簡易檢索 / 詳目顯示

研究生: 闞元宏
Kan, Yuan-Hung
論文名稱: 測量非對稱拉曼躍遷之拉比震盪
Measure Rabi oscillations of Rubidium 85 in different degree of asymmetry Raman transition systems
指導教授: 管培辰
Kuan, Pei-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 60
中文關鍵詞: 雙光子磁光陷阱拉曼躍遷拉比震盪
外文關鍵詞: two photon, MOT, Raman transition, Rabi oscillation
相關次數: 點閱:78下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我會介紹我們是如何架設我們的實驗與光路來達到測量與
    觀測銣原子在微波與光波拉曼情況下發生的拉比震盪現象。論文中會討論在微
    波與兩道雷射光強度差異較小情況下之光波拉曼發生的拉比震盪結果,接著會
    藉由實驗的數據結果探討在兩道雷射光強度差異不同時觀察到的現象。我們的
    實驗甚至可以利用冷卻的技術與磁光陷阱做搭配,將銣原子團降到10 µk 的低
    溫。
    我們從實驗結果會發現當兩道雷射光強度差異不大時,可以得到與微波情況
    下類似的結果,當兩道雷射光具有很強的非對稱性時,銣原子團在空間中的分
    布會隨著時間改變。

    In this thesis, we will introduce how we set up our experiment system to
    measure and observe the Rabi oscillations of 85Rb atoms at different situations,
    including microwave and optical Raman lasers. We will discuss results of Rabi
    oscillations in microwave and weak asymmetry optical Raman lasers situations
    and then focus on the difference between different asymmetry of optical Raman
    lasers. Also we use laser cooling method and magneto-optical trap to cool down
    85Rb atoms to 10 µk in our experiments.
    We can get similar results in microwave Rabi oscillation and Rabi oscillation
    caused by weak asymmetry optical Raman transition system and see the space
    distribution of 85Rb atoms changed in different time durations under strong
    asymmetry optical Raman transition system.

    Abstract i 摘要 ii Acknowledgement iii List of figures viii List of Tables x 1 Introduction 1 2 Theoretical Model 2 2.1 Energy state and properties of 85Rb 3 2.2 Lock laser 8 2.2.1 Saturated absorption spectroscopy 8 2.3 Magneto-optical trap(MOT) 8 2.3.1 Doppler cooling 9 2.3.2 Magneto-optical trap (MOT) 12 2.3.3 Sisyphus cooling 16 2.3.4 Dark MOT 18 2.4 Raman transition 18 2.5 Rabi oscillations 19 2.5.1 Two level system 19 2.5.2 Rabi frequency 22 2.5.3 Rabi oscillations in two level system 24 2.5.4 Density operator 25 2.5.5 Rabi oscillation decay 27 2.5.6 Three level system 28 2.5.7 Rabi oscillations in three level system 29 2.6 Etalon 32 3 Experiment 34 3.1 Laser locking system 34 3.1.1 Lock laser 34 3.1.2 Saturated absorption spectroscopy 35 3.2 Laser cooling and magneto-optical trap 36 3.2.1 Laser cooling 36 3.2.2 Magneto-optical trap 40 3.2.3 Time sequence of the system 41 3.3 Blow away 42 3.4 Rabi oscillations 43 3.4.1 Microwave Rabi oscillations 44 3.4.2 Optical Rabi oscillations 45 3.5 Etalon 45 4 Results and discussion 47 4.1 MOT 47 4.2 Rabi oscillations 48 5 Conclution 54 References 55 Appendix A Instrument 58 Appendix B 60

    [1] Albers, H., Herbst, A., Richardson, L. L., Heine, H., Nath, D., Hartwig, J.,
    ... & Schlippert, D. (2020). Quantum test of the Universality of Free Fall
    using rubidium and potassium. The European Physical Journal D, 74(7),
    1-9.
    [2] Bohnet, J. G., Chen, Z., Weiner, J. M., Meiser, D., Holland, M. J., &
    Thompson, J. K. (2012). A steady-state superradiant laser with less than
    one intracavity photon. Nature, 484(7392), 78-81.
    [3] Bose, R., Cai, T., Choudhury, K. R., Solomon, G. S., & Waks, E. (2014).
    All-optical coherent control of vacuum Rabi oscillations. Nature Photonics,
    8(11), 858-864.
    [4] Butts, D. L., Kinast, J. M., Kotru, K., Radojevic, A. M., Timmons, B.
    P., & Stoner, R. E. (2011). Coherent population trapping in Raman-pulse
    atom interferometry. Physical Review A, 84(4), 043613.
    [5] Chantry, G. W. (1982). The use of Fabry-Perot interferometers, etalons
    and resonators at infrared and longer wavelengths-an overview. Journal of
    Physics E: Scientific Instruments, 15(1), 3.
    [6] Chu, S., Bjorkholm, J. E., Ashkin, A., & Cable, A. (1986). Experimental
    observation of optically trapped atoms. Physical review letters, 57(3), 314.
    [7] Chu, S., Hollberg, L., Bjorkholm, J. E., Cable, A., & Ashkin, A. (1985).
    Three-dimensional viscous confinement and cooling of atoms by resonance
    radiation pressure. Physical review letters, 55(1), 48.
    [8] Daniel Adam Steck, Rubidium 85 D Line Data, Available online at
    ”https://steck.us/alkalidata/”
    [9] Ding, J. H., Huai, S. N., Ian, H., & Liu, Y. X. (2018). Vacuum induced
    transparency and photon number resolved Autler-Townes splitting in a
    three-level system. Scientific reports, 8(1), 1-15.
    [10] Esnault, F. X., Blanshan, E., Ivanov, E. N., Scholten, R. E., Kitching, J.,
    & Donley, E. A. (2013). Cold-atom double-Λcoherent population trapping
    clock. Physical Review A, 88(4), 042120.
    [11] Gabbanini, C., Fioretti, A., Lucchesini, A., Gozzini, S., & Mazzoni, M.
    (2000). Cold rubidium molecules formed in a magneto-optical trap. Physical
    review letters, 84(13), 2814.
    [12] Gerry, C., Knight, P., & Knight, P. L. (2005). Introductory quantum optics.
    Cambridge university press.
    [13] Linskens, A. F., Holleman, I., Dam, N., & Reuss, J. (1996). Two-photon
    Rabi oscillations. Physical Review A, 54(6), 4854.
    [14] Prajapati, N., Romanov, G., & Novikova, I. (2017). Suppression of fourwave mixing in hot rubidium vapor using ladder scheme Raman absorption.
    JOSA B, 34(9), 1994-1999.
    [15] Ritsch, H., Domokos, P., Brennecke, F., & Esslinger, T. (2013). Cold
    atoms in cavity-generated dynamical optical potentials. Reviews of Modern
    Physics, 85(2), 553.
    [16] Rui, J., Jiang, Y., Yang, S. J., Zhao, B., Bao, X. H., & Pan, J. W. (2015).
    Operating spin echo in the quantum regime for an atomic-ensemble quantum memory. Physical review letters, 115(13), 133002.
    [17] Sakurai, J. J., & Napolitano, J. (2014). Modern Quantum Mechanics. 2-nd
    edition. Person New International edition.
    [18] Scully, M. O., & Zubairy, M. S. (1999). Quantum optics.
    [19] Shankar, R. (2012). Principles of quantum mechanics. Springer Science &
    Business Media.
    [20] Uys, H., & Meystre, P. (2007). Theory of coherent Raman superradiance
    imaging of condensed Bose gases. Physical Review A, 75(3), 033805.
    [21] Wu, Y. (1996). Effective Raman theory for a three-level atom in the Λ
    configuration. Physical Review A, 54(2), 1586.

    下載圖示 校內:2022-09-16公開
    校外:2022-09-16公開
    QR CODE