簡易檢索 / 詳目顯示

研究生: 胡孟璇
Hu, Meng-Hsuan
論文名稱: 探討巨噬細胞中Rab37調控ST2L細胞膜運送於肺癌進程所扮演的角色
Investigate the roles of Rab37 in trafficking of ST2L in macrophage during lung cancer progression
指導教授: 王憶卿
Wang, Yi-Ching
共同指導教授: 簡偉明
Kan, Wai-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 87
中文關鍵詞: Rab37ST2LIL-33巨噬細胞肺癌
外文關鍵詞: Rab37, ST2L, IL-33, macrophages, lung cancer
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景: 腫瘤微環境中的癌細胞與免疫細胞交互作用參與癌症的
    進程。我們先前研究結果顯示在初期的癌症上皮細胞中,Rab37 調控
    游離的白血球介素1 受體樣1 (soluble interleukin 1 receptor like 1,
    ILIRL1, sST2) 的胞吐作用 (exocytosis),使巨噬細胞較易趨化為M1
    型態,進而抑制癌症的生長。值得注意的是白血球介素33 (interleukin
    33, IL-33) 會與巨噬細胞膜上ILIRL1 的穿膜蛋白 (long form
    transmembrane ST2, ST2L) 結合,活化下游訊號傳遞並促進M2 巨噬
    細胞的極化,導致促腫瘤生長的微環境。然而,巨噬細胞中的Rab37
    是否調控ST2L 的胞外運輸角色仍然不清楚。
    研究目的: 因此,本研究探討於肺癌進程中,Rab37 在巨噬細胞中調
    控ST2L 的胞吐作用至細胞膜的機制和角色。
    研究結果: 根據共聚焦顯微鏡的免疫螢光染色 (immunofluorescence)
    結果顯示,Rab37 與ST2L 在巨噬細胞有共定位 (colocalization) 的現
    象,所分析的巨噬細胞包括RAW264.7、THP-1、永生的骨髓源性巨
    噬細胞immortalized bone marrow derived macrophages (iBMs) 與老鼠
    之骨髓源性巨噬細胞 (bone marrow-derived macrophages,BMDMs)。
    為了探討Rab37 是否介導ST2L 的胞內運輸,我們在老鼠巨噬細胞株
    RAW264.7 之囊泡分離 (vesicle isolation) 實驗中,證明ST2L 的確存
    在於Rab37 所調控的囊泡中;重要的是巨噬細胞RAW264.7 中Rab37
    以鳥苷核苷酸依賴性的方式 (GTP-dependent manner) 調控ST2L 的
    穿膜表現,此ST2L 會與重組的白血球介素33 (interleukin 33, IL-33)
    結合,調控NF-κB、p-38 與JNK 的磷酸化,並促進NF-B 的入核,
    上述實驗結果確認巨噬細胞中由Rab37 所運送的ST2L 具有功能性。
    為了探討ST2L 是否適合作為治療性靶標,我們開發了中和ST2L 及
    IL-33 的抗體藥物,實驗證實ST2L 及IL-33 的中和抗體藥物可抑制老
    鼠之骨髓源性巨噬細胞 (BMDMs) 中M2 的極化。藉由肺癌病患癌組
    織的免疫組織化學分析 (immunohistochemistry analysis),我們發現浸
    潤的M2 巨噬細胞中Rab37 與ST2L 之間的相關性相較於初期的肺癌
    病人,在末期的肺癌病人有更高的相關性。
    研究結論:我們的結果顯示Rab37 介導ST2L 的穿膜運輸,Rab37/ST2L
    路徑也趨化巨噬細胞走向M2 促腫瘤生長的型態,腫瘤浸潤M2 巨噬
    細胞共定位Rab37 及ST2 可能為臨床惡化的證據。

    Background: Macrophages in the tumor microenvironment play
    important roles in modulating tumor growth and metastasis. In our
    previous study, Rab37 small GTPase in early stage cancer epithelial cells,
    functions as a modulator of macrophage polarization via regulating the
    exocytosis of soluble interleukin 1 receptor like 1 (soluble IL1RL1, also
    named as sST2), resulting in the preferential shift of macrophages
    phenotype from M2-like to M1-like, and thereby inhibiting tumor growth.
    Notably, IL-33 binds to transmembrane form of ILIRL1 (also named
    ST2L) that are generally located on the plasma membrane (PM) of
    macrophages to activate downstream signaling and skews polarization of
    M2 macrophages leading to pro-tumor microenvironment. However, the
    role of Rab37 in trafficking of ST2L in macrophages is not well
    understood.
    Purpose: Our aims are to investigate the role and mechanism of Rab37 in
    trafficking of ST2L on the cell membrane of macrophage in promoting
    lung cancer progression.
    Results: We found colocalization of Rab37 and ST2L in an
    IL-33-dependent manner in macrophage cell lines RAW264.7, THP-1,
    and immortalized bone marrow derived macrophages (iBMs) and ex vivo
    isolated bone marrow derived macrophages (BMDMs) by confocal
    microscopy. To investigate whether Rab37 was involved in ST2L
    intracellular trafficking, vesicle isolation results showed the presence of
    ST2L in Rab37-specific vesicles. Importantly, we found that the level of
    ST2L in PM presentation on RAW264.7 cells was more in Rab37
    wild-type (WT) and constitutively active form (Q89L) expressing cells
    than that in control and dominant negative form (T43N) expression
    RAW264.7 cells. Furthermore, to confirm the function of ST2L mediated
    by Rab37, recombinant IL-33 binding with ST2L induced NF-κB nuclear
    translocation and activation of NF-κB, p-38, and JNK phosphorylation in
    a Rab37 GTPase-dependent manner in RAW264.7 cells. To validate
    ST2L as a therapeutic target, we developed anti-IL33 and anti-ST2L
    neutralized antibodies. We found that neutralizing IL-33 or ST2L
    antibody inhibited M2 polarization in BMDMs in vitro. Finally, we
    performed immunohistochemistry analysis on tumor specimens from lung
    cancer patients to show that the correlation between Rab37 and ST2L in
    tumor infiltrated M2 macrophages were more in tumors derived from
    advanced stage lung cancer patients than those from early staged patients.
    Conclusion: Our results provide first trafficking mode of ST2L mediated
    by Rab37 small GTPase and novel evidence of the tumor promoting
    function of Rab37/ST2L axis in M2 macrophage and its clinical
    implications.

    Introduction ---------------------------------------------------------------------------------1 I. Lung cancer ------------------------------------------------------------------------------1 (a) Epidemiology of lung cancer ------------------------------------------------------------1 (b) Therapeutic strategies in lung cancer---------------------------------------------------1 II. Tumor microenvironment (TME) ---------------------------------------------------2 (a) Role of immune cells in tumor microenvironment -----------------------------------2 (b) Role of IL-33 in tumor microenvironment --------------------------------------------4 III. IL-33/ST2L signaling in regulating macrophage functionality and its treatment potential-----------------------------------------------------------------------7 (a) ST2L/IL-33 signaling in macrophages ------------------------------------------------7 (b) Targeting IL-33/ST2 axis for cancer therapy -----------------------------------------9 IV. Rab GTPases in vesicle trafficking------------------------------------------------- 10 (a) Role of Rab family in vesicle trafficking -------------------------------------------- 10 (b) Oncogenic and tumor suppressor Rab GTPases ------------------------------------ 12 (c) Role of Rab37 mediated-exocytosis in immune cells ----------------------------- 13 Study basis and specific aims ------------------------------------------------------- 14 Materials and methods ---------------------------------------------------------------- 16 I. Cell lines and culture condition ----------------------------------------------------- 16 II. Bone marrow derived macrophages (BMDMs) isolation and culture conditions ------------------------------------------------------------------------------- 16 III. Preparation of L929-conditioned medium (CM) -------------------------------- 17 IV. Immortalized bone-marrow-derived macrophages (iBMs) establishment ---- 17 V. Plasmids and transfection ------------------------------------------------------------ 18 VI. Rab37 specific Vesicle isolation ---------------------------------------------------- 18 VII. Membrane fractionation -------------------------------------------------------------- 19 VIII. Protein extraction and Western blot analysis-------------------------------------- 20 IX. Immunofluorescence-immunohistochemistry assay and confocal microscopy ----------------------------------------------------------------------------- 20 X. Real-Time Live Confocal Fluorescence Microscopy ---------------------------- 21 XI. Flow cytometry ------------------------------------------------------------------------ 21 XII. RNA extraction and quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assay ---------------------------------------------------- 23 XIII. Statistical analysis --------------------------------------------------------------------- 23 Results---------------------------------------------------------------------------------------- 24 I. Rab37-mediated exocytosis promoted ST2L membrane presentation in macrophages ----------------------------------------------------------------------- 24 (a) Intracellular co-localization of ST2L and Rab37 was activated by IL-33 in macrophages ----------------------------------------------------------------------- 24 (b) Rab37 mediated ST2L membrane presentation in macrophages by a GTP-dependent manner --------------------------------------------------------------- 25 (c) Rab37-specific vesicles contained ST2L cargo proteins and showed dynamic trafficking of ST2L ------------------------------------------------------- 27 II. Rab37-mediated ST2L trafficking activated the downstream signals of IL-33/ST2L pathway in macrophages ----------------------------------------- 28 (a) Recombinant IL-33 induced activation of NF-κB, p-38, and JNK phosphorylation as well as NF-κB nuclear translocation in RAW264.7 cell --------------------------------------------------------------------------- 28 (b) Recombinant IL-33 induced NF-kB phosphorylation in Rab37 GTP-dependent manner ---------------------------------------------------------------- 28 III. Expression and colocalization of Rab37 and ST2L proteins enhanced in M2-like macrophages ------------------------------------------------------------ 29 (a) ST2L was the major transcript isoform in macrophages -------------------------- 29 (b) ST2L mRNA expression decreased in M1-like macrophages-------------------- 29 (c) ST2L mRNA expression and the co-localization of Rab37 and ST2L proteins increased in M2 BMDMs upon polarization stimuli ------------------- 30 IV. IL-33 or ST2L-neutralizing antibody treatment shifted macrophages profile from M2- to M1-like macrophages--------------------------------------- 31 (a) IL-33 or ST2L-neutralizing antibody treatment shifted M2 profile to M1 profile in macrophages ----------------------------------------------------------------- 31 (b) Rab37 mediated ST2L functioning as a receptor of recombinant IL-33 in macrophages-------------------------------------------------------------------------- 33 V. Correlation between Rab37 and ST2L expression in infiltrated macrophages of tumor derived from lung cancer patients ------------------ 33 (a) Rab37 expression correlated with ST2L expression in tumor infiltrated macrophages ----------------------------------------------------------------------------- 33 (b) Lung cancer patients with Rab37+/ST2+/CD206+ tumor infiltrated macrophages correlated with poor prognosis -------------------------------------- 33 Discussion----------------------------------------------------------------------------------- 35 References ---------------------------------------------------------------------------------- 41 Tables ----------------------------------------------------------------------------------------- 49 Figures --------------------------------------------------------------------------------------- 54 Appendix Tables and Figures------------------------------------------------------- 72 Table 1. The plasmids and their characteristics used in the current study-------------------------------------------------- 50 Table 2. The antibodies and their reaction conditions used in the current study-------------------------------------------------- 51 Table 3. The primers used in the current study---------------------------- 53 Figure 1. Endogenous Rab37 co-localized with endogenous ST2L proteins in macrophage cell lines which was further enhanced by recombinant IL-33 treatment. ------------------------------ 55 Figure 2. Recombinant IL-33 treatment triggered intracellular colocalization of Rab37 and ST2L in iBMs -- -------------- 56 Figure 3. Recombinant IL-33 treatment triggered intracellular colocalization of Rab37 and ST2L in BMDMs ------------ 57 Figure 4. Rab37 mediated ST2L membrane presentation in BMDMs and RAW264.7 macrophages in a GTP-dependent manner --------------------------------------- 59 Figure 5. Presence of ST2L cargo proteins in Rab37-specific vesicles and their dynamic trafficking ------------------------ 61 Figure 6. Recombinant IL-33 induced activation of NF-B, p-38, and JNK phosphorylation as well as NF-B nuclear translocation in RAW264.7 cells, which occurred in a Rab37 GTPase-dependent manner.---------------------------- 62 Figure 7. The expression pattern of ST2 and ST2L isoforms in LLC cancer cell line and RAW264.7 macrophage cell line ------------------------------------------------------------ 64 Figure 8. ST2L mRNA expression decreased in M1-like RAW264.7 cells -------------------------------------------------- 65 Figure 9. mRNA expression of Rab37 and ST2L increased in M2 BMDMs and the co-localization of Rab37 and ST2L proteins enhanced upon M2 polarization--------------------- 66 Figure 10. IL33/ST2L-neutralizing antibody treatment inhibited recombinant IL-33 binding to receptor ST2L in Rab37 BMDMs co-cultured with LLC and attenuated the ST2L membrane presentation mediated by Rab37Q89L RAW264.7 cells -------------------------------------------------- 68 Figure 11. Correlation between Rab37 and ST2L expression in tumor associated macrophages of tumor derived from lung cancer patients ---------------------------------------------------- 70 Figure 12. The schematic model of the roles of Rab37 in trafficking of ST2L in macrophage during lung cancer progression ------------------------------------------------------ 71 Appendix Table 1. The differential role of the IL-33/ST2 pathway in tumorigenesis ----------------------------------------------------- 73 Appendix Figure 1. IL-33/ST2L signaling -------------------------------------------- 74 Appendix Figure 2. IL-33 promotes macrophages to M2 polarization through the Th2 cells and the cytokines----------------------- 75 Appendix Figure 3. Sequential steps of Rab-mediated vesicle trafficking ------- 76 Appendix Book Chapter. ST2 Signaling in the Tumor Microenvironment. In: Tumor Microenvironment. Springer, Chapter 7, Advances in Experimental Medicine and Biology, vol 1240. pp. 83-93. -------------------------------------------- 77

    Afferni C, Buccione C, Andreone S, Galdiero MR, Varricchi G, Marone
    G, Mattei F, Schiavoni G. The pleiotropic immunomodulatory
    functions of IL-33 and its implications in tumor immunity. Front
    Immunol. 2018;9:2601.
    Alberg AJ, Brock MV, Ford JG, Samet JM, Spivack SD. Epidemiology of
    lung cancer: Diagnosis and management of lung cancer, 3rd ed:
    American College of Chest Physicians evidence-based clinical
    practice guidelines. Chest. 2013;143(5 Suppl):e1S-e29S.
    Allinne J, Scott G, Lim WK, Birchard D, Erjefält JS, Sandén C, Ben LH,
    Agrawal A, Kaur N, Kim JH, Kamat V, Fury W, Huang T, Stahl N,
    Yancopoulos GD, Murphy AJ, Sleeman MA, Orengo JM. IL-33
    blockade affects mediators of persistence and exacerbation in a
    model of chronic airway inflammation. J Allergy Clin Immunol.
    2019;144(6):1624-37.
    Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a
    glance. J Cell Sci. 2012;125(Pt 23):5591-6.
    Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH.
    Quantification of regulatory T cells enables the identification of
    high-risk breast cancer patients and those at risk of late relapse. J
    Clin Oncol. 2006;24(34):5373-80.
    Biswas SK, Mantovani A. Macrophage plasticity and interaction with
    lymphocyte subsets: cancer as a paradigm. Nat Immunol.
    2010;11(10):889-96.
    Bravo-Cordero JJ, Marrero-Diaz R, Megías D, Genís L, García-Grande A,
    García MA, Arroyo AG, Montoya MC. MT1-MMP proinvasive
    activity is regulated by a novel Rab8-dependent exocytic pathway.
    EMBO J. 2007;26(6):1499-510.
    Care AS, Diener KR, Jasper MJ, Brown HM, Ingman WV, Robertson SA.
    Macrophages regulate corpus luteum development during embryo
    implantation in mice. J Clin Invest. 2013;123(8):3472-87.
    Casciaro M, Cardia R, Di Salvo E, Tuccari G, Ieni A, Gangemi S.
    Interleukin-33 involvement in nonsmall cell lung carcinomas: an
    update. Biomolecules. 2019;9(5).
    Cayrol C, Girard JP. The IL-1-like cytokine IL-33 is inactivated after
    maturation by caspase-1. Proc Natl Acad Sci U S A.
    2009;2;106(22):9021-6.
    Chang CP, Hu MH, Hsiao YP, Wang YC. ST2 signaling in the tumor
    microenvironment. Adv Exp Med Biol. 2020;1240:83-93.
    Chen Y, Song Y, Du W, Gong L Chang H, Zou Z. Tumor-associated
    macrophages: an accomplice in solid tumor progression. J Biomed
    Sci. 2019;26(1):78.
    Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus
    N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips
    AJ, Medzhitov R. Functional polarization of tumour-associated
    macrophages by tumour-derived lactic acid. Nature.
    2014;513(7519):559-63.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P,
    Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y,
    Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis
    ML, Knutson KL, Chen L, Zou W. Specific recruitment of
    regulatory T cells in ovarian carcinoma fosters immune privilege
    and predicts reduced survival. Nat Med. 2004;10(9):942-9.
    da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung
    cancer. Annu Rev Pathol. 2011;6:49-69.
    Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signaling pathways
    in cancer. Oncogene. 2007;26(22):3279–90.
    Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune
    contexture in human tumours: impact on clinical outcome. Nat Rev
    Cancer. 2012;12(4):298-306.
    Gadani SP, Walsh JT, Smirnov I, Zheng J, Kipnis J. The glia-derived
    alarmin IL-33 orchestrates the immune response and promotes
    recovery following CNS injury. Neuron. 2015;85(4):703-9.
    Gajardo CT, Morales RA, Pérez F, Terraza C, Yáñez L, Campos-Mora M,
    Pino-Lagos K. Alarmin' immunologists: IL-33 as a putative target for
    modulating T cell-dependent responses. Front Immunol. 2015;6:232.
    Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T,
    Petrella F, Spaggiari L, Rosell R. Non-small-cell lung cancer. Nat Rev Dis Primers. 2015;1:15009.
    Hanahan D, Coussens LM. Accessories to the crime: functions of cells
    recruited to the tumor microenvironment. Cancer Cell.
    2012;21(3):309-22.
    Haraldsen G, Balogh J, Pollheimer J, Sponheim J, Küchler AM.
    Interleukin-33 - cytokine of dual function or novel alarmin? Trends
    Immunol. 2009;30(5):227-33.
    Hendrix A, Maynard D, Pauwels P, Braems G, Denys H, Van den
    Broecke R, Lambert J, Van Belle S, Cocquyt V, Gespach C, Bracke
    M, Seabra MC, Gahl WA, De Wever O, Westbroek W. Effect of the
    secretory small GTPase Rab27B on breast cancer growth, invasion,
    and metastasis. J Natl Cancer Inst. 2010;102(12):866-80.
    Higashio H, Satoh Y, Saino T. Mast cell degranulation is negatively
    regulated by the Munc13-4-binding small-guanosine triphosphatase
    Rab37. Sci Rep. 2016;6:22539.
    Hinshaw DC, Shevde LA. The tumor microenvironment innately
    modulates cancer progression. Cancer Res. 2019;79(18):4557-66.
    Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+
    regulatory T cells increases during the progression of pancreatic
    ductal adenocarcinoma and its premalignant lesions. Clin Cancer
    Res. 2006;12(18):5423-34.
    Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Wu YL,
    Paz-Ares L. Lung cancer: current therapies and new targeted
    treatments. The Lancet. 2017;389(10066):299-311.
    Hsieh CS, Lee HM, Lio CW. Selection of regulatory T cells in the
    thymus. Nat. Rev. Immunol. 2012;12:157-67.
    Huse M, Lillemeier BF, Kuhns MS, Chen DS, Davis MM. T cells use two
    directionally distinct pathways for cytokine secretion. Nat Immunol.
    2006;7(3):247-55.
    Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic
    and cell physiology. Physiol Rev. 2011;91(1):119-49.
    Italiani P, Boraschi D. From monocytes to M1/M2 macrophages:
    phenotypical vs. functional differentiation. Front Immunol.
    Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, Di
    Fiore PP, Oldani A, Garre M, Beznoussenko GV, Palamidessi A,
    Vecchi M, Chavrier P, Perez F, Scita G. RAB2A controls MT1-MMP
    endocytic and E-cadherin polarized Golgi trafficking to promote
    invasive breast cancer programs. EMBO Rep. 2016;17(7):1061-80.
    Kelly EE, Horgan CP, Goud B, McCaffrey MW. The Rab family of
    proteins: 25 years on. Biochem Soc Trans. 2012;40(6):1337-47.
    Kim JY, Lim SC, Kim G, Yun HJ, Ahn SG, Choi HS. Interleukin-33/ST2
    axis promotes epithelial cell transformation and breast tumorigenesis
    via upregulation of COT activity. Oncogene. 2015;34(38):4928-38.
    Kim JY, Lim SC, Kim G, Yun HJ, Ahn SG, Choi HS. Interleukin-33/ST2
    axis promotes epithelial cell transformation and breast tumorigenesis
    via upregulation of COT activity. Oncogene. 2015;34(38):4928-38.
    Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ,
    Ying S, Pitman N, Mirchandani A, Rana B, van Rooijen N,
    Shepherd M, McSharry C, McInnes IB, Xu D, Liew FY. IL-33
    amplifies the polarization of alternatively activated macrophages
    that contribute to airway inflammation. J Immunol.
    2009;183(10):6469-77.
    Larsen KM, Minaya MK, Vaish V, Peña MMO. The role of IL-33/ST2
    pathway in tumorigenesis. Int J Mol Sci. 2018;9:19(9).
    Li G, Marlin MC. Rab family of GTPases. Methods in Molecular Biology
    (Clifton, N.J.). 2015;1298:1-15.
    Lim SM, Syn NL, Cho BC. Soo RA. Acquired resistance to EGFR
    targeted therapy in non-small cell lung cancer: Mechanisms and
    therapeutic strategies. Cancer Treat Rev. 2018;65:1-10.
    Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue
    XN, Pollard JW. Macrophages regulate the angiogenic switch in a
    mouse model of breast cancer. Cancer Res. 2006;66(23):11238-46.
    Liu J, Shen JX, Hu JL, Huang WH, Zhang GJ. Significance of
    interleukin-33 and its related cytokines in patients with breast
    cancers. Front Immunol. 2014;5:141.
    Liu M, Sun X, Shi S. MORC2 enhances tumor growth by promoting
    angiogenesis and tumor-associated macrophage recruitment via
    Wnt/beta-catenin in lung cancer. Cell Physiol Biochem.
    2018;51(4):1679-94.
    Milovanovic M, Volarevic V, Radosavljevic G, Jovanovic I, Pejnovic N,
    Arsenijevic N, Lukic ML. IL-33/ST2 axis in inflammation and
    immunopathology. Immunol Res. 2012;52(1–2):89-99.
    Mori R, Ikematsu K, Kitaguchi T, Kim SE, Okamoto M, Chiba T,
    Miyawaki A, Shimokawa I, Tsuboi T. Release of TNF-alpha from
    macrophages is mediated by small GTPase Rab37. Eur J Immunol.
    2011;41(11):3230-9.
    Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is
    constitutively expressed in the nucleus of endothelial cells and
    epithelial cells in vivo: a novel 'alarmin'? PLoS One.
    2008;6;3(10):e3331.
    Mueller T, Jaffe AS. Soluble ST2--analytical considerations. Am J
    Cardiol. 2015;115(7 Suppl): 8B-21B.
    Murray RZ, Kay JG, Sangermani DG, Stow JL. A role for the phagosome
    in cytokine secretion. Science. 2005;310(5753):1492-5.
    Nam KT, Lee HJ, Smith JJ, Lapierre LA, Kamath VP, Chen X, Aronow
    BJ, Yeatman TJ, Bhartur SG, Calhoun BC, Condie B, Manley NR,
    Beauchamp RD, Coffey RJ, Goldenring JR. Loss of Rab25 promotes
    the development of intestinal neoplasia in mice and is associated
    with human colorectal adenocarcinomas. J Clin Invest.
    2010;120(3):840-9.
    Nottingham RM, Pfeffer SR. Defining the boundaries: Rab GEFs and
    GAPs. Proc Natl Acad Sci U S A. 2009;106(34):14185-6.
    Pereira-Leal JB, Seabra MC. The mammalian Rab family of small
    GTPases: definition of family and subfamily sequence motifs
    suggests a mechanism for functional specificity in the Ras
    superfamily. J Mol Biol. 2000;301(4):1077-87.
    Pusceddu I, Dieplinger B, Mueller T. ST2 and the ST2/IL-33 signalling
    pathway-biochemistry and pathophysiology in animal models and
    humans. Clin Chim Acta. 2019;495:493-500.
    Pusceddu I, Dieplinger B, Mueller T. ST2 and the ST2/IL-33 signalling
    pathway-biochemistry and pathophysiology in animal models and
    humans. Clin Chim Acta. 2019;495:493-500.
    Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression
    and metastasis. Cell. 2010;141(1):39-51.
    Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK,
    Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF,
    Kastelein RA. IL-33, an interleukin-1-like cytokine that signals via
    the IL-1 receptor-related protein ST2 and induces T helper type
    2-associated cytokines. Immunity. 2005;23(5):479-90.
    Schwartz C, O’Grady K, Lavelle EC, Fallon PG. Interleukin 33: an innate
    alarm for adaptive responses beyond Th2 immunity-emerging roles
    in obesity, intestinal inflammation, and cancer. Eur J Immunol.
    2016;46(5):1091-100.
    Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor
    receptor mutations in lung cancer. Nat Rev Cancer.
    2007;7(3):169-81.
    Sheng YR, Hu WT, Wei CY, Tang LL, Liu YK, Liu YY, Qiu JP, Li DJ,
    Zhu XY. IL-33/ST2 axis affects the polarization and efferocytosis of
    decidual macrophages in early pregnancy. Am J Reprod Immunol.
    2018;79(6):e12836.
    Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M,
    Biswas SK, Allavena P, Mantovani A. Macrophage polarization in
    tumour progression. Semin Cancer Biol. 2008;18(5):349-55.
    Siegel RL, Miller K D, Jemal A. CA Cancer J Clin. 2019;69(1):7-34.
    Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol
    Cell Biol. 2009;10(8):513-25.
    Taiwan Ministry of Health and Welfare. General Health Statistics. (2017).
    https://dep.mohw.gov.tw/DOS/cp-3960-41756-113.html
    Tong M, Chan KW, Bao JY, Wong KY, Chen JN, Kwan PS, Tang KH, Fu
    L, Qin YR, Lok S, Guan XY, Ma S. Rab25 is a tumor suppressor
    gene with antiangiogenic and anti-invasive activities in esophageal
    squamous cell carcinoma. Cancer Res. 2012;72(22):6024-35.
    Tseng YC. Blockage of IL-33/ST2L by neutralizing antibodies increases
    anti-tumor immune responses in lung cancer. Master thesis, National
    Cheng Kung University 2020.
    Tzeng HT, Su CC, Chang CP, Lai WW, Su WC, Wang YC. Rab37 in lung
    cancer mediates exocytosis of soluble ST2 and thus skews
    macrophages toward tumor-suppressing phenotype. Int J Cancer.
    2018;143(7):1753-63.
    Tzeng HT, Wang YC. Rab-mediated vesicle trafficking in cancer. J
    Biomed Sci. 2016;23(1):70.
    Verma S, Kesh K, Ganguly N, Jana S, Swarnakar S. Matrix
    metalloproteinases and gastrointestinal cancers: impacts of dietary
    antioxidants. World J Biol Chem. 2014;5(3):355–76.
    Villarreal DO, Wise MC, Walters JN, Reuschel EL, Choi MJ,
    Obeng-Adjei N, Yan J, Morrow MP, Weiner DB. Alarmin IL-33 acts
    as an immunoadjuvant to enhance antigen-specific tumor immunity.
    Cancer Res. 2014;74(6):1789-800.
    Wang C, Chen Z, Bu X, Han Y, Shan S, Ren T, Song W. IL-33 signaling
    fuels outgrowth and metastasis of human lung cancer. Biochem
    Biophys Res Commun. 2016;479(3):461-68.
    Wang K, Shan S, Yang Z, Gu X, Wang Y, Wang C, Ren T. IL-33 blockade
    suppresses tumor growth of human lung cancer through direct and
    indirect pathways in a preclinical model. Oncotarget.
    2017;2;8(40):68571-82.
    Wang Z, Si X, Xu A, Meng X, Gao S, Qi Y, Zhu L, Li T, Li W, Dong L.
    Activation of STAT3 in human gastric cancer cells via interleukin
    (IL)-6-type cytokine signaling correlates with clinical implications.
    PLoS One. 2013;8(10):e75788.
    Wasmer MH, Krebs P. The role of IL-33-dependent inflammation in the
    tumor microenvironment. Front Immunol. 2017;7:682.
    Wen YH, Lin HQ, Li H, Zhao Y, Lui VWY, Chen L, Wu XM, Sun W,
    Wen WP. Stromal interleukin-33 promotes regulatory T
    cell-mediated immunosuppression in head and neck squamous cell
    carcinoma and correlates with poor prognosis. Cancer Immunol
    Immunother. 2019;68(2):221-32.
    Wheeler DB, Zoncu R, Root DE, Sabatini DM, Sawyers CL.
    Identification of an oncogenic RAB protein. Science.
    2015;350(6257):211-7.
    Xu LL, McVicar DW, Ben-Baruch A, Kuhns DB, Johnston J, Oppenheim
    JJ, Wang JM. Monocyte chemotactic protein-3 (MCP3) interacts
    with multiple leukocyte receptors: binding and signaling of MCP3
    through shared as well as unique receptors on monocytes and
    neutrophils. Eur J Immunol. 1995;25(9):2612-7.
    Xuan W, Qu Q, Zheng B, Xiong S, Fan GH. The chemotaxis of M1 and
    M2 macrophages is regulated by different chemokines. J Leukoc
    Biol. 2014;97(1):61-9.
    Yang Y, Liu H, Zhang H, Ye Q, Wang J, Yang B, Mao L, Zhu W, Leak
    RK, Xiao B, Lu B, Chen J, Hu X. ST2/IL-33-dependent microglial
    response limits acute ischemic brain injury. J Neurosci.
    2017;37(18):4692-704.
    Yang Z, Grinchuk V, Urban JF Jr, Bohl J, Sun R, Notari L, Yan S,
    Ramalingam T, Keegan AD, Wynn TA, Shea-Donohue T, Zhao A.
    Macrophages as IL-25/IL-33-responsive cells play an important role
    in the induction of type 2 immunity. PLoS One. 2013;8(3):e59441.
    Yang ZP, Ling DY, Xie YH, Wu WX, Li JR, Jiang J, Zheng JL, Fan YH,
    Zhang Y. 2015. The association of serum IL-33 and sST2 with breast
    cancer. Dis Markers. 2015;2015:516895.
    Yu XX, Hu Z, Shen X, Dong LY, Zhou WZ, Hu WH. IL-33 promotes
    gastric cancer cell invasion and migration via ST2-ERK1/2 pathway.
    Dig Dis Sci. 2015;60(5):1265–72.
    Zhao W, Hu Z. The enigmatic processing and secretion of interleukin-33.
    Cell Mol Immunol. 2010;7(4):260-2.
    Zumsteg A, Christofori G. Corrupt policemen: inflammatory cells
    promote tumor angiogenesis. Curr Opin Oncol. 2009;21(1):60-70.

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE