| 研究生: |
闞元宏 Kan, Yuan-Hung |
|---|---|
| 論文名稱: |
測量非對稱拉曼躍遷之拉比震盪 Measure Rabi oscillations of Rubidium 85 in different degree of asymmetry Raman transition systems |
| 指導教授: |
管培辰
Kuan, Pei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 雙光子 、磁光陷阱 、拉曼躍遷 、拉比震盪 |
| 外文關鍵詞: | two photon, MOT, Raman transition, Rabi oscillation |
| 相關次數: | 點閱:78 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我會介紹我們是如何架設我們的實驗與光路來達到測量與
觀測銣原子在微波與光波拉曼情況下發生的拉比震盪現象。論文中會討論在微
波與兩道雷射光強度差異較小情況下之光波拉曼發生的拉比震盪結果,接著會
藉由實驗的數據結果探討在兩道雷射光強度差異不同時觀察到的現象。我們的
實驗甚至可以利用冷卻的技術與磁光陷阱做搭配,將銣原子團降到10 µk 的低
溫。
我們從實驗結果會發現當兩道雷射光強度差異不大時,可以得到與微波情況
下類似的結果,當兩道雷射光具有很強的非對稱性時,銣原子團在空間中的分
布會隨著時間改變。
In this thesis, we will introduce how we set up our experiment system to
measure and observe the Rabi oscillations of 85Rb atoms at different situations,
including microwave and optical Raman lasers. We will discuss results of Rabi
oscillations in microwave and weak asymmetry optical Raman lasers situations
and then focus on the difference between different asymmetry of optical Raman
lasers. Also we use laser cooling method and magneto-optical trap to cool down
85Rb atoms to 10 µk in our experiments.
We can get similar results in microwave Rabi oscillation and Rabi oscillation
caused by weak asymmetry optical Raman transition system and see the space
distribution of 85Rb atoms changed in different time durations under strong
asymmetry optical Raman transition system.
[1] Albers, H., Herbst, A., Richardson, L. L., Heine, H., Nath, D., Hartwig, J.,
... & Schlippert, D. (2020). Quantum test of the Universality of Free Fall
using rubidium and potassium. The European Physical Journal D, 74(7),
1-9.
[2] Bohnet, J. G., Chen, Z., Weiner, J. M., Meiser, D., Holland, M. J., &
Thompson, J. K. (2012). A steady-state superradiant laser with less than
one intracavity photon. Nature, 484(7392), 78-81.
[3] Bose, R., Cai, T., Choudhury, K. R., Solomon, G. S., & Waks, E. (2014).
All-optical coherent control of vacuum Rabi oscillations. Nature Photonics,
8(11), 858-864.
[4] Butts, D. L., Kinast, J. M., Kotru, K., Radojevic, A. M., Timmons, B.
P., & Stoner, R. E. (2011). Coherent population trapping in Raman-pulse
atom interferometry. Physical Review A, 84(4), 043613.
[5] Chantry, G. W. (1982). The use of Fabry-Perot interferometers, etalons
and resonators at infrared and longer wavelengths-an overview. Journal of
Physics E: Scientific Instruments, 15(1), 3.
[6] Chu, S., Bjorkholm, J. E., Ashkin, A., & Cable, A. (1986). Experimental
observation of optically trapped atoms. Physical review letters, 57(3), 314.
[7] Chu, S., Hollberg, L., Bjorkholm, J. E., Cable, A., & Ashkin, A. (1985).
Three-dimensional viscous confinement and cooling of atoms by resonance
radiation pressure. Physical review letters, 55(1), 48.
[8] Daniel Adam Steck, Rubidium 85 D Line Data, Available online at
”https://steck.us/alkalidata/”
[9] Ding, J. H., Huai, S. N., Ian, H., & Liu, Y. X. (2018). Vacuum induced
transparency and photon number resolved Autler-Townes splitting in a
three-level system. Scientific reports, 8(1), 1-15.
[10] Esnault, F. X., Blanshan, E., Ivanov, E. N., Scholten, R. E., Kitching, J.,
& Donley, E. A. (2013). Cold-atom double-Λcoherent population trapping
clock. Physical Review A, 88(4), 042120.
[11] Gabbanini, C., Fioretti, A., Lucchesini, A., Gozzini, S., & Mazzoni, M.
(2000). Cold rubidium molecules formed in a magneto-optical trap. Physical
review letters, 84(13), 2814.
[12] Gerry, C., Knight, P., & Knight, P. L. (2005). Introductory quantum optics.
Cambridge university press.
[13] Linskens, A. F., Holleman, I., Dam, N., & Reuss, J. (1996). Two-photon
Rabi oscillations. Physical Review A, 54(6), 4854.
[14] Prajapati, N., Romanov, G., & Novikova, I. (2017). Suppression of fourwave mixing in hot rubidium vapor using ladder scheme Raman absorption.
JOSA B, 34(9), 1994-1999.
[15] Ritsch, H., Domokos, P., Brennecke, F., & Esslinger, T. (2013). Cold
atoms in cavity-generated dynamical optical potentials. Reviews of Modern
Physics, 85(2), 553.
[16] Rui, J., Jiang, Y., Yang, S. J., Zhao, B., Bao, X. H., & Pan, J. W. (2015).
Operating spin echo in the quantum regime for an atomic-ensemble quantum memory. Physical review letters, 115(13), 133002.
[17] Sakurai, J. J., & Napolitano, J. (2014). Modern Quantum Mechanics. 2-nd
edition. Person New International edition.
[18] Scully, M. O., & Zubairy, M. S. (1999). Quantum optics.
[19] Shankar, R. (2012). Principles of quantum mechanics. Springer Science &
Business Media.
[20] Uys, H., & Meystre, P. (2007). Theory of coherent Raman superradiance
imaging of condensed Bose gases. Physical Review A, 75(3), 033805.
[21] Wu, Y. (1996). Effective Raman theory for a three-level atom in the Λ
configuration. Physical Review A, 54(2), 1586.