3O4@MOF core–shell magnetic microspheres with a designable metal–organic framework shell,” Journal of Materials Chemistry, vol. 22, no. 19, 2012.
    [42] L. Pang, P. Yang, H. Yang, L. Ge, J. Xiao, and Y. Zhou, “Application of Fe3O4@MIL-100 (Fe) core-shell magnetic microspheres for evaluating the sorption of organophosphate esters to dissolved organic matter (DOM),” Science of the Total Environment, vol. 626, pp. 42-47, Jun 1, 2018.
    [43] J. W. Yoon, Y. K. Seo, Y. K. Hwang, J. S. Chang, H. Leclerc, S. Wuttke, P. Bazin, A. Vimont, M. Daturi, E. Bloch, P. L. Llewellyn, C. Serre, P. Horcajada, J. M. Greneche, A. E. Rodrigues, and G. Ferey, “Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption,” Angewandte Chemie International Edition, vol. 49, no. 34, pp. 5949-52, Aug 9, 2010.
    [44] Y.-Z. Chen, R. Zhang, L. Jiao, and H.-L. Jiang, “Metal–organic framework-derived porous materials for catalysis,” Coordination Chemistry Reviews, vol. 362, pp. 1-23, 2018.
    [45] D. Chen, S. Chen, Y. Jiang, S. Xie, H. Quan, L. Hua, X. Luo, and L. Guo, “Heterogeneous Fenton-like catalysis of Fe-MOF derived magnetic carbon nanocomposites for degradation of 4-nitrophenol,” RSC Advances, vol. 7, no. 77, pp. 49024-49030, 2017.
    [46] L. Cui, D. Zhao, Y. Yang, Y. Wang, and X. Zhang, “Synthesis of highly efficient α-Fe2O3 catalysts for CO oxidation derived from MIL-100(Fe),” Journal of Solid State Chemistry, vol. 247, pp. 168-172, 2017.
    [47] Z. Liu, J. Chen, Y. Wu, Y. Li, J. Zhao, and P. Na, “Synthesis of magnetic orderly mesoporous alpha-Fe2O3 nanocluster derived from MIL-100(Fe) for rapid and efficient arsenic(III,V) removal,” Journal of Hazardous Materials, vol. 343, pp. 304-314, Feb 5, 2018.
    [48] C. D. Raman, and S. Kanmani, “Textile dye degradation using nano zero valent iron: A review,” Journal of Environmental Management, vol. 177, pp. 341-55, Jul 15, 2016.
    [49] B. Liu, X. Zhao, C. Terashima, A. Fujishima, and K. Nakata, “Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems,” Physical Chemistry Chemical Physics, vol. 16, no. 19, pp. 8751-60, May 21, 2014.
    [50] P. Chowdhury, J. Moreira, H. Gomaa, and A. K. Ray, “Visible-Solar-Light-Driven Photocatalytic Degradation of Phenol with Dye-Sensitized TiO2: Parametric and Kinetic Study,” Industrial & Engineering Chemistry Research, vol. 51, no. 12, pp. 4523-4532, 2012.
    [51] N. F. S. Mott, and E. A. Davis, Electronic processes in non-crystalline materials Oxford : New York: Clarendon Press ; Oxford University Press, 1979.
    [52] F. Lu, L. Wen, J. Li, J. Wei, J. Xu, and S. Zhang, “Numerical simulation of iron whisker growth with changing oxygen content in iron oxide using phase-field method,” Computational Materials Science, vol. 125, pp. 263-270, 2016.
    [53] X. Yang, C. Li, J. Huang, Y. Liu, W. Chen, J. Shen, Y. Zhu, and C. Li, “Nitrogen-doped Fe3C@C particles as an efficient heterogeneous photo-assisted Fenton catalyst,” RSC Advances, vol. 7, no. 25, pp. 15168-15175, 2017.
    [54] Y.-F. Zhang, L.-G. Qiu, Y.-P. Yuan, Y.-J. Zhu, X. Jiang, and J.-D. Xiao, “Magnetic Fe3O4@C/Cu and Fe3O4@CuO core–shell composites constructed from MOF-based materials and their photocatalytic properties under visible light,” Applied Catalysis B: Environmental, vol. 144, pp. 863-869, 2014.
    [55] C. Xiao, J. Li, and G. Zhang, “Synthesis of stable burger-like α-Fe2O3 catalysts: Formation mechanism and excellent photo-Fenton catalytic performance,” Journal of Cleaner Production, vol. 180, pp. 550-559, 2018.
    [56] D. Ao, J. Zhang, and H. Liu, “Visible-light-driven photocatalytic degradation of pollutants over Cu-doped NH2-MIL-125(Ti),” Journal of Photochemistry and Photobiology A: Chemistry, vol. 364, pp. 524-533, 2018.
    [57] J. Yang, X. Niu, S. An, W. Chen, J. Wang, and W. Liu, “Facile synthesis of Bi2MoO6–MIL-100(Fe) metal–organic framework composites with enhanced photocatalytic performance,” RSC Advances, vol. 7, no. 5, pp. 2943-2952, 2017.
    [58] J. Hong, C. Chen, F. E. Bedoya, G. H. Kelsall, D. O'Hare, and C. Petit, “Carbon nitride nanosheet/metal–organic framework nanocomposites with synergistic photocatalytic activities,” Catalysis Science & Technology, vol. 6, no. 13, pp. 5042-5051, 2016.
    [59] M. Zhang, L. Wang, T. Zeng, Q. Shang, H. Zhou, Z. Pan, and Q. Cheng, “Two pure MOF-photocatalysts readily prepared for the degradation of methylene blue dye under visible light,” Dalton Trans, vol. 47, no. 12, pp. 4251-4258, Mar 28, 2018.
    [60] M. Qiu, R. Wang, and X. Qi, “Hollow polyhedral α-Fe2O3 prepared by self-assembly and its photocatalytic activities in degradation of RhB,” Journal of the Taiwan Institute of Chemical Engineers, vol. 102, pp. 394-402, 2019.
    [61] S. Wu, X. Shen, G. Zhu, H. Zhou, Z. Ji, K. Chen, and A. Yuan, “Synthesis of ternary Ag/ZnO/ZnFe2O4 porous and hollow nanostructures with enhanced photocatalytic activity,” Applied Catalysis B: Environmental, vol. 184, pp. 328-336, 2016.
    [62] W. Xiong, Z. Zeng, G. Zeng, Z. Yang, R. Xiao, X. Li, J. Cao, C. Zhou, H. Chen, M. Jia, Y. Yang, W. Wang, and X. Tang, “Metal-organic frameworks derived magnetic carbon-αFe/Fe3C composites as a highly effective adsorbent for tetracycline removal from aqueous solution,” Chemical Engineering Journal, vol. 374, pp. 91-99, 2019.
    [63] W. Huang, F. Wang, N. Qiu, X. Wu, C. Zang, A. Li, and L. Xu, “Enteromorpha prolifera-derived Fe3C/C composite as advanced catalyst for hydroxyl radical generation and efficient removal for organic dye and antibiotic,” J Hazard Mater, vol. 378, pp. 120728, Jun 3, 2019.
    [64] R. López de Arroyabe Loyo, S. I. Nikitenko, A. C. Scheinost, and M. Simonoff, “Immobilization of Selenite on Fe3O4and Fe/Fe3C Ultrasmall Particles,” Environmental Science & Technology, vol. 42, no. 7, pp. 2451-2456, 2008.

    下載圖示
    2024-08-22公開
    QR CODE