| 研究生: |
陳宏誌 Chen, Hong-Chih |
|---|---|
| 論文名稱: |
前瞻顯示器非晶態銦鎵鋅氧薄膜電晶體之可靠度與物理機制 Reliability and Physical Mechanisms of Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors for Advanced Display |
| 指導教授: |
賴韋志
Lai, Wei-Chi |
| 共同指導教授: |
張鼎張
Chang, Ting-Chang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 179 |
| 中文關鍵詞: | 非晶銦鎵鋅氧化物 、薄膜電晶體 、氫擴散 、自我熱效應 、氧空缺 |
| 外文關鍵詞: | a-InGaZnO, thin-film transistor, hydrogen diffusion, self-heating stress, oxygen vacancies |
| 相關次數: | 點閱:90 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,具備穿戴式消費電子顯示器已經非常流行,以及高電流驅動薄膜電晶體(TFT)在大面板中至關重要,閘極驅動陣列電路和主動矩陣微發光二極體(AM-μLED)皆在未來智慧型手機技術應用。因此,有必要提高薄膜電晶體的性能和可靠度,隨著對薄膜電晶體遷移率需求不斷的增加,其中較高電子遷移率的非晶態銦鎵鋅氧(a-InGaZnO)在主動層材料中比非晶矽(a-Si:H)變得更受歡迎。另外,非晶銦鎵鋅氧化物具寬能隙特性不易受電場產生能帶間穿隧效應,因此,它具有較低的漏電流。而本論文中頂閘極a-InGaZnO具有高遷移率和較低的漏電流,可以滿足該要求,這些優勢使a-InGaZnO 成為新一代顯示面板應用最有希望的候選者之一。
本論文首先介紹傳統低溫多晶矽多晶矽薄膜電晶體(LTPS TFT)的ID-VD電特性中的扭結效應現象的出現。在熱載子應力下,通道在汲極附近產生碰撞游離生成電子-電洞對,接著,電子被汲極負電場排到源極引起本體效應,從而降低了源極能障。此外,發現雙閘極結構的LTPS可以抑制由HCS引起的電性能下降。 Silvaco TCAD模擬表明,在雙閘結構中,通道上下介面處產生電洞,並抑制了由本體效應所導致的退化。 因此,雙閘極LTPS TFT的使用可以促進顯示面板中的高電流驅動應用。
接著,在a-InGaZnO雙閘極薄膜電晶體研究中,將懸浮底閘(BG)做為薄膜電晶體中的光屏蔽層,卻觀察到異常的ID-VD¬輸出不飽和電流特性。另外,隨著漏
極電壓的增加,汲極引起的能障下降對ID-VD特性具有重大影響,這些現像是由於電容耦合效應引起的電位變化,從TCAD模擬可以很好的觀察到並加以解釋。接著,提出物理模型來驗證異常的電性特徵,發現將底閘光屏蔽層接地可更好地控制臨界電壓和總體電流性能。
在第三部分中,應用於大型顯示器的薄膜電晶體的質量和穩定性對於其成功的製造和商業應用至關重要。這項研究介紹了一種薄膜電晶體製造工藝,其中,通過在頂閘a-InGaZnO的介電層中摻雜氫來定義源極/汲極。存在與該元件有關的尺寸效應,其中較長的通道允許更多的氫擴散到通道的中心。對於較短的通道,這將導致較低的能障和臨界電壓漂移,並提出了物理機制模型來驗證由氫擴散到頂閘a-InGaZnO薄膜電晶體中引起的異常電特性。
在第四部分中,研究了頂閘a-InGaZnO薄膜電晶體在自熱效應下氫擴散引起的劣化機制。 由於a-InGaZnO的散熱係數小於周圍絕緣體的散熱係數,因此,在高工作電流下,通道中會發生焦耳熱,源極/汲極n+ a-InGaZnO中的氫會擴散到通道中,從而使臨界電壓(VTH)向負方向漂移。此外,如COMSOL模擬中所觀察到的,不均勻的通道熱效應會引起電氣特性的駝峰效應。自熱應力(SHS)操作下的氫擴散會降低有效通道長度和增加寄生電容。電容測量方法用於闡明這些異常現象的機理。最終,在200 K的低溫環境中以恆定電流消除了焦耳熱效應,從而確認劣化確實是由焦耳熱效應引起的。在第五部分中,在不相等的通道熱效應導致電特性的駝峰效應,並且著通道寬度的增加,自熱效應變得更加突出。為了在未來的顯示器應用中以大電流運行將這些異常現象的影響降至最低,使用了一種在通道寬度中創建分割結構的方法來幫助總體散熱並減少自熱應力帶來劣化的影響。
在第六部分中,研究了水分對a-InGaZnO薄電晶體電性的影響。在這種薄膜電晶體的商業應用中,在潮濕環境中的高穩定性和高質量性能是必不可少的。在環境濕度下的薄膜電晶體操作過程中,水分子的電解通過尖端電場效應發生。氫在負電場下從蝕刻終止層或背通道擴散到主通道中。氫原子充當淺施主(這會導致通道中的載流子濃度升高),從而導致臨界電壓(VTH)向負方向移動。由尖端電場引起的氫從源極/汲極與閘極的重疊處擴散到通道中心,導致短通道器件的能障降低和VTH漂移。但是,在環境濕度中的負偏應力(NBS)下,短通道的負VTH飄移量比長通道的元件更為顯著,這表明長通道器件中的氫擴散得到抑制。這歸因於在源極、汲極和閘電極處尖端電場對水的電解,導致氫擴散到通道的中心距離較長。在此,基於C-V測量中異常的出現,提出了一種在環境濕度下電容-電壓(C-V)電特性變化的新型物理模型。該模型解釋了由尖端電場引起的水電解和由氫擴散到a-InGaZnO主動層中引起的異常電性。二次離子質譜分析表明,在環境濕度下負偏應力下,通道中的氫含量增加,驗證了a-InGaZnO TFTs對於濕氣環境所引起的裂化行為。
在第七部分中,本研究介紹了一種循環退火技術,該技術可增強a-InGaZnO底閘結構薄膜電晶體(TFT)的可靠性。通過使用這種處理,可以有效地緩解閘極負偏壓照明應力(NBIS)引起的不穩定性。循環退火提供了幾個冷卻步驟,這些步驟是放熱過程,可以形成更強的離子鍵。另一個優點是總退火時間比使用傳統長期退火時要短得多。通過使用循環退火,可以有效地優化a-InGaZnO的可靠性,縮短工藝時間可以提高製造效率。
Recently, portable consumer electronic devices with displays have become very popular. High-current-drive thin-film transistors (TFTs) are essential in large-panel units, smart phones gate drive array circuits, and future applications of active-matrix micro-light-emitting diode (AM-μLED) technology. Therefore, it is necessary to improve the performance and reliability of TFTs. With the increasing demand for TFT mobility, amorphous indium gallium zinc oxide (a-InGaZnO) has become more popular than amorphous silicon (a-Si) in the active layer owing to its higher electron mobility. In addition, the wide band gap characteristics of a-InGaZnO are not easily affected by an electric field, making it difficult for band-to-band tunnel effect. Therefore, it has lower leakage current. This thesis the top gate a-InGaZnO has high mobility and lower leakage current, which meet that requirement. These advantages make a-InGaZnO one of the most promising candidates for a new generation of flat panel display applications.
This thesis first introduces traditional examines the appearance of a kink effect phenomenon in the ID-VD electrical characteristics of low-temperature polycrystalline Si thin-film transistors (LTPS TFTs). During hot-carrier stress, electron-hole pairs were generated in the channel near the drain terminal owing to impact ionization. Next, the electrons were repelled toward the source by the drain electric field, thereby inducing the floating body effect, which lowered the source barrier. In addition, a dual gate-structured LTPS was found to inhibit the electrical degradation caused by HCS. The Silvaco TCAD simulation indicated that in the dual-gate structure, holes at the upper and lower margins of the channel were inverted and inhibited the degradation caused by the floating body effect. Therefore, the use of dual-gate LTPS TFTs could facilitate high-current gate-on-array circuit applications in display panels.
Then in this a-InGaZnO dual gate TFTs study, we integrated a floating bottom gate (BG) as a light shielding layer in a thin-film transistor. We observed abnormal ID-VD output characteristics and unsaturated current characteristics. Additionally, drain-induced barrier lowering has a significant impact on ID-VD characteristics as the drain voltage increases. These phenomena are due to changes in electrical potential that occur due to the capacitive coupling effect. Technology computer aided design simulations explained and correlated well with our observations. Next, a physical model is proposed to verify the abnormal electrical characteristics. Grounding the Bottom Gate light shield was found to provide better control over the threshold voltage and total current performance.
In the third part, the quality and stability of thin-film transistors applied to large-scale displays are crucial to their successful manufacture and commercial applicability. This study introduces a thin-film transistor manufacturing process in which the source/drain system is defined by hydrogen doping in the dielectric layer of the top-gate a-InGaZnO. A size effect related to this system exists where longer channels allow a greater amount of hydrogen to diffuse into the center of the channel. For shorter channels, this results in a lower energy barrier and a shift in the threshold voltage. A physical mechanism model is proposed to verify the abnormal electrical characteristics caused by hydrogen diffusion into the top-gate a- InGaZnO.
In the fourth part, the mechanism of hydrogen-diffusion-induced electrical degradation under the self-heating effect for a top-gate a-InGaZnO thin-film transistor is examined in this study. The heat dissipation coefficient of a-InGaZnO is smaller than that of the surrounding insulator. Therefore, Joule heating occurs in the channel under high operating currents, and hydrogen in the source/drain n+ a-InGaZnO diffuses into the channel to shift the threshold voltage (VTH) in the negative direction. In addition, the unequal channel thermal effect induces a hump effect in the electrical characteristics, as observed in COMSOL simulations. Finally, the Joule heating effect is eliminated in a low-temperature environment at 200 K with a constant current, confirming that the degradation is indeed caused by the Joule heating effect.
In the fifth part, the unequal channel thermal effect results in a hump effect in the electrical characteristics, and the self-heating effect becomes more prominent as the channel width increases. To minimize the effects of these abnormal phenomena under high current operation in future display applications, a method of creating structural divisions in the channel width is used to aid overall heat dissipation and reduce the effect of SHS degradation.
In the sixth part, the impact of moisture on the electrical characteristics of an a-InGaZnO thin-film transistor was investigated. In commercial applications of such TFTs, high stability and quality performance in humid environments are essential. During TFT operation under ambient moisture, the electrolysis of water molecules occurs via the tip electric field effect. Hydrogen diffuses from the etch-stop layer or back-channel into the main channel under a negative electric field. The hydrogen atoms act as shallow donors (which causes the carrier concentration in the channel to rise), causing the threshold voltage (VTH) to shift in the negative direction. Here, a novel physical model of the capacitance-voltage (C-V) electrical property changes under ambient moisture is proposed, based on the early appearance of abnormalities in the C-V measurements. The electrolysis of water caused by the tip electric field and electrical abnormalities caused by hydrogen diffusion into the a-InGaZnO active layer are explained by this model. Secondary-ion mass spectrometry analysis shows that hydrogen content in the channel generally increases under NBS in ambient moisture. The degradation behavior due to moisture in a-InGaZnO is clarified.
In the seventh part, this study introduces a cyclical annealing technique that enhances the reliability of a-InGaZnO via-type structure thin film transistors (TFTs). By utilizing this treatment, negative gate-bias illumination stress (NBIS)-induced instabilities can be effectively alleviated. The cyclical annealing provides several cooling steps, which are exothermic processes that can form stronger ionic bonds. An additional advantage is that the total annealing time is much shorter than when using conventional long term annealing. With the use of cyclical annealing, the reliability of the a-InGaZnO can be effectively optimized, and the shorter process time can increase fabrication efficiency.
[1] LED inside 發表于3C, 深度解析|Mini LED背光的前世今生. Retrieved from https://kknews.cc/zh-hk/digital/oe8oe4p.html
[2] David Roberts, The rise of the OLED. Retrieved from https://www.andersdx.com/the-rise-of-the-oled/.
[3] T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Science and Technology of Advanced Materials, 11(4), 044305. (2010)
[4] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” Journal of non-crystalline solids, 352(9-20), 851–858. (2006)
[5] T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Materials, 2(1), 15–22. (2010)
[6] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, 432(7016), 488–492. (2004)
[7] E. M. Fortunato, P. M. Barquinha, A. Pimentel, A. M. Gonçalves, A. J. Marques, L. M. Pereira, and R. F. Martins, “Fully Transparent ZnO Thin‐Film Transistor Produced at Room Temperature,” Advanced Materials, 17(5), 590–594. (2005)
[8] H. N. Lee, J. Kyung, S. K. Kang, D. Y. Kim, M. C. Sung, S. J. Kim, C. N. Kim, H. G. Kim, and S. t. Kim, “68.2: 3.5 Inch QCIF+ AM‐OLED Panel Based on Oxide TFT Backplane,” in SID Symposium Digest of Technical Papers, 38(1), 1826–1829. (2007)
[9] P.-T. Liu, Y.-T. Chou, and L.-F. Teng, “Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress,” Applied Physics Letters, 95(23), 233504. (2009)
[10] W.-F. Chung, T.-C. Chang, H.-W. Li, S.-C. Chen, Y.-C. Chen, T.-Y. Tseng, and Y.-H. Tai, “Environment-dependent thermal instability of sol-gel derived amorphous indium-gallium-zinc-oxide thin film transistors,” Applied Physics Letters, 98(15), 152109. (2011)
[11] T.-C. Chen, T.-C. Chang, T.-Y. Hsieh, C.-T. Tsai, S.-C. Chen, C.-S. Lin, M.-C. Hung, C.-H. Tu, J.-J. Chang, and P.-L. Chen, “Light-induced instability of an InGaZnO thin film transistor with and without SiO passivation layer formed by plasma-enhanced-chemical-vapor-deposition,” Applied Physics Letters, 97(19), 192103. (2010)
[12] P. Gorrn, M. Lehnhardt, T. Riedl, and W. Kowalsky, “The influence of visible light on transparent zinc tin oxide thin film transistors,” Applied Physics Letters, 91(19), 193504. (2007)
[13] P.-Y. Liao, “Investigation of Reliability and Physical Mechanisms of Flexible a-InGaZnO Thin Film Transistors for Advanced Display”. (2017)
[14] H.-C. Chiang, “Electrical Analyses and Physical Mechanisms of Structure-dependent Self-heating effects and Gate Bias Reliability of Advanced InGaZnO Thin Film Transistors”. (2018)
[15] Y. Zhan, Y. Mei, and L. Zheng, “Materials capability and device performance in flexible electronics for the Internet of Things,” Journal of Materials Chemistry C, 2(7), 1220–1232. (2014)
[16] J.‐H. Hong, J.-M. Shin, G.-M. Kim, H. Joo, G.-S. Park, I.-B. Hwang, M.-W. Kim, W.‐S. Park, H. Y. Chu, S. Kim, “9.1‐inch stretchable AMOLED display based on LTPS technology,” Journal of the Society for Information Display, 25(3), 194–199. (2017)
[17] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, 432(7016), 488–492. (2004)
[18] B.-W. Chen, T.-C. Chang, K.-C. Chang, Y.-J. Hung, S.-P. Huang, H.-M. Chen, P-Y Liao, Y.-H. Lin, H.-C. Huang, H. -C. Chiang, C.-I. Yang, Y.-Z. Zheng, A.-K. Chu, H.-W. Li, C.-H. Tsai, H.-H. Lu, and T.-J. Wang, “Surface engineering of polycrystalline silicon for long-term mechanical stress endurance enhancement in flexible low-temperature poly-Si thin-film transistors,” ACS applied materials & interfaces, 9(13), 11942–11949. (2017)
[19] P.-C. Kuo, A. Jamshidi-Roudbari, and M. Hatalis, “Effect of mechanical strain on mobility of polycrystalline silicon thin-film transistors fabricated on stainless steel foil,” Applied Physics Letters, 91(24), 243507. (2007)
[20] C.-F. Huang, Y.-J. Yang, C.-Y. Peng, F. Yuan, and C. W. Liu, “Mechanical strain effect of n-channel polycrystalline silicon thin-film transistors,” Applied physics letters, 89(10), 103502. (2006)
[21] I.-H. Peng, P.-T. Liu, and T.-B. Wu, “Effect of bias stress on mechanically strained low temperature polycrystalline silicon thin film transistor on stainless steel substrate,” Applied Physics Letters, 95(4), 041909. (2009)
[22] C.-S. Lin, S.-J. Chen, T.-C. Chang, F.-Y. Jian, W.-C. Hsu, Y.-J. Kuo, C. -H. Dai, T.-C. Chen, W.-H. Lo, and T.-Y. Hsieh, “NBTI degradation in LTPS TFTs under mechanical tensile strain,” IEEE Electron Device Letters, 32(7), 907–909. (2011)
[23] H. C. Chen, T. C. Chang, W. C. Lai, G. F. Chen, B. W. Chen, Y. J. Hung, K. J. Chang, K. C. Cheng, C. S. Huang, K. K. Chen, H. H. Lu, and Y. H. Lin, “Cyclical Annealing Technique To Enhance Reliability of Amorphous Metal Oxide Thin Film Transistors,” ACS applied materials & interfaces, 10(31), 25866–25870. (2014)
[24] D. Geng, Y.-F. Chen, M. Mativenga, and J. Jang, “30 µm-Pitch Oxide TFT-Based Gate Driver Design for Small-Size, High-Resolution, and Narrow-Bezel Displays,” IEEE Electron Device Letters, 36(8), 805–807. (2015)
[25] T. Ni, G. S. Schmidt, O. G. Staadt, Mark A. Livingston, R. Ball, R. May, “A survey of large high-resolution display technologies, techniques, and applications,” In IEEE Virtual Reality Conference, 223–236. (2006)
[26] K.-C. Moon, J.-H. Lee, and M.-K. Han, “The study of hot-carrier stress on poly-Si TFT employing CV measurement,” IEEE Trans. Electron Devices, 52(4), 512–517. (2005)
[27] J. R. Ayres, S. D. Brotherton, D. J. McCulloch, and M. J. Trainor, “Analysis of drain field and hot carrier stability of poly-Si thin film transistors,” Japanese journal of applied physics, 37(4), 1801. (1998)
[28] J.P. Colinge, “Reduction of kink effect in thin-film SOI MOSFETs,” IEEE Electron Device Letters, 9(2), 97–99. (1988)
[29] K.-J. Liu, T.-C. Chang, R.-Y. Yang, C.-E. Chend, S.-H. Ho, J.-Y. Tsai, T.-Y. Hsieh, O. Cheng, and C.-T. Huange, “Abnormal temperature-dependent floating-body effect on Hot-Carrier Degradation in PDSOI n-MOSFETs,” Thin Solid Films, 2(7), 39–43. (2014)
[30] K. Kato, T. Wada, and K. Taniguchi, “Analysis of kink characteristics in silicon-on-insulator MOSFET's using two-carrier modeling,” IEEE Transactions on Electron Devices, 32(2), 458–462. (1985)
[31] I. M. Hafez, G. Ghibaudo, and F. Balestra, “Analysis of the kink effect in MOS transistors,” IEEE transactions on electron devices, 37(3), 818–821. (1990)
[32] C.-C. Tsai, K.-F. Wei, Y.-J. Lee, H.-H. Chen, J.-L. Wang, I.-C. Lee, and H.-C. Cheng, “High-performance short-channel double-gate low-temperature polysilicon thin-film transistors using excimer laser crystallization,” IEEE Electron Device Lett., 28(44), 1010–1013. (2007)
[33] G. Baek, K. Abe, A. Kuo, H. Kumomi, and J. Kanicki, “Electrical properties and stability of dual-gate coplanar homojunction DC sputtered amorphous indium–gallium–zinc–oxide thin-film transistors and its application to AM-OLEDs,” IEEE Trans. Electron Devices, 58(12), 4344–4353. (2011)
[34] F.-T. Chien, C.-P. Hung, H.-C. Chiu, T.-K. Kang, C.-H. Cheng, and Y.-T. Tsai, “Double-Gate Two-Step Source/Drain Poly-Si Thin-Film Transistor,” Coatings, 9(4) , 233. (2019)
[35] F. V. Farmakis, J. Brini, G. Kamarinos, and C. A. Dimitriadis, “Anomalous turn-on voltage degradation during hot-carrier stress in polycrystalline silicon thin-film transistors,” IEEE Electron Device Letters, 22(2), 74–76. (2001)
[36] C.-F. Huang, H.-C. Sun, Y.-J. Yang, Y.-T. Chen, C.-Y. Ku, C.-W. Liu, Y.-J. Hsu, C.-C. Shih, and J.-S. Chen, “Dynamic bias instability of p-channel polycrystalline-silicon thin-film transistors induced by impact ionization,” IEEE Electron Device Letters, 30(4), 368–370. (2009)
[37] M.-W. Ma, C.-Y. Chen, W.-C. Wu, C.-J. Su, K.-H. Kao, T.-S. Chao, and T.-F. Lei, “Reliability Mechanisms of LTPS-TFT WithHfO2Gate Dielectric: PBTI, NBTI, and Hot-Carrier Stress,” IEEE Transactions on Electron Devices, 55(5), 1153–1160. (2008)
[38] M.-W. Ma, C.-Y. Chen, C.-J. Su, W.-C. Wu, Y.-H. Wu, K.-H. Kao, T.-S. Chao, and T.-F. Lei, “Characteristics of PBTI and Hot Carrier Stress for LTPS-TFT with High-κ Gate Dielectric,” IEEE Electron Device Letters, 29(2), 171–173. (2008)
[39] Silvaco. (2014). Atlas User’s Manual. [Online]. Available at: http://www.silvaco.com
[40] H.-C. Chen, S.-P. Huang, Y.-F. Tu, C.-W. Kuo, K.-J. Zhou, J.-J. Chen, Y.-S. Shih, G.-F. Chen, W.-C. Su, H.-Y. Tu, H.-C. Huang, W.-C. Lai and T.-C. Chang, “Inhibiting the Kink Effect and Hot-carrier Stress Degradation using Dual-gate Low-temperature Poly-Si TFTs,” IEEE Electron Device Letters, 41(1), 54–57. (2019)
[41] T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Science and Technology of Advanced Materials, 11(4), 044305. (2010)
[42] C.-T. Tsai, T.-C. Chang, S.-C. Chen, I. Lo, S.-W. Tsao, M.-C. Hung, J.-J. Chang, C.-Y. Wu, and C.-Y. Huang, “Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor,” A Phys. Lett., 96(24), 242105. (2010)
[43] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, 432(4016), 488–492. (2004)
[44] T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Mater., 2(1), 15–22. (2010)
[45] J.-H. Lee, D.-H Kim, D.-J. Yang, S.-Y. Hong, K.-S. Yoon, P.-S. Hong, Ch.-O. Jeong, H.-S. Park, S.-Y. Kim, S.-K. Lim, and S.-S. Kim, “World's largest (15‐inch) XGA AMLCD panel using InGaZnO oxide TFT,” SID Symposium Digest of Technical Papers, 39(1), 625–628. (2012)
[46] Y. Hara, T. Kikuchi, H. Kitagawa, J. Morinaga, H. Ohgami, H. Imai, T. Daitoh, and T. Matsu, “InGaZnO-TFT technology for large-screen 8K display,” SID Symposium Digest of Technical Papers, 49(1), 706–709. (2018)
[47] D. Geng, Y.-F. Chen, M. Mativenga, and J. Jang, “30μm-pitch oxide TFT-based gate driver design for small-size, high-resolution, and narrow-bezel displays,” IEEE Electron Device Lett., 36(8), 805–807. (2015)
[48] F. Wei, S. Li, T. Lu, Y. Liu, R. Wang, S. Yan, and Z. Liu, “Hybrid full color micro-LED displays with quantum dots,” SID Symposium Digest of Technical Papers, 49(8), 697–699. (2018)
[49] Z.-J. Liu, K.-M. Wong, C.-W Keung, C.-W Tang, and K.-M Lau, “Monolithic LED micro display on active matrix substrate using flip-chip technology,” IEEE J. Sel. Topics Quantum Electron., 15(4), 1298–1302. (2009)
[50] D. C., Hays, B. P., Gila, S. J. Pearton, and F. Ren, “Energy band offsets of dielectrics on InGaZnO4,” Applied Physics Reviews, 4(2), 021301. (2017)
[51] Z.-J. Liu, W.-C, Chong, K.-M, Wong, and K.-M, Lau, “360 PPI flip-chip mounted active matrix addressable light emitting diode on silicon (LEDoS) micro-displays,” Journal of Display Technology, 9(8), 678–682. (2013)
[52] T.-Y. Hsieh, T.-C. Chang, T.-C. Chena, and M.-Y. Tsai, “Review of present reliability challenges in amorphous In-Ga-Zn-O thin film transistors,” ECS J. Solid-State Sci. Technol., 3(9), Q3058–Q3070. (2014)
[53] C.-L, Lin, W.-Y, Chang, and C.-C, Hung, “Compensating pixel circuit driving AMOLED display with a-InGaZnO TFTs,” IEEE Electron Device Lett., 34(9), 1166–1168. (2013)
[54] H.-C, Chen, T.-C, Chang, W.-C, Lai, G.-F, Chen, B.-W, Chen, Y.-J, Hung, K-J. Chang, K.-C. Cheng, C.-S. Huang, K.-K. Chen, H.-H. Lu, and Y.-H. Lin “Cyclical annealing technique to enhance reliability of amorphous metal oxide thin film transistors,” ACS applied materials & interface, 10(31), 25866–25870. (2018)
[55] Y.-G. Mo, M. Kim, C.-K. Kang, J.-H. Jeong, Y.-S. Park, C.-G. Choi, H.-D. Kim, and S.-S. Kim, “Amorphous‐oxide TFT backplane for large‐sized AMOLED TVs,” Journal of the Society for Information Display, 19(1), 16–20. (2012)
[56] J.-S, Park, H. Kim, I.-D, Kim, “Overview of electroceramic materials for oxide semiconductor thin film transistors,” Journal of Electroceramics, 32(2-3), 117–140. (2013)
[57] M. Mativenga, M.-H, Choi, D.-H, Kang, and J. Jang, “High-performance drain-offset a-InGaZnO thin-film transistors,” IEEE Electron Device Lett., 32(5), 644–646. (2011)
[58] G. Baek, K. Abe, A. Kuo, H. Kumomi, and J. Kanicki, “Electrical properties and stability of dual-gate coplanar homojunction DC sputtered amorphous indium–gallium–zinc–oxide thin-film transistors and its application to AM-OLEDs,” IEEE Trans. Electron Devices, 58(12), 4344–4353. (2011)
[59] X. Li, D. Geng, M. Mativenga, and J. Jang, “High-speed dual-gate a-InGaZnO TFT-based circuits with top-gate offset structure,” IEEE Electron Device Lett., 35(4), 461–463. (2014)
[60] K. Takechi, M. Nakata, K. Azuma, H. Yamaguchi, and S. Kaneko, “Dual-Gate Characteristics of Amorphous InGaZnO4 Thin-Film Transistors as Compared to Those of Hydrogenated Amorphous Silicon Thin-Film Transistors,” IEEE Trans. Electron Devices, 56(9), 2027–2033. (2009)
[61] M.-C. Chen, T.-C. Chang, S.-Y. Huang, K.-C. Chang, H.-W. Li, S.-C. Chen, J. Lu, and Y. Shi, “A low-temperature method for improving the performance of sputter-deposited ZnO thin-film transistors with supercritical fluid,” Appl. Phys. Lett., 94(16), 162111. (2009)
[62] S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors,” Adv. Mater., 22(12), 1346–1350. (2009)
[63] C.-I. Yang, T.-C. Chang, P.-Y. Liao, B.-W. Chen, W.–C. Chou, G.-F. Chen, S.-P. Huang, Y.-Z. Zheng, Y.-X. Wang, H.-W. Liu, C.-Y. Lin, Y-S. Lin, Y.-H. Lu, and S. Zhang, “Combined effects of light illumination and various bottom gate length on the instability of via-contact-type amorphous InGaZnO thin-film transistors,” IEEE Trans. Electron Devices, 65(2), 533–536. (2018)
[64] S. Lee, M. Mativenga, and J. Jang, “Removal of negative-bias-illumination-stress instability in amorphous-InGaZnO thin-film transistors by top-gate offset structure,” IEEE Electron Device Lett., 35(9), 930–932. (2014)
[65] T.-Y. Hsieh, T.-C. Chang, T.-C. Chen, M.-Y. Tsai, Y.-T. Chen, F.-Y. Jian, Y.-C. Chung, H.-C. Ting, and C.-Y. Chen, “Investigating the drain-bias-induced degradation behavior under light illumination for InGaZnO thin-film transistors,” IEEE Electron Device Lett., 33(7), 1000–1002. (2012)
[66] H. Yamaguchi, T. Ueda, K. Miura, N. Saito, S. Nakano, T. Sakano, K. Sugi, I. Amemiya, M. Hiramatsu, and A. Ishida, “Late‐news paper: 11.7‐inch flexible AMOLED display driven by a‐InGaZnO TFTs on plastic substrate,” In SID Symposium Digest of Technical Papers, 43(1), 1002–1005. (2012)
[67] N. Morosawa, Y. Ohshima, M. Morooka, T. Arai, and T. Sasaoka, “Distinguished paper: a novel self‐aligned top‐gate oxide TFT for AM‐OLED displays,” In SID Symposium Digest of Technical Papers, 42(1), 479–482. (2012)
[68] A. Janotti, C.-G.Van de Walle, “Hydrogen multicentre bonds,” Nature materials, 6(1), 44–47. (2006)
[69] S.-H. Yang, J.-Y. Kim, M.-J Park, K.-H. Choi, J.-S Kwak, H.-K. Kim, and J.-M. Lee, “Low resistance ohmic contacts to amorphous InGaZnO thin films by hydrogen plasma treatment,” Surface and Coatings Technology, 206(24), 5067–5071. (2012)
[70] A. Janotti, C.-G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Reports on progress in physics, 72(12), 126501. (2009)
[71] Troutman, R. R., “VLSI limitations from drain-induced barrier lowering,” IEEE Journal of Solid-State Circuits, 14(2), 383-391. (1979)
[72] M. Kim and H. Shin, “Anomalous drain-induced barrier lowering effect of thin-film transistors due to capacitive coupling,” Electronics Letters, 50(15), 1093–1095. (2014)
[73] M. Kim, W. Sun, J. Kang, and H. Shin, “The effect of a source-contacted light shield on the electrical characteristics of an LTPS TFT,” Semiconductor Science and Technology, 32(8), 085001. (2017)
[74] K. Abe, K. Takahashi, A. Sato, H. Kumomi, K. Nomura, T. Kamiya, J. Kanicki, and H. Hosono, “Amorphous In–Ga–Zn–O dual-gate TFTs: current–voltage characteristics and electrical stress instabilities” IEEE Trans. Electron Devices, 59(7), 1928–1935. (2012)
[75] S. Lee, Y.-W. Jeon, S. Kim, D. Kong, D.-H. Kim, and D.-M. Kim, “Comparative study of quasi-static and normal capacitance–voltage characteristics in amorphous Indium-Gallium-Zinc-Oxide thin film transistors,” Solid-State Electronics, 56(1), 95–99. (2011)
[76] H.-C. Chen, K.-J. Zhou, P.-H. Chen, G.-F. Chen, S.-P. Huang, J.-J. Chen, C.-W. Kuo, Y.-C. Tsao, M.-C. Tai, A.-K. Chu, W.-C. Lai, and T.-C. Chang, “Abnormal Unsaturated Output Characteristics in a-InGaZnO TFTs With Light Shielding Layer,” IEEE Electron Device Letters, 40(8), 1281–1284. (2019)
[77] J.-H. Lee, D.-H Kim, D.-J. Yang, S.-Y. Hong, K.-S. Yoon, P.-S. Hong, Ch.-O. Jeong, H.-S. Park, S.-Y. Kim, S.-K. Lim, and S.-S. Kim, “World’s largest (15‐inch) XGA AMLCD panel using InGaZnO oxide TFT,” SID Symp. Dig. Tech. Papers, 39(1), 625–628. (2012)
[78] T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping,” J. Disp. Technol., 5(12), 468–483. (2009)
[79] T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci. Technol. Adv. Mater., 11(4), 044305. (2010)
[80] T. Burnett, “Light‐field displays and extreme multiview rendering,” Inf. Disp., 33(6), 6–32. (2017)
[81] Y.-M. Ha, S.-K. Kim, H. Choi, S.-G. Lee, K.-S. Park, and I. Kang, “69‐1: Invited Paper: Oxide TFT Development for AMLCDs and AMOLEDs,” SID Symp. Dig. Tech. Papers., 47(1), 940–943. (2016)
[82] S.-C. Kim, Y.-S. Kim, E. K.-H. Yu, and J. Kanicki, “Short channel amorphous In–Ga–Zn–O thin-film transistor arrays for ultra-high definition active matrix liquid crystal displays: Electrical properties and stability,” Solid-State Electron., 111, 67–75. (2015)
[83] D. C., Hays, B. P., Gila, S. J. Pearton, and F. Ren, “Energy band offsets of dielectrics on InGaZnO4,” Appl. Phys. Rev., 4(2), 021301. (2017)
[84] T.-Y. Hsieh, T.-C. Chang, T.-C. Chena, and M.-Y. Tsai, “Review of present reliability challenges in amorphous In-Ga-Zn-O thin film transistors,” ECS J. Solid-State Sci. Technol., 3(9), Q3058–Q3070.(2014)
[85] Y.-G. Mo, M. Kim, C.-K. Kang, J.-H. Jeong, Y.-S. Park, C.-G. Choi, H.-D. Kim, and S.-S. Kim, “Amorphous‐oxide TFT backplane for large‐sized AMOLED TVs,” J. Soc. Inf. Disp., 19(1), 16–20. (2012)
[86] C.-Y. Chen, J.-W. Lee, S.-D Wang, M.-S. Shieh, P.-H. Lee, W.-C. Chen, H.-Yi. Lin, and T.-F. Lei, “Negative bias temperature instability in low-temperature polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, 53(12), 2993–3000. (2006)
[87] M. Mativenga, M.-H, Choi, D.-H, Kang, and J. Jang, “High-performance drain-offset a-InGaZnO thin-film transistors,” IEEE Electron Device Lett., 32(5), 644–646. (2011)
[88] J.-S, Park, H. Kim, and I.-D, Kim, “Overview of electroceramic materials for oxide semiconductor thin film transistors,” J. Electroceram., 32(2-3), 117–140. (2013)
[89] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, 432(4016), 488–492. (2004)
[90] H. Yabutaa, M. Sano, K. Abe, T. Aiba, T. Den, and H. Kumomi, “High-mobility thin-film transistor with amorphous channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett., 89(11), 112123. (2006)
[91] S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors,” Adv. Mater., 22(12), 1346–1350. (2009)
[92] H. Bae, S. Kim, M. Bae, J.-S. Shin, D. Kong, H. Jung, J. Jang, J. Lee, D.-H. Kim, and D.-M. Kim, “Extraction of Separated Source and Drain Resistances in Amorphous Indium–Gallium–Zinc Oxide TFTs Through C–V Characterization,” IEEE Electron Device Lett., 32(6), 761–763. (2011)
[93] A. Janotti and C.-G.Van de Walle, “Hydrogen multicentre bonds,” Nature Mater., 6(1), 44–47. (2006)
[94] A. Janotti and C.-G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Progress Phys., 72(12), 126501. (2009)
[95] C. G. V. de Walle, “Hydrogen as a cause of doping in zinc oxide,” Phys. Rev. Lett., 85(5), 1012. (2000)
[96] J. Bang, and K.-J. Chang, “Diffusion and thermal stability of hydrogen in ZnO,” Appl. Phys. Lett., 92(13), 132109. (2008)
[97] T. Kamiya, K. Nomura, and H. Hosono, “Subgap states, doping and defect formation energies in amorphous oxide semiconductor a‐InGaZnO4 studied by density functional theory,” Physica Status Solidi, 207(7), 1698–1703. (2010)
[98] T. Toda, D. Wang, J. Jiang, M.-P. Hung, and M. Furuta, “Quantitative analysis of the effect of hydrogen diffusion from silicon oxide etch-stopper layer into amorphous In–Ga–Zn–O on thin-film transistor,” IEEE Trans. Electron Devices, 61(11), 3762–3767. (2014)
[99] Se.-I. Oh, G. Choi, H. Hwang, W. Lu, and J.-H. Jang, “Hydrogenated InGaZnO thin-film transistors using high-pressure hydrogen annealing,” IEEE Trans. Electron Devices, 60(8), 2537–2541. (2013)
[100] H.-C. Chen, G.-F. Chen, P.-H. Chen, S.-P. Huang, J.-J. Chen, K.-J. Zhou, C.-W. Kuo, Y.-C. Tsao, A.-K. Chu, H.-C. Huang, W.-C. Lai and T.-C. Chang, “A novel heat dissipation structure for inhibiting hydrogen diffusion in top-gate a-InGaZnO TFTs,” IEEE Electron Device Lett., 40(9), 1447–1450. (2019)
[101] G. Baek, L. Bie, K. Abe, H. Kumomi, and J. Kanicki, “Electrical instability of double-gate a-InGaZnO TFTs with metal source/drain recessed electrodes,” IEEE Trans. Electron Devices, 61(4), 1109–1115. (2014)
[102] G.-F. Chen, T.-C. Chang, H.-M. Chen, B.-W. Chen, H.-C. Chen, C.-Y. Li, Y.-H. Tai, Y.-J. Hung, K.-J. Chang, K.-C. Cheng, C.-S. Huang, K.-K. Chen, H.-H. Lu, and Y.-H. Lin, “Abnormal dual channel formation induced by hydrogen diffusion from SiNx interlayer dielectric in top gate a-InGaZnO transistors,” IEEE Electron Device Lett., 38(3), 334–337. (2017)
[103] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Crystalline Solids, 352(9-20), 851–858. (2006)
[104] G.-K. Reeves, and H.-B. Harrison, “Obtaining the specific contact resistance from transmission line model measurements,” IEEE Electron Device Lett., 3(5), 111–113. (1982)
[105] W. Wang, L. Li, C. Lu, Y. Liu, H. Lv, G. Xu, Z. Ji, and M. Liu, “Analysis of the contact resistance in amorphous InGaZnO thin film transistors,” Appl. Phys. Lett., 107(6), 063504. (2015)
[106] C. Liu, Y. Xu, G. Ghibaudo, X. Lu, T. Minari, and Y.-Y. Noh, “Evaluating injection and transport properties of organic field-effect transistors by the convergence point in transfer-length method,” Appl. Phys. Lett., 104(1), 1. (2014)
[107] M.-Y. Tsai1, T. –C. Chang, A. -K Chu, T.-Y. Hsieh, T. -C. Chen, K. -Y. Lin, W. -W. Tsai, W. -J. Chiang, and J. -Y. Yan, “High temperature-induced abnormal suppression of sub-threshold swing and on-current degradations under hot-carrier stress in a-InGaZnO thin film transistors,” Appl. Phys. Lett., 103(1), 012101. (2013)
[108] K. Nomura, T. Kamiya, and H. Hosono, “Effects of diffusion of hydrogen and oxygen on electrical properties of amorphous oxide semiconductor, In-Ga-Zn-O,” ECS J. Solid State Sci. Technol., 2(1), 5–8. (2012)
[109] S.-H. Choi, J.-H. Jang, J.-J. Kim, and M.-K. Han “Low-temperature organic (CYTOP) passivation for improvement of electric characteristics and reliability in InGaZnO TFTs,” IEEE Electron Device Lett., 33(3), 381–383. (2012)
[110] T. Kamiyaa, and H. Hosono, “(Invited) Roles of hydrogen in amorphous oxide semiconductor,” ECS Trans., 54(1), 103–113. (2013)
[111] H.-C. Chen, J.-J. Chen, K.-J. Zhou, G.-F. Chen, C.-W. Kuo, Y.-S. Shih, W.-C. Su, C.-C. Yang, H.-C. Huang, C.-C. Shih, W.-C. Lai and T.-C. Chang, “Hydrogen Diffusion and Threshold Voltage Shifts in Top-Gate Amorphous InGaZnO Thin-Film Transistors,” IEEE Transactions on Electron Devices, 67(8), 3123–3128. (2020)
[112] T. Arai, “69.1: Invited Paper: The Advantages of the Self‐Aligned Top Gate Oxide TFT Technology for AM‐OLED Displays,” In SID Symposium Digest of Technical Papers, 46(1), 1016–1019. (2015)
[113] N. Morosawa, Y. Ohshima, M. Morooka, T. Arai, and T. Sasaoka, “Distinguished paper: a novel self‐aligned top‐gate oxide TFT for AM‐OLED displays,” In SID Symposium Digest of Technical Papers, 42(1), 479–482. (2012)
[114] J. -S. Park, H. Chae, H. -K Chung, and S. -In. Lee, “Thin film encapsulation for flexible AM-OLED: a review,” Semiconductor science and technology, 26(3), 034001. (2011)
[115] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, 432(4016), 488–492. (2004)
[116] L. Petti1, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe, G. Cantarella, F. Bottacchi, T. -D. Anthopoulos, and G. Tröster, “Metal oxide semiconductor thin-film transistors for flexible electronics,” Applied Physics Reviews, 3(2), 021303. (2016)
[117] D. Han, Z. Chen, Y. Cong, W. Yu, X. Zhang, and Y. Wang, “High-performance flexible tin-zinc-oxide thin-film transistors fabricated on plastic substrates,” IEEE Transactions on Electron Devices, 63(8), 3360–3363. (2016)
[118] T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Science and Technology of Advanced Materials, 11(4), 044305. (2010)
[119] G. -J. Lee, J. Kim, J.-H. Kim, S. -M. Jeong, J. -E. Jang, and J. Jeong, “High performance, transparent a-InGaZnO TFTs on a flexible thin glass substrate,” Semiconductor Science and Technology, 29(3), 035003. (2014)
[120] L. Lan, and J. Peng, “High-performance indium–gallium–zinc oxide thin-film transistors based on anodic aluminum oxide,” IEEE Trans. Electron Devices, 58(5), 1452–1455. (2011)
[121] L. Petti, N. Münzenrieder, G. -A. Salvatore, C. Zysset, T. Kinkeldei, L. Büthe, and G. Tröster, “Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs,” IEEE Transactions on Electron Devices, 61(4), 1085–1092. (2014)
[122] L. Lu, J. Li, Z. Feng, H. -S. Kwok, and M. Wong “Elevated-metal-metal-oxide thin-film transistor: Technology and characteristics,” IEEE Electron Device Letters, 37(6), 728–730. (2016)
[123] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, 300(5623), 1269–1272. (2003).
[124] J.-H. Lee, D.-H Kim, D.-J. Yang, S.-Y. Hong, K.-S. Yoon, P.-S. Hong, Ch.-O. Jeong, H.-S. Park, S.-Y. Kim, S.-K. Lim, and S.-S. Kim, “World's largest (15‐inch) XGA AMLCD panel using InGaZnO oxide TFT,” SID Symposium Digest of Technical Papers, 39, 1, 625–628, July. 2012. DOI: 10.1889/1.3069740
[125] R. Yao, Z. Zheng, M. Xiong, X. Zhang, X. Li, H. Ning, Z. Fang, W. Xie, X. Lu, and J. Peng, “Low-temperature fabrication of sputtered high-k HfO2 gate dielectric for flexible a-InGaZnO thin film transistors, “Applied Physics Letters, 112(10), 103503. (2018)
[126] S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors,” Adv. Mater., 22(12), 1346–1350. (2009)
[127] W. Wang, L. Lia, C. Lu, Y. Liu, H. Lv, G. Xu, Z. Jib, and M. Liu, “Analysis of the contact resistance in amorphous InGaZnO thin film transistors. “Applied Physics Letters, 107(6), 063504. (2015)
[128] M. Fujii, H. Yano, T. Hatayama, Y. Uraoka, T. Fuyuki, J. -S. Jung, and J. -Y. Kwon, “Thermal analysis of degradation in Ga2O3-In2O3-ZnO thin-film transistors,” Japanese Journal of Applied Physics, 47(8R), 6236. (2008)
[129] Y. Kang, B. -D. Ahn, J. -H. Song, Y. -G. Mo, H. ‐H. Nahm, S. Han, and J. K. Jeong, “Hydrogen Bistability as the Origin of Photo‐Bias‐Thermal Instabilities in Amorphous Oxide Semiconductors,” Advanced Electronic Materials, 1(7), 1400006. (2015)
[130] G.-F. Chen, T.-C. Chang, H.-M. Chen, B.-W. Chen, H.-C. Chen, C.-Y. Li, Y.-H. Tai, Y.-J. Hung, K.-J. Chang, K.-C. Cheng, C.-S. Huang, K.-K. Chen, H.-H. Lu, and Y.-H. Lin, “Abnormal dual channel formation induced by hydrogen diffusion from SiNx interlayer dielectric in top gate a-InGaZnO Transistors,” IEEE Electron Device Lett., 38(3), 334–337, Jan. 2017.
[131] C. G. V. de Walle, “Hydrogen as a cause of doping in zinc oxide,” Phys. Rev. Lett., 85(5), 1012. (2000)
[132] G. A. Jeffrey, and G. A. Jeffrey, An introduction to hydrogen bonding. Vol. 32. New York: Oxford university press, 1997.
[133] C. -G. Van de Walle, “Hydrogen as a cause of doping in zinc oxide,” Physical review letters, 85(5), 1012. (2000)
[134] A. Janotti and C. G. Van de Walle, “Hydrogen multicentre bonds,” Nat. Mater., 6(1), 44–47. (2006)
[135] A. Janotti, C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys., 72(12), 126501. (2009)
[136] H.-C. Chen, G.-F. Chen, P.-H. Chen, S.-P. Huang, J.-J. Chen, K.-J. Zhou, C.-W. Kuo, Y.-C. Tsao, An-Kuo Chu, H.-C. Huang, Wei-Chih Lai, and Ting-Chang Chang, “A novel heat dissipation structure for inhibiting hydrogen diffusion in top-gate a-InGaZnO TFTs,” IEEE Electron Device Lett., 40(9), 1447–1450. (2019)
[137] G. Baek, L. Bie, K. Abe, H. Kumomi, and J. Kanicki, “Electrical instability of double-gate a-InGaZnO TFTs with metal source/drain recessed electrodes,” IEEE Trans. Electron Devices, 61(4), 1109–1115. (2014)
[138] R. -Z. Wang, S. -Li. Wu, X. -Y. Li, and J. -T. Zhang, “The electrical performance and gate bias stability of an amorphous InGaZnO thin-film transistor with HfO2 high-k dielectrics,” Solid-State Electronics, 133, 6-9. (2017)
[139] T. Y. Hsieh, T. C. Chang, T. C. Chen, M. Y. Tsai, Y. T. Chen, Y. C. Chung, H. C. Ting, and C. Y. Chen, “Origin of self-heating effect induced asymmetrical degradation behavior in InGaZnO thin-film transistors,” Appl. Phys. Lett., 100(23), 232101. (2012)
[140] S. I. Oh, G. Choi, H. Hwang, W. Lu, and J. H. Jang, “Hydrogenated InGaZnO thin-film transistors using high-pressure hydrogen annealing,” IEEE Trans. Electron Devices, 60(8), 2537–2541. (2013)
[141] T. Toda, D. Wang, J. Jiang, M.-P. Hung, and M. Furuta, “Quantitative analysis of the effect of hydrogen diffusion from silicon oxide etch-stopper layer into amorphous In–Ga–Zn–O on thin-film transistor,” IEEE Trans. Electron Devices, 61(11), 3762–3767. (2014)
[142] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst. Solids, 352(9-20), 851–858. (2006)
[143] H.-C. Chen, J.-J. Chen, Y.-F. Tu, K.-J Zhou, C.-W. Kuo, W.-C. Su, Y.-H. Hung, Y.-S. Shih, H.-C. Huang, T.-M. Tsai, J.-W. Huang, W.-C. Lai and T.-C. Chang, “Abnormal Hump Effect Induced by Hydrogen Diffusion during Self-heating Stress in Top-gate Amorphous InGaZnO TFTs,” IEEE Transactions on Electron Devices, 67(7), 2807–2811. (2020)
[144] J.-H. Lee, D.-H Kim, D.-J. Yang, S.-Y. Hong, K.-S. Yoon, P.-S. Hong, Ch.-O. Jeong, H.-S. Park, S.-Y. Kim, S.-K. Lim, and S.-S. Kim, “World's largest (15‐inch) XGA AMLCD panel using InGaZnO oxide TFT,” SID Symposium Digest of Technical Papers, 39(1), 625–628. (2012)
[145] T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Science and Technology of Advanced Materials, 11(4), 044305. (2010)
[146] T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping,” Journal of display Technology, 5(12), 468–483. (2009)
[147] A.-C. Arias, J.-D. McCulloch, I. McCulloch, J. Rivnay, and A. Salleo, “Materials and applications for large area electronics: solution-based approaches,” Chemical reviews, 110(1), 3–24. (2009)
[148] L. Lan, and J. Peng, “High-performance indium–gallium–zinc oxide thin-film transistors based on anodic aluminum oxide,” IEEE Trans. Electron Devices, 58(5), 1452–1455. (2011)
[149] J.-S, Park, H. Kim, I.-D, Kim, “Overview of electroceramic materials for oxide semiconductor thin film transistors,” Journal of Electroceramics, 32(2-3), 117–140. (2013)
[150] H. Inoue, T. Matsuzaki, S. Nagatsuka, Y. Okazaki, T. Sasaki, K. Noda, D. Matsubayashi, T. Ishizu, T. Onuki, A. Isobe, Y. Shionoiri, K. Kato, T. Okuda, J. Koyama, and S. Yamazaki, “Nonvolatile memory with extremely low-leakage indium-gallium-zinc-oxide thin-film transistor,” IEEE J. Solid-State Circuits., 47(9), 2258–2265. (2012)
[151] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett., 89(11), 112–123. (2006)
[152] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, 432(4016), 488–492. (2004)
[153] J.-S. Park, T.-W. Kim, D. Stryakhilev, J.-S. Lee, S.-G. An, Y.-S. Pyo, D. Lee, Y.-G. Mo, D.-U. Jin, and H.-K. Chung, “Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors,” Appl. Phys. Lett., 95(1), 013503. (2009)
[154] L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe, G. Cantarella, F.Bottacchi , T.-D. Anthopoulos , and G. Tröster, “Metal oxide semiconductor thin-film transistors for flexible electronics,” Applied Physics Reviews, 3(2), 021303. (2016)
[155] S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors,” Adv. Mater., 22(12), 1346–1350. (2009)
[156] H.-H. Hsu, C.-Y. Chang, C.-H. Cheng, C.-Y. Su, C.-Y. Su, and S.-H. Yu, “Fully room-temperature InGaZnO thin film transistors adopting stacked gate dielectrics on flexible polycarbonate substrate,” Solid-State Electronics, 89, 194–197. (2013)
[157] M.-C. Chen, T.-C. Chang, S.-Y. Huang, K.-C. Chang, H.-W. Li, S.-C. Chen, J. Lu, and Y. Shi, “A low-temperature method for improving the performance of sputter-deposited ZnO thin-film transistors with supercritical fluid,” Appl. Phys. Lett., 94(16), 162111. (2009)
[158] H.-C, Chen, T.-C, Chang, W.-C, Lai, G.-F, Chen, B.-W, Chen, Y.-J, Hung, K-J. Chang, K.-C. Cheng, C.-S. Huang, K.-K. Chen, H.-H. Lu, and Y.-H. Lin “Cyclical annealing technique to enhance reliability of amorphous metal oxide thin film transistors,” ACS Appl. Mater. Interfaces, 10(31), 25866–25870. (2018)
[159] H. Bae, S. Kim, M. Bae, J.-S. Shin, D. Kong, H. Jung, J. Jang, J. Lee, D.-H. Kim, and D.-M. Kim, “Extraction of Separated Source and Drain Resistances in Amorphous Indium–Gallium–Zinc Oxide TFTs Through C–V Characterization,” IEEE Electron Device Lett., 32(6), 761–763. (2011)
[160] J.-M. Lee, I.-T. Cho, J.-H. Lee1, W.-S. Cheong, C.-S. Hwang, and H.-I. Kwon, “Comparative study of electrical instabilities in top-gate InGaZnO thin film transistors with Al2O3 and Al2O3/SiNx gate dielectrics,” Appl. Phys. Lett., 94(22), 222112. (2009)
[161] D. Geng, Y.-F. Chen, M. Mativenga, and J. Jang, “30μm-pitch oxide TFT-based gate driver design for small-size, high-resolution, and narrow-bezel displays,” IEEE Electron Device Lett., 36(8), 805–807. (2015)
[162] N. Münzenriedera, G. A. Salvatore, L. Petti, C. Zysset, L. Büthe, C. Vogt, G. Cantarella, and G. Tröster, “Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation,” Appl. Phys. Lett., 105(26), 263504. (2015)
[163] N. Morosawa, Y. Ohshima, M. Morooka, T. Arai, and T. Sasaoka, “Distinguished paper: a novel self‐aligned top‐gate oxide TFT for AM‐OLED displays,” In SID Symposium Digest of Technical Papers, 42(1), 479–482. (2012)
[164] H. Yamaguchi, T. Ueda, K. Miura, N. Saito, S. Nakano, T. Sakano, K. Sugi, I. Amemiya, M. Hiramatsu, and A. Ishida, “Late‐news paper: 11.7‐inch flexible AMOLED display driven by a‐InGaZnO TFTs on plastic substrate,” In SID Symposium Digest of Technical Papers, 43(1), 1002–1005. (2012)
[165] Sze, Simon M., and Kwok K. Physics of semiconductor devices. John wiley & sons, 305, 2006.
[166] S. Urakawa, S. Tomai, Y. Ueoka, H. Yamazaki1, M. Kasami, K. Yano, D. Wang, M. Furuta, M. Horita, Y. Ishikawa, and Y. Uraoka, “Thermal analysis of amorphous oxide thin-film transistor degraded by combination of joule heating and hot carrier effect,” Appl. Phys. Lett., 102(5), 053506. (2013)
[167] Tien-Yu Hsieh, Ting-Chang Chang, Te-Chih Chen, Yu-Te Chen, Ming-Yen Tsai, A.-K. Chu, Yi-Chen Chung, Hung-Che Ting, and Chia-Yu Chen, “Self-heating-effect-induced degradation behaviors in a-InGaZnO thin-film transistors,” IEEE Electron Device Lett., 34(1), 63–65. (2013)
[168] Janotti, C.-G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Reports on progress in physics, 72(12), 126501. (2009)
[169] A. Janotti, C.-G.Van de Walle, “Hydrogen multicentre bonds,” Nature materials, 6(1), 44–47. (2006)
[170] J. Jeong, and Y. Hong, “Debye length and active layer thickness-dependent performance variations of amorphous oxide-based TFTs,” IEEE Trans. Electron Devices, 59(3), 710–714. (2012)
[171] T. Toda, D. Wang, J. Jiang, M.-P. Hung, and M. Furuta, “Quantitative analysis of the effect of hydrogen diffusion from silicon oxide etch-stopper layer into amorphous In–Ga–Zn–O on thin-film transistor,” IEEE Trans. Electron Devices, 61(11), 3762–3767. (2014)
[172] T. T. T. Nguyen, B. Aventurier, T. Terlier, J.-P. Barnes, and F. Templier, “Impact of passivation conditions on characteristics of bottom-gate InGaZnO thin-film transistors,” Journal of Display Technology, 11(6), 554–558. (2015)
[173] W. J. Maeng, J. S. Park, H. Kim, E. S. Kim, K. S. Son, T. S. Kim, M. Ryu, and S. Lee, “The Effect of Active-Layer Thickness and Back Channel Conductivity on the Subthreshold Transfer Characteristics of Hf–In–Zn–O TFTs,” IEEE Electron Device Lett., 32(8), 1077–1079. (2011)
[174] K. Nomura, T. Kamiy, and Hideo Hosono, “Effects of diffusion of hydrogen and oxygen on electrical properties of amorphous oxide semiconductor, In-Ga-Zn-O,” ECS Journal of Solid State Science and Technology, 2(1), 5–8. (2013)
[175] G. Baek, L. Bie, K. Abe, H. Kumomi, and J. Kanicki, “Electrical instability of double-gate a-InGaZnO TFTs with metal source/drain recessed electrodes,” IEEE Trans. Electron Devices, 61(4), 1109–1115. (2014)
[176] T.-C. Chen, T.-C. Chang, T.-Y. Hsieh, M.-Y. Tsai, Y.-T. Chen, Y.-C. Chung, H.-C. Ting, and C.-Y. Chen, “Self-heating enhanced charge trapping effect for InGaZnO thin film transistor,” Appl. Phys. Lett., 101(4), 042101. (2012)
[177] G.-F. Chen, T.-C. Chang, H.-M. Chen, B.-W. Chen, H.-C. Chen, C.-Y. Li, Y.-H. Tai, Y.-J. Hung, K.-J. Chang, K.-C. Cheng, C.-S. Huang, K.-K. Chen, H.-H. Lu, and Y.-H. Lin, “Abnormal dual channel formation induced by hydrogen diffusion from SiNx interlayer dielectric in top gate a-InGaZnO Transistors,” IEEE Electron Device Lett., 38(3), 334–337. (2017)
[178] M. P. Hung, D. Wang, J. Jiang, and M. Furuta, “Negative bias and illumination stress induced electron trapping at back-channel interface of InGaZnO thin-film transistor,” ECS Solid State Letters, 3(3), Q13–Q16. (2014)
[179] H.-C. Chen, G.-F. Chen, P.-H. Chen , S.-P. Huang, J.-J. Chen, K.-J. Zhou, C.-W. Kuo, Y.-C. Tsao, A.-K. Chu, H.-C. Huang, W.-C. Lai , and T.-C. Chang, “A Novel Heat Dissipation Structure for Inhibiting Hydrogen Diffusion in Top-Gate a-InGaZnO TFTs,” IEEE Electron Device Letters, 40(9), 1447–1450. (2019)
[180] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, 432(4016), 488–492. (2004)
[181] T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Materials, 2(1), 15–22. (2010)
[182] S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors,” Adv. Mater., 22(12), 1346–1350. (2009)
[183] G.-H Kim, H.-S. Kim, H.-S. Shin, B.-D. Ahn, K. H. Kim, and H. J Kim, “Inkjet-Printed InGaZnO Thin Film Transistor,” Thin Solid Films, 517(14), 4007–¬4010. (2009)
[184] T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Science and Technology of Advanced Materials, 11(4), 044305. (2010)
[185] T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping,” Journal of display Technology, 5(12), 468–483. (2009)
[186] A.-C. Arias, J.-D. McCulloch, I. McCulloch, J. Rivnay, and A. Salleo, “Materials and applications for large area electronics: solution-based approaches,” Chemical reviews, 110(1), 3–24. (2009)
[187] A. Nathan, A. Ahnood, M. T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. García-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. J. Amaratunga, W.-I Milne, “Flexible Electronics: The Next Ubiquitous Platform,” Proc. IEEE., 100, 1486–1517. (2012)
[188] J.-S. Park, T.-W. Kim, D. Stryakhilev, J.-S. Lee, S.-G. An, Y.-S. Pyo, D. Lee, Y.-G. Mo, D.-U. Jin, and H.-K. Chung, “Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors,” Appl. Phys. Lett., 95(1), 013503. (2009)
[189] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett., 89(11), 112–123. (2006)
[190] Y. Hara, T. Kikuchi, H. Kitagawa, J. Morinaga, H. Ohgami, H. Imai, T. Daitoh, and T. Matsu, “InGaZnO-TFT technology for large-screen 8K display,” SID Symposium Digest of Technical Papers, 49(1), 706–709. (2018)
[191] T.-Y. Hsieh, T.-C. Chang, T.-C. Chena, and M.-Y. Tsai, “Review of present reliability challenges in amorphous In-Ga-Zn-O thin film transistors,” ECS J. Solid-State Sci. Technol., 3(9), Q3058–Q3070. (2014)
[192] M. Mativenga, M.-H, Choi, D.-H, Kang, and J. Jang, “High-performance drain-offset a-InGaZnO thin-film transistors,” IEEE Electron Device Lett., 32(5), 644–646. (2011)
[193] H. Inoue, T. Matsuzaki, S. Nagatsuka, Y. Okazaki, T. Sasaki, K. Noda, D. Matsubayashi, T. Ishizu, T. Onuki, A. Isobe, Y. Shionoiri, K. Kato, T. Okuda, J. Koyama, and S. Yamazaki, “Nonvolatile memory with extremely low-leakage indium-gallium-zinc-oxide thin-film transistor,” IEEE J. Solid-State Circuits., 47(9), 2258–2265. (2012)
[194] J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, “Electronic Transport Properties of Amorphous Indium-Gallium-Zinc Oxide Semiconductor upon Exposure to Water,” Appl. Phys. Lett. 92(7), 072104. (2008)
[195] C. Dong, J. Xu, Y. Zhou, Y. Zhang, and H. Xie, “Light-illumination stability of amorphous InGaZnO thin film transistors in oxygen and moisture ambience,” Solid-State Electron., 153, 74–78. (2019)
[196] M. D. H. Chowdhury, M. Mativenga, J. G. Um, R. K. Mruthyunjaya, G. N. Heiler, T. J. Tredwell, and J. Jang, “Effect of SiO2 and SiO2/SiNx passivation on the stability of amorphous Indium-Gallium Zinc-Oxide thin-film transistors under high humidity,” IEEE T. Electron Dev, 62 (3), 869–874. (2015)
[197] K.-S. Kim, C.-H. Ahn, W.-J. Kang, S.-W. Cho, S.-H Jung, D.-H Yoon, H.-K Cho, “An all oxide-based imperceptible thin-film transistor with humidity sensing properties,” Materials. 10(5), 530. (2017)
[198] Suresh, A.; Muth, J. F. Bias stress stability of Indium Gallium Zinc Oxide channel based transparent thin film transistors. Appl. Phys. Lett. 2008, 92, 033502.
[199] T.-Y. Hsieh, T.-C. Chang, T.-C. Chena, and M.-Y. Tsai, “Review of present reliability challenges in amorphous In-Ga-Zn-O thin film transistors,” ECS J. Solid-State Sci. Technol., 3(9), Q3058–Q3070. (2014)
[200] Y.-C. Tsao, T.-C. Chang, S.-P. Huang, Y.-L. Tsai, Y.-C. Chien, M.- C. Tai, H.-Y. Tu, and J.-W. Huang, “Reliability test integrating electrical and mechanical stress at high temperature for a-InGaZnO thin film transistors,” IEEE T. Device Mat. Re., 19(2), 433–436. (2019)
[201] H.-C, Chen, T.-C, Chang, W.-C, Lai, G.-F, Chen, B.-W, Chen, Y.-J, Hung, K-J. Chang, K.-C. Cheng, C.-S. Huang, K.-K. Chen, H.-H. Lu, and Y.-H. Lin “Cyclical annealing technique to enhance reliability of amorphous metal oxide thin film transistors,” ACS Appl. Mater. Interfaces, 10(31), 25866–25870. (2018)
[202] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, “Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and Amorphous InGaZnO4 thin-film transistors,” Jpn. J. Appl. Phys., 48(1R), 010203. (2009)
[203] Y.-C. Tsao, T.-C. Chang, S.-P. Huang, Y.-L. Tsai, M.-C. Tai, H.-Y. Tu, H.-C. Chen, J.-W. Huang, and S.-D. Zhang, “Effects of Ultraviolet Light on the Dual-Sweep I–V Curve of a-InGaZnO4 Thin-Film Transistor,” IEEE Transactions on Electron Devices, 66(44) , 1772–1777. (2019)
[204] P. Migliorato, M. Delwar Hossain Chowdhury, J. Gwang Um, M. Seok, J. Jang, , Light/negative bias stress instabilities in indium gallium zinc oxide thin film transistors explained by creation of a double donor,” Appl. Phys. Lett., 101(12), 123502. (2012)
[205] K. Nomura, T. Kamiya, H. Hosono, “Highly stable amorphous In-Ga-Zn-O thin-film transistors produced by eliminating deep subgap defects,” Appl. Phys. Lett., 99(5), 053505. (2011)
[206] D. Y. Yoo, E. Chong, D. H. Kim, B. K. Ju, S. Y. Lee, Effect of magnesium oxide passivation on the performance of amorphous indium–gallium–zinc-oxide thin film transistors, Thin Solid Films, 520(10), 3783–3786. (2011)
[207] S. An, M. Mativenga, Y. Kim, and J. Jang, “Improvement of bias-stability in amorphous-Indium-Gallium-Zinc-Oxide thin-film transistors by using solution-processed Y2O3 passivation,” Appl. Phys. Lett., 105(5), 053507. (2014)
[208] A. J. Flewitt, W. I. Milne, “Low-temperature deposition of hydrogenated amorphous silicon in an electron cyclotron resonance reactor for flexible displays,” Proc. IEEE., 93(7), 1364–1373. (2005)
[209] B. W. Chen, T. C.Chang, Y. J. Hung, S. P.Huang, P. Y. Liao, C. Y. Yang, A. K. Chu, T. T. J. Wang, T. C. Chang, B. Y. Su, S. C. Kuo, and I, Y. Huang, “Effects of repetitive mechanical bending strain on various dimensions of foldable low temperature polysilicon TFTs fabricated on polyimide,” IEEE Electron Device Lett., 37(8), 1010–1013. (2016)
[210] F. S. Becker, D. Pawlik, H. Anzinger, and A. Spitzer, “Low‐pressure deposition of high‐quality SiO2 films by pyrolysis of tetraethylorthosilicate,” J. Vac. Sci. Technol. B., 5(6), 1555–1563. (1987)
[211] C.-S. Lin, S.-J. Chen, T.-C. Chang, F.-Y. Jian, W.-C. Hsu, Y.-J. Kuo, C. -H. Dai, T.-C. Chen, W.-H. Lo, and T.-Y. Hsieh, “NBTI degradation in LTPS TFTs under mechanical tensile strain,” IEEE Electron Device Letters, 32(7), 907–909. (2011)
[212] Y. C. Chien, T. C. Chang, H. C. Chiang, H. M. Chen, Y. C. Tsao, C. C. Shih, B. O. Chen, P. Y. Liao, T. Y. Chu, Y. C. Yang, Y. J. Hung, T. M. Tsai, K. C. Chang, “Role of H2O Molecules in passivation layer of a-InGaZnO thin film transistors,” IEEE Electron Device Lett., 38(4), 469–472. (2017)
[213] W. F. Chung, T. C. Chang, H. W. Li, C. W. Chen, Y. C. Chen, S. C. Chen, T. Y. Tseng, and Y. H. Tai, “Influence of H2O dipole on subthreshold swing of amorphous Indium–Gallium–Zinc-Oxide thin film transistor,” Electrochem. Solid-State Lett., 14(3), H114–H116. (2011)
[214] Y. Han, C. Cui, J. Yang, M. Y. Tsai, T. C. Chang, and Q. Zhang, “H2O Induced hump phenomenon in capacitance–voltage measurements of a-InGaZnO thin-film transistors,” IEEE Trans. Device Mater. Rel., 16(1), 20–24. (2016)
[215] Y. Seung Rim, W. Jeong, B. Du Ahn, and H. Jae Kim, “Defect reduction in photon-accelerated negative bias instability of InGaZnO thin-film transistors by high-pressure water vapor annealing,” Appl. Phys. Lett., 102(14), 143503. (2013)
[216] A. Janotti, C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys., 72(12), 126501. (2009)
[217] A. Janotti, C.-G.Van de Walle, “Hydrogen multicentre bonds,” Nature materials, 6(1), 44–47. (2006)
[218] J. Bang, and K.-J. Chang, “Diffusion and thermal stability of hydrogen in ZnO,” Appl. Phys. Lett., 92(13), 132109. (2008)
[219] T. Kamiya, K. Nomura, and H. Hosono, “Subgap states, doping and defect formation energies in amorphous oxide semiconductor a‐InGaZnO4 studied by density functional theory,” Physica Status Solidi, 207(7), 1698–1703. (2010)
[220] Y. Kang, B. -D. Ahn, J. -H. Song, Y. -G. Mo, H. ‐H. Nahm, S. Han, and J. K. Jeong, “Hydrogen Bistability as the Origin of Photo‐Bias‐Thermal Instabilities in Amorphous Oxide Semiconductors,” Advanced Electronic Materials, 1(7), 1400006. (2015)
[221] S.-H. Yang, J.-Y. Kim, M.-J Park, K.-H. Choi, J.-S Kwak, H.-K. Kim, and J.-M. Lee, “Low resistance ohmic contacts to amorphous InGaZnO thin films by hydrogen plasma treatment,” Surface and Coatings Technology, 206(24), 5067–5071. (2012)
[222] H. Tang, K. Ishikawa, K. Ide, H. Hiramatsu, S. Ueda, N. Ohashi, H. Kumomi, H. Hosono, and T. Kamiya, “Effects of residual hydrogen in sputtering atmosphere on structures and properties of amorphous In-Ga-Zn-O thin films,” J. Appl. Phys., 118(20), 205703. (2015)
[223] C. -G. Van de Walle, “Hydrogen as a cause of doping in zinc oxide,” Physical review letters, 85(5), 1012. (2000)
[224] M. M. James, “Simple marcus-theory-type model for hydrogen-atom transfer/proton-coupled electron transfer,” J. Chem. Phys. Lett., 2(12), 1481–1489. (2016)
[225] J. P. Bermundo, Y. Ishikawa, M. N. Fujii, T. Nonaka, R. Ishihara, H. Ikenoue, and Y. Uraoka, “Effect of excimer laser annealing on a-InGaZnO thin-film transistors passivated by solution-processed hybrid passivation layers,” J. Phys. D: Appl. Phys, 49(3), 035102. (2015)
[226] T. Kim, Y. Nam, J. Hur, S. H. K. Park, and S. Jeon, “The influence of hydrogen on defects of In–Ga–Zn–O Semiconductor thin-film transistors with atomic-layer deposition of Al2O3,” IEEE Electron Device Lett., 37(9), 1131–1134. (2006)
[227] T. T. T. Nguyen, O. Renault, B. Aventurier, G. Rodriguez, J. P. Barnes, and F. Templier, “Analysis of InGaZnO thin-film transistors by XPS and relation with electrical characteristics,” J. Disp. Technol., 9(9), 770–774. (2013)
[228] T. Kamiyaa, and H. Hosono, “(Invited) Roles of hydrogen in amorphous oxide semiconductor,” ECS Trans., 54(1), 103–113. (2013)
[229] K. Nomura, T. Kamiya, and H. Hosono, “Effects of diffusion of hydrogen and oxygen on electrical properties of amorphous oxide semiconductor, In-Ga-Zn-O,” ECS J. Solid State Sci. Technol., 2(1), 5–8. (2012)
[230] T. C. Chen, T. C. Chang, T. Y. Hsieh, W. S. Lu, F. Y. Jian, C. T. Tsai, S. Y. Huang, and C. S. Lin, “Investigating the degradation behavior caused by charge trapping effect under DC and AC gate-bias stress for InGaZnO thin film transistor,” Appl. Phys. Lett., 99(2), 022104. (2011)
[231] J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, “Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors,” Appl. Phys. Lett., 93(9), 093504. (2008)
[232] R. B. M. Cross, and M. M. De Souza, “Investigating the stability of zinc oxide thin film transistors,” Appl. Phys. Lett., 89(26), 263513. (2006)
[233] K. H. Ji, J. I. Kim, Y. G. Mo, J. H. Jeong, S. Yang, C. S. Hwang, S. H. K. Park, M. K. Ryu, S. Y. Lee, and J. K. Jeong, “Comparative study on light-induced bias stress instability of InGaZnO transistors with SiNχ and SiO2 gate dielectrics, IEEE Electron Device Lett., 31(12), 1404–1406. (2010)
[234] A. Ursua, L. M. Gandia, and P. Sanchis, “Hydrogen production from water electrolysis: current status and future trends,” Proc. IEEE, 100(2), 410–426. (2011)
[235] S. H. Choi, and M. K. Han, “Effect of channel widths on negative shift of threshold voltage, including stress-induced hump phenomenon in InGaZnO thin-film transistors under high-gate and drain bias stress,” Appl. Phys. Lett., 100(4), 043503. (2012)
[236] M. P. Hung, D. Wang, J. Jiang, and M. Furuta, “Negative bias and illumination stress induced electron trapping at back-channel interface of InGaZnO thin-film transistor,” ECS Solid State Letters, 3(3), Q13–Q16. (2014)
[237] W. G. Kim, Y. J. Tak, B. Du Ahn, T. S. Jung, K. B. Chung, and H. J. Kim, High-pressure gas activation for amorphous Indium-Gallium-Zinc-Oxide thin-film transistors at 100 °C,” Sci. Rep., 6, 23039. (2016)
[238] H.-C. Chen, C.-W. Kuo, T.-C. Chang, W.-C. Lai, P.-H. Chen, G.-F. Chen, S.-P. Huang, J.-J. Chen, K.-J. Zhou, C.-C. Shih, Y.-C. Tsao, H.-C. Huang, and S. M. Sze, “Investigation of the Capacitance–Voltage Electrical Characteristics of Thin-Film Transistors Caused by Hydrogen Diffusion under Negative Bias Stress in a Moist Environment,” ACS applied materials & interface, 11(43), 40196–40203. (2019)
[239] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, 432(7016), 488–492. (2004)
[240] T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping,” J. Disp. Technol., 5(12), 468–483. (2009)
[241] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett., 89(11), 112–123. (2006)
[242] J. Y. Kwon, K. S.Son, J. S. Jung, T. S. Kim, M. K. Ryu, K. B. Park, B. W. Yoo, J. W. Kim, Y. G. Lee, K. C. Park, S. Y. Lee, and J. M. Kim, “Bottom-gate Gallium Indium Zinc Oxide thin-film transistor array for high-resolution AMOLED display,” IEEE Electron Device Lett., 29(12), 1309–1311. (2008)
[243] C. Chen, K. Abe, T. C. Fung, H. Kumomi, and J. Kanicki, “Amorphous In–Ga–Zn–O thin film transistor current-scaling pixel electrode circuit for active-matrix organic light-emitting displays, ” Jpn. J. Appl. Phys., 48(3S2), 03B025. (2009)
[244] G. J. Um, M. Mativenga, P. Migliorato, and J.Jang, “Increase of interface and bulk density of states in amorphous-Indium-Gallium-Zinc-Oxide thin-film transistors with negative-bias-under-illumination-stress time,” Appl. Phys. Lett., 101(11), No. 113504. (2012)
[245] Nomura, K.; Kamiya, T.; Ohta, H.; Hirano, M.; Hosono, H.; Defect Passivation and Homogenization of Amorphous Oxide Thin-Film Transistor by Wet O2 Annealing. Appl. Phys. Lett. 2008, 93, No. 192107.
[246] L. F. Teng, P. T. Liu, Y. J. Lo, and Y. J. Lee, “Effects of microwave annealing on electrical enhancement of amorphous oxide semiconductor thin film transistor,” Appl. Phys. Lett. 2012, 101(13), 132901. (2012)
[247] Y. H. Kim, J. S. Heo, T. H. Kim, S. Park, M. H. Yoon, J. Kim, M. S. Oh, G. R. Yi, Y. Y. Noh, and S. K. Park, “Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films,” Nature, 489(7414), 128–132. (2012)
[248] B. Ryu, H. K. Noh, E. A. Choi, and K. J. Chang, “O-Vacancy as the Origin of Negative Bias Illumination Stress Instability in Amorphous In–Ga–Zn–O Thin Film Transistors. Appl. Phys. Lett., 97(2), 022108. (2010)
[249] K. H. Ji, J. I. Kim, H. Y. Jung, S. Y. Park, R. Choi, U. K. Kim, C. S. Hwang, D. Lee, H. Hwang, and J. K. Jeong, “Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors,” Appl. Phys. Lett. 2011, 98(10), 103509. (2011)
[250] T. C. Chen, T. C. Chang, T. Y. Hsieh, W. S. Lu, F. Y. Jian, C. T. Tsai, S. Y. Huang, and C. S. Lin, “Investigating the degradation behavior caused by charge trapping effect under DC and AC gate-bias stress for InGaZnO thin film transistor,” Appl. Phys. Lett., 99(2), 022104. (2011)
[251]. P. Y. Liao, T. C. Chang, W. C. Su, Y. J. Chen, B. W. Chen, T. Y. Hsieh, C. Y. Yang,; Y. Y. Huang, H. M. Chang, and S. C.Chiang, “Effect of mechanical-strain-induced defect generation on the performance of flexible amorphous In–Ga–Zn–O thin-film transistors,” Appl. Phys. Express., 9(12), 124101. (2016)
[252] H. K. Noh, K. J. Chang, B. Ryu, and W. J. Lee, “Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors,” Physical Review B., 84(11), 115205. (2011)
[253] Y. Ueoka , Y. Ishikawa, J. P. Bermundo, H. Yamazaki, S. Urakawa, M. Fujii, M.Horita, and Y. Uraoka, “Density of States in Amorphous In-Ga-Zn-O Thin-Film Transistor Under Negative Bias Illumination Stress,” ECS Journal of Solid State Science and Technology. , 3(9), Q3001-Q3004.( 2014)
[254] S. Lee, and D. C. Paine, “Identification of the native defect doping mechanism in amorphous indium zinc oxide thin films studied using ultra high pressure oxidation,” Applied Physics Letters., 102(5), 052101. (2013)
[255] J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, I. S. C. Wang, Y. Shen, and Y. Tong, “Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes,” Scientific reports., 3, 1021. (2013)
[256] T. T. T. Nguyen, O. Renault, B. Aventurier, G. Rodriguez, J. P. Barnes, and F. Templier, “Analysis of InGaZnO thin-film transistors by XPS and relation with electrical characteristics,” J. Disp. Technol., 9(9), 770–774. (2013)
[257] H.-C. Chen, T.-C. Chang, W.-C. Lai, G.-F. Chen, B.-W. Chen, Y.-J. Hung, K.-J. Chang, K.-C. Cheng, C.-S. Huang, K.-K. Chen, H.-H. Lu, and Y.-H. Lin, “Cyclical Annealing Technique to Enhance Reliability of Amorphous Metal Oxide Thin Film Transistors,” ACS applied materials & interface, 10(31), 25866–25870. (2018)
校內:2025-11-05公開