| 研究生: |
胡孟璇 Hu, Meng-Hsuan |
|---|---|
| 論文名稱: |
探討巨噬細胞中Rab37調控ST2L細胞膜運送於肺癌進程所扮演的角色 Investigate the roles of Rab37 in trafficking of ST2L in macrophage during lung cancer progression |
| 指導教授: |
王憶卿
Wang, Yi-Ching |
| 共同指導教授: |
簡偉明
Kan, Wai-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | Rab37 、ST2L 、IL-33 、巨噬細胞 、肺癌 |
| 外文關鍵詞: | Rab37, ST2L, IL-33, macrophages, lung cancer |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究背景: 腫瘤微環境中的癌細胞與免疫細胞交互作用參與癌症的
進程。我們先前研究結果顯示在初期的癌症上皮細胞中,Rab37 調控
游離的白血球介素1 受體樣1 (soluble interleukin 1 receptor like 1,
ILIRL1, sST2) 的胞吐作用 (exocytosis),使巨噬細胞較易趨化為M1
型態,進而抑制癌症的生長。值得注意的是白血球介素33 (interleukin
33, IL-33) 會與巨噬細胞膜上ILIRL1 的穿膜蛋白 (long form
transmembrane ST2, ST2L) 結合,活化下游訊號傳遞並促進M2 巨噬
細胞的極化,導致促腫瘤生長的微環境。然而,巨噬細胞中的Rab37
是否調控ST2L 的胞外運輸角色仍然不清楚。
研究目的: 因此,本研究探討於肺癌進程中,Rab37 在巨噬細胞中調
控ST2L 的胞吐作用至細胞膜的機制和角色。
研究結果: 根據共聚焦顯微鏡的免疫螢光染色 (immunofluorescence)
結果顯示,Rab37 與ST2L 在巨噬細胞有共定位 (colocalization) 的現
象,所分析的巨噬細胞包括RAW264.7、THP-1、永生的骨髓源性巨
噬細胞immortalized bone marrow derived macrophages (iBMs) 與老鼠
之骨髓源性巨噬細胞 (bone marrow-derived macrophages,BMDMs)。
為了探討Rab37 是否介導ST2L 的胞內運輸,我們在老鼠巨噬細胞株
RAW264.7 之囊泡分離 (vesicle isolation) 實驗中,證明ST2L 的確存
在於Rab37 所調控的囊泡中;重要的是巨噬細胞RAW264.7 中Rab37
以鳥苷核苷酸依賴性的方式 (GTP-dependent manner) 調控ST2L 的
穿膜表現,此ST2L 會與重組的白血球介素33 (interleukin 33, IL-33)
結合,調控NF-κB、p-38 與JNK 的磷酸化,並促進NF-B 的入核,
上述實驗結果確認巨噬細胞中由Rab37 所運送的ST2L 具有功能性。
為了探討ST2L 是否適合作為治療性靶標,我們開發了中和ST2L 及
IL-33 的抗體藥物,實驗證實ST2L 及IL-33 的中和抗體藥物可抑制老
鼠之骨髓源性巨噬細胞 (BMDMs) 中M2 的極化。藉由肺癌病患癌組
織的免疫組織化學分析 (immunohistochemistry analysis),我們發現浸
潤的M2 巨噬細胞中Rab37 與ST2L 之間的相關性相較於初期的肺癌
病人,在末期的肺癌病人有更高的相關性。
研究結論:我們的結果顯示Rab37 介導ST2L 的穿膜運輸,Rab37/ST2L
路徑也趨化巨噬細胞走向M2 促腫瘤生長的型態,腫瘤浸潤M2 巨噬
細胞共定位Rab37 及ST2 可能為臨床惡化的證據。
Background: Macrophages in the tumor microenvironment play
important roles in modulating tumor growth and metastasis. In our
previous study, Rab37 small GTPase in early stage cancer epithelial cells,
functions as a modulator of macrophage polarization via regulating the
exocytosis of soluble interleukin 1 receptor like 1 (soluble IL1RL1, also
named as sST2), resulting in the preferential shift of macrophages
phenotype from M2-like to M1-like, and thereby inhibiting tumor growth.
Notably, IL-33 binds to transmembrane form of ILIRL1 (also named
ST2L) that are generally located on the plasma membrane (PM) of
macrophages to activate downstream signaling and skews polarization of
M2 macrophages leading to pro-tumor microenvironment. However, the
role of Rab37 in trafficking of ST2L in macrophages is not well
understood.
Purpose: Our aims are to investigate the role and mechanism of Rab37 in
trafficking of ST2L on the cell membrane of macrophage in promoting
lung cancer progression.
Results: We found colocalization of Rab37 and ST2L in an
IL-33-dependent manner in macrophage cell lines RAW264.7, THP-1,
and immortalized bone marrow derived macrophages (iBMs) and ex vivo
isolated bone marrow derived macrophages (BMDMs) by confocal
microscopy. To investigate whether Rab37 was involved in ST2L
intracellular trafficking, vesicle isolation results showed the presence of
ST2L in Rab37-specific vesicles. Importantly, we found that the level of
ST2L in PM presentation on RAW264.7 cells was more in Rab37
wild-type (WT) and constitutively active form (Q89L) expressing cells
than that in control and dominant negative form (T43N) expression
RAW264.7 cells. Furthermore, to confirm the function of ST2L mediated
by Rab37, recombinant IL-33 binding with ST2L induced NF-κB nuclear
translocation and activation of NF-κB, p-38, and JNK phosphorylation in
a Rab37 GTPase-dependent manner in RAW264.7 cells. To validate
ST2L as a therapeutic target, we developed anti-IL33 and anti-ST2L
neutralized antibodies. We found that neutralizing IL-33 or ST2L
antibody inhibited M2 polarization in BMDMs in vitro. Finally, we
performed immunohistochemistry analysis on tumor specimens from lung
cancer patients to show that the correlation between Rab37 and ST2L in
tumor infiltrated M2 macrophages were more in tumors derived from
advanced stage lung cancer patients than those from early staged patients.
Conclusion: Our results provide first trafficking mode of ST2L mediated
by Rab37 small GTPase and novel evidence of the tumor promoting
function of Rab37/ST2L axis in M2 macrophage and its clinical
implications.
Afferni C, Buccione C, Andreone S, Galdiero MR, Varricchi G, Marone
G, Mattei F, Schiavoni G. The pleiotropic immunomodulatory
functions of IL-33 and its implications in tumor immunity. Front
Immunol. 2018;9:2601.
Alberg AJ, Brock MV, Ford JG, Samet JM, Spivack SD. Epidemiology of
lung cancer: Diagnosis and management of lung cancer, 3rd ed:
American College of Chest Physicians evidence-based clinical
practice guidelines. Chest. 2013;143(5 Suppl):e1S-e29S.
Allinne J, Scott G, Lim WK, Birchard D, Erjefält JS, Sandén C, Ben LH,
Agrawal A, Kaur N, Kim JH, Kamat V, Fury W, Huang T, Stahl N,
Yancopoulos GD, Murphy AJ, Sleeman MA, Orengo JM. IL-33
blockade affects mediators of persistence and exacerbation in a
model of chronic airway inflammation. J Allergy Clin Immunol.
2019;144(6):1624-37.
Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a
glance. J Cell Sci. 2012;125(Pt 23):5591-6.
Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH.
Quantification of regulatory T cells enables the identification of
high-risk breast cancer patients and those at risk of late relapse. J
Clin Oncol. 2006;24(34):5373-80.
Biswas SK, Mantovani A. Macrophage plasticity and interaction with
lymphocyte subsets: cancer as a paradigm. Nat Immunol.
2010;11(10):889-96.
Bravo-Cordero JJ, Marrero-Diaz R, Megías D, Genís L, García-Grande A,
García MA, Arroyo AG, Montoya MC. MT1-MMP proinvasive
activity is regulated by a novel Rab8-dependent exocytic pathway.
EMBO J. 2007;26(6):1499-510.
Care AS, Diener KR, Jasper MJ, Brown HM, Ingman WV, Robertson SA.
Macrophages regulate corpus luteum development during embryo
implantation in mice. J Clin Invest. 2013;123(8):3472-87.
Casciaro M, Cardia R, Di Salvo E, Tuccari G, Ieni A, Gangemi S.
Interleukin-33 involvement in nonsmall cell lung carcinomas: an
update. Biomolecules. 2019;9(5).
Cayrol C, Girard JP. The IL-1-like cytokine IL-33 is inactivated after
maturation by caspase-1. Proc Natl Acad Sci U S A.
2009;2;106(22):9021-6.
Chang CP, Hu MH, Hsiao YP, Wang YC. ST2 signaling in the tumor
microenvironment. Adv Exp Med Biol. 2020;1240:83-93.
Chen Y, Song Y, Du W, Gong L Chang H, Zou Z. Tumor-associated
macrophages: an accomplice in solid tumor progression. J Biomed
Sci. 2019;26(1):78.
Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus
N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips
AJ, Medzhitov R. Functional polarization of tumour-associated
macrophages by tumour-derived lactic acid. Nature.
2014;513(7519):559-63.
Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P,
Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y,
Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis
ML, Knutson KL, Chen L, Zou W. Specific recruitment of
regulatory T cells in ovarian carcinoma fosters immune privilege
and predicts reduced survival. Nat Med. 2004;10(9):942-9.
da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung
cancer. Annu Rev Pathol. 2011;6:49-69.
Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signaling pathways
in cancer. Oncogene. 2007;26(22):3279–90.
Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune
contexture in human tumours: impact on clinical outcome. Nat Rev
Cancer. 2012;12(4):298-306.
Gadani SP, Walsh JT, Smirnov I, Zheng J, Kipnis J. The glia-derived
alarmin IL-33 orchestrates the immune response and promotes
recovery following CNS injury. Neuron. 2015;85(4):703-9.
Gajardo CT, Morales RA, Pérez F, Terraza C, Yáñez L, Campos-Mora M,
Pino-Lagos K. Alarmin' immunologists: IL-33 as a putative target for
modulating T cell-dependent responses. Front Immunol. 2015;6:232.
Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T,
Petrella F, Spaggiari L, Rosell R. Non-small-cell lung cancer. Nat Rev Dis Primers. 2015;1:15009.
Hanahan D, Coussens LM. Accessories to the crime: functions of cells
recruited to the tumor microenvironment. Cancer Cell.
2012;21(3):309-22.
Haraldsen G, Balogh J, Pollheimer J, Sponheim J, Küchler AM.
Interleukin-33 - cytokine of dual function or novel alarmin? Trends
Immunol. 2009;30(5):227-33.
Hendrix A, Maynard D, Pauwels P, Braems G, Denys H, Van den
Broecke R, Lambert J, Van Belle S, Cocquyt V, Gespach C, Bracke
M, Seabra MC, Gahl WA, De Wever O, Westbroek W. Effect of the
secretory small GTPase Rab27B on breast cancer growth, invasion,
and metastasis. J Natl Cancer Inst. 2010;102(12):866-80.
Higashio H, Satoh Y, Saino T. Mast cell degranulation is negatively
regulated by the Munc13-4-binding small-guanosine triphosphatase
Rab37. Sci Rep. 2016;6:22539.
Hinshaw DC, Shevde LA. The tumor microenvironment innately
modulates cancer progression. Cancer Res. 2019;79(18):4557-66.
Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+
regulatory T cells increases during the progression of pancreatic
ductal adenocarcinoma and its premalignant lesions. Clin Cancer
Res. 2006;12(18):5423-34.
Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Wu YL,
Paz-Ares L. Lung cancer: current therapies and new targeted
treatments. The Lancet. 2017;389(10066):299-311.
Hsieh CS, Lee HM, Lio CW. Selection of regulatory T cells in the
thymus. Nat. Rev. Immunol. 2012;12:157-67.
Huse M, Lillemeier BF, Kuhns MS, Chen DS, Davis MM. T cells use two
directionally distinct pathways for cytokine secretion. Nat Immunol.
2006;7(3):247-55.
Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic
and cell physiology. Physiol Rev. 2011;91(1):119-49.
Italiani P, Boraschi D. From monocytes to M1/M2 macrophages:
phenotypical vs. functional differentiation. Front Immunol.
Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, Di
Fiore PP, Oldani A, Garre M, Beznoussenko GV, Palamidessi A,
Vecchi M, Chavrier P, Perez F, Scita G. RAB2A controls MT1-MMP
endocytic and E-cadherin polarized Golgi trafficking to promote
invasive breast cancer programs. EMBO Rep. 2016;17(7):1061-80.
Kelly EE, Horgan CP, Goud B, McCaffrey MW. The Rab family of
proteins: 25 years on. Biochem Soc Trans. 2012;40(6):1337-47.
Kim JY, Lim SC, Kim G, Yun HJ, Ahn SG, Choi HS. Interleukin-33/ST2
axis promotes epithelial cell transformation and breast tumorigenesis
via upregulation of COT activity. Oncogene. 2015;34(38):4928-38.
Kim JY, Lim SC, Kim G, Yun HJ, Ahn SG, Choi HS. Interleukin-33/ST2
axis promotes epithelial cell transformation and breast tumorigenesis
via upregulation of COT activity. Oncogene. 2015;34(38):4928-38.
Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ,
Ying S, Pitman N, Mirchandani A, Rana B, van Rooijen N,
Shepherd M, McSharry C, McInnes IB, Xu D, Liew FY. IL-33
amplifies the polarization of alternatively activated macrophages
that contribute to airway inflammation. J Immunol.
2009;183(10):6469-77.
Larsen KM, Minaya MK, Vaish V, Peña MMO. The role of IL-33/ST2
pathway in tumorigenesis. Int J Mol Sci. 2018;9:19(9).
Li G, Marlin MC. Rab family of GTPases. Methods in Molecular Biology
(Clifton, N.J.). 2015;1298:1-15.
Lim SM, Syn NL, Cho BC. Soo RA. Acquired resistance to EGFR
targeted therapy in non-small cell lung cancer: Mechanisms and
therapeutic strategies. Cancer Treat Rev. 2018;65:1-10.
Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue
XN, Pollard JW. Macrophages regulate the angiogenic switch in a
mouse model of breast cancer. Cancer Res. 2006;66(23):11238-46.
Liu J, Shen JX, Hu JL, Huang WH, Zhang GJ. Significance of
interleukin-33 and its related cytokines in patients with breast
cancers. Front Immunol. 2014;5:141.
Liu M, Sun X, Shi S. MORC2 enhances tumor growth by promoting
angiogenesis and tumor-associated macrophage recruitment via
Wnt/beta-catenin in lung cancer. Cell Physiol Biochem.
2018;51(4):1679-94.
Milovanovic M, Volarevic V, Radosavljevic G, Jovanovic I, Pejnovic N,
Arsenijevic N, Lukic ML. IL-33/ST2 axis in inflammation and
immunopathology. Immunol Res. 2012;52(1–2):89-99.
Mori R, Ikematsu K, Kitaguchi T, Kim SE, Okamoto M, Chiba T,
Miyawaki A, Shimokawa I, Tsuboi T. Release of TNF-alpha from
macrophages is mediated by small GTPase Rab37. Eur J Immunol.
2011;41(11):3230-9.
Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is
constitutively expressed in the nucleus of endothelial cells and
epithelial cells in vivo: a novel 'alarmin'? PLoS One.
2008;6;3(10):e3331.
Mueller T, Jaffe AS. Soluble ST2--analytical considerations. Am J
Cardiol. 2015;115(7 Suppl): 8B-21B.
Murray RZ, Kay JG, Sangermani DG, Stow JL. A role for the phagosome
in cytokine secretion. Science. 2005;310(5753):1492-5.
Nam KT, Lee HJ, Smith JJ, Lapierre LA, Kamath VP, Chen X, Aronow
BJ, Yeatman TJ, Bhartur SG, Calhoun BC, Condie B, Manley NR,
Beauchamp RD, Coffey RJ, Goldenring JR. Loss of Rab25 promotes
the development of intestinal neoplasia in mice and is associated
with human colorectal adenocarcinomas. J Clin Invest.
2010;120(3):840-9.
Nottingham RM, Pfeffer SR. Defining the boundaries: Rab GEFs and
GAPs. Proc Natl Acad Sci U S A. 2009;106(34):14185-6.
Pereira-Leal JB, Seabra MC. The mammalian Rab family of small
GTPases: definition of family and subfamily sequence motifs
suggests a mechanism for functional specificity in the Ras
superfamily. J Mol Biol. 2000;301(4):1077-87.
Pusceddu I, Dieplinger B, Mueller T. ST2 and the ST2/IL-33 signalling
pathway-biochemistry and pathophysiology in animal models and
humans. Clin Chim Acta. 2019;495:493-500.
Pusceddu I, Dieplinger B, Mueller T. ST2 and the ST2/IL-33 signalling
pathway-biochemistry and pathophysiology in animal models and
humans. Clin Chim Acta. 2019;495:493-500.
Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression
and metastasis. Cell. 2010;141(1):39-51.
Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK,
Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF,
Kastelein RA. IL-33, an interleukin-1-like cytokine that signals via
the IL-1 receptor-related protein ST2 and induces T helper type
2-associated cytokines. Immunity. 2005;23(5):479-90.
Schwartz C, O’Grady K, Lavelle EC, Fallon PG. Interleukin 33: an innate
alarm for adaptive responses beyond Th2 immunity-emerging roles
in obesity, intestinal inflammation, and cancer. Eur J Immunol.
2016;46(5):1091-100.
Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor
receptor mutations in lung cancer. Nat Rev Cancer.
2007;7(3):169-81.
Sheng YR, Hu WT, Wei CY, Tang LL, Liu YK, Liu YY, Qiu JP, Li DJ,
Zhu XY. IL-33/ST2 axis affects the polarization and efferocytosis of
decidual macrophages in early pregnancy. Am J Reprod Immunol.
2018;79(6):e12836.
Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M,
Biswas SK, Allavena P, Mantovani A. Macrophage polarization in
tumour progression. Semin Cancer Biol. 2008;18(5):349-55.
Siegel RL, Miller K D, Jemal A. CA Cancer J Clin. 2019;69(1):7-34.
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol
Cell Biol. 2009;10(8):513-25.
Taiwan Ministry of Health and Welfare. General Health Statistics. (2017).
https://dep.mohw.gov.tw/DOS/cp-3960-41756-113.html
Tong M, Chan KW, Bao JY, Wong KY, Chen JN, Kwan PS, Tang KH, Fu
L, Qin YR, Lok S, Guan XY, Ma S. Rab25 is a tumor suppressor
gene with antiangiogenic and anti-invasive activities in esophageal
squamous cell carcinoma. Cancer Res. 2012;72(22):6024-35.
Tseng YC. Blockage of IL-33/ST2L by neutralizing antibodies increases
anti-tumor immune responses in lung cancer. Master thesis, National
Cheng Kung University 2020.
Tzeng HT, Su CC, Chang CP, Lai WW, Su WC, Wang YC. Rab37 in lung
cancer mediates exocytosis of soluble ST2 and thus skews
macrophages toward tumor-suppressing phenotype. Int J Cancer.
2018;143(7):1753-63.
Tzeng HT, Wang YC. Rab-mediated vesicle trafficking in cancer. J
Biomed Sci. 2016;23(1):70.
Verma S, Kesh K, Ganguly N, Jana S, Swarnakar S. Matrix
metalloproteinases and gastrointestinal cancers: impacts of dietary
antioxidants. World J Biol Chem. 2014;5(3):355–76.
Villarreal DO, Wise MC, Walters JN, Reuschel EL, Choi MJ,
Obeng-Adjei N, Yan J, Morrow MP, Weiner DB. Alarmin IL-33 acts
as an immunoadjuvant to enhance antigen-specific tumor immunity.
Cancer Res. 2014;74(6):1789-800.
Wang C, Chen Z, Bu X, Han Y, Shan S, Ren T, Song W. IL-33 signaling
fuels outgrowth and metastasis of human lung cancer. Biochem
Biophys Res Commun. 2016;479(3):461-68.
Wang K, Shan S, Yang Z, Gu X, Wang Y, Wang C, Ren T. IL-33 blockade
suppresses tumor growth of human lung cancer through direct and
indirect pathways in a preclinical model. Oncotarget.
2017;2;8(40):68571-82.
Wang Z, Si X, Xu A, Meng X, Gao S, Qi Y, Zhu L, Li T, Li W, Dong L.
Activation of STAT3 in human gastric cancer cells via interleukin
(IL)-6-type cytokine signaling correlates with clinical implications.
PLoS One. 2013;8(10):e75788.
Wasmer MH, Krebs P. The role of IL-33-dependent inflammation in the
tumor microenvironment. Front Immunol. 2017;7:682.
Wen YH, Lin HQ, Li H, Zhao Y, Lui VWY, Chen L, Wu XM, Sun W,
Wen WP. Stromal interleukin-33 promotes regulatory T
cell-mediated immunosuppression in head and neck squamous cell
carcinoma and correlates with poor prognosis. Cancer Immunol
Immunother. 2019;68(2):221-32.
Wheeler DB, Zoncu R, Root DE, Sabatini DM, Sawyers CL.
Identification of an oncogenic RAB protein. Science.
2015;350(6257):211-7.
Xu LL, McVicar DW, Ben-Baruch A, Kuhns DB, Johnston J, Oppenheim
JJ, Wang JM. Monocyte chemotactic protein-3 (MCP3) interacts
with multiple leukocyte receptors: binding and signaling of MCP3
through shared as well as unique receptors on monocytes and
neutrophils. Eur J Immunol. 1995;25(9):2612-7.
Xuan W, Qu Q, Zheng B, Xiong S, Fan GH. The chemotaxis of M1 and
M2 macrophages is regulated by different chemokines. J Leukoc
Biol. 2014;97(1):61-9.
Yang Y, Liu H, Zhang H, Ye Q, Wang J, Yang B, Mao L, Zhu W, Leak
RK, Xiao B, Lu B, Chen J, Hu X. ST2/IL-33-dependent microglial
response limits acute ischemic brain injury. J Neurosci.
2017;37(18):4692-704.
Yang Z, Grinchuk V, Urban JF Jr, Bohl J, Sun R, Notari L, Yan S,
Ramalingam T, Keegan AD, Wynn TA, Shea-Donohue T, Zhao A.
Macrophages as IL-25/IL-33-responsive cells play an important role
in the induction of type 2 immunity. PLoS One. 2013;8(3):e59441.
Yang ZP, Ling DY, Xie YH, Wu WX, Li JR, Jiang J, Zheng JL, Fan YH,
Zhang Y. 2015. The association of serum IL-33 and sST2 with breast
cancer. Dis Markers. 2015;2015:516895.
Yu XX, Hu Z, Shen X, Dong LY, Zhou WZ, Hu WH. IL-33 promotes
gastric cancer cell invasion and migration via ST2-ERK1/2 pathway.
Dig Dis Sci. 2015;60(5):1265–72.
Zhao W, Hu Z. The enigmatic processing and secretion of interleukin-33.
Cell Mol Immunol. 2010;7(4):260-2.
Zumsteg A, Christofori G. Corrupt policemen: inflammatory cells
promote tumor angiogenesis. Curr Opin Oncol. 2009;21(1):60-70.