簡易檢索 / 詳目顯示

研究生: 王逸杰
Wang, Yi-Chieh
論文名稱: 高效率光電化學分解水之氮化鉭電極研究
High-Efficiency Tantalum-Nitride Electrodes for Photoelectrochemical Water Splitting
指導教授: 鄧熙聖
Teng, Hsi-sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 101
中文關鍵詞: 陽極氧化法氮化鉭光電極分解水產氫
外文關鍵詞: Anodization, Ta3N5, Photoelectrode, Water splitting, Hydrogen generation
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本次研究以陽極氧化法搭配水熱法來製備n型半導體氮化鉭產氧電極,藉由X光繞射儀以及掃描式電子顯微鏡分析,發現其結構仍為斜方晶相奈米顆粒,並由這些奈米顆粒組成較大且具有階層狀孔洞之立方顆粒,另外,利用鈷元素的摻雜,氮化鉭電極能大幅提升光電流,這是由於內部形成p-n電場而改善電荷分離,減少電荷再結合發生,使得其光電化學反應之效能提升。
    與一般陽極氧化法所製備出的氮化鉭電極不同,此結構具有孔洞的存在,因此能夠增加觸媒之表面積,但由於所形成的立方顆粒偏大,整體結構不夠緻密且內部的連結性不佳,對於電荷的傳導有較大阻礙,因此為了能夠進一步改善此情況,利用氯化鉭溶液進行後處理來增加顆粒間的連接性,使顆粒間的緻密度提高,因此能夠減低電荷傳遞時的阻力,增加光電流的效果。
    而在光電化學測試中,主要以三極式的系統中進行反應,並且以太陽模擬光AM 1.5 G照射下,0.5 M的氫氧化鉀水溶液中,結果顯示具備階層狀孔洞之氮化鉭電極在經過後處理及鈷摻雜後,所呈現之光電流效能於偏壓0.5 V vs. Ag/AgCl下可達到3.6 mA/cm2,其效能遠高於純粹氮化鉭電極。

    In the present work, a new method combining anodization and hydrothermal method is used to fabricate a n-type semiconductor cubic tantalum nitride(C-Ta3N5) electrode. From XRD and SEM analysis, which can know that C-Ta3N5 belong to orthorhombic phase, and has larger size of cubic particles with the hierarchical porous structure made up of Ta3N5 nanoparticles. Besides, the Co element doping of cubic tantalum nitride(C-Ta3N5:Co) electrode can significantly increase photocurrent by the built-in p-n junction which helps for charge separation and reduces the charge recombination. Therefore, the performance can be strongly enhanced.
    Different form general anodization method, the new method can synthesize cubic tantalum nitride(C-Ta3N5) electrode with pores increasing the surface area. However, the cubic particles are quit large leading to bad charge transfer because the whole structure is not compact enough and rare connection between particles. To improve this situation, the tantalum chloride solution is used for post-treatment to increase the connection of particles and make them more compact. During the photoelectrochemical test conducting in three-electrode system under AM 1.5 G simulated sunlight illumination, the photocurrent density of C-Ta3N5:Co can reach 3.6 mA/cm2, which is much higher than bare Ta3N5 electrode at 0.5 V vs. Ag/AgCl in 0.5M KOH solution.

    總目錄 中文摘要 ......... I 英文延伸摘要 ........ II 誌謝 ......... XI 本文目錄 ......... XIII 表目錄 ......... XVI 圖目錄 ......... XVII 本文目錄 第一章 緒論............ 1 1-1 前言............ 1 1-2 Fujishima-Honda effect........ 2 1-3 光觸媒與分解水原理.......... 4 1-3-1 光觸媒........... 4 1-3-2 光觸媒的催化原理.......... 4 1-3-3 光分解水的原理......... 5 1-3-4 光觸媒分解水反應機制........ 10 1-4 光觸媒分解水裝置.......... 11 1-5 研究動機............ 12 第二章 文獻回顧........... 13 2-1 金屬氧化物半導體光觸媒的發展...... 13 2-2 光觸媒薄膜分解水.......... 20 2-2-1 粉體式光觸媒 vs. 薄膜式光觸媒...... 20 2-2-2 光觸媒薄膜電極種類........ 21 2-2-3 光觸媒薄膜電極作用原理........ 22 2-2-4 如何增進光電化學轉換效率........ 25 2-3 半導體電化學理論簡介........ 27 2-3-1 本質半導體與外質半導體........ 27 2-3-2 費米能階.......... 28 2-3-3 n型和p型半導體/電解質界面...... 30 2-3-4 交流阻抗界面分析.......... 33 2-3-5 半導體電極界面鑑定........ 39 2-4 氮化鉭的結構與其半導體性質........ 41 2-5 陽極氧化法.......... 44 2-6 水熱法............ 46 第三章 實驗方法與儀器原理介紹....... 47 3-1 藥品、材料與儀器設備........ 47 3-1-1 藥品與材料.......... 47 3-1-2 儀器與實驗設備.......... 48 3-2 實驗............ 49 3-2-1 氮化鉭光電極之製備........ 49 3-2-2鈷摻雜之氮化鉭光電極之製備....... 50 3-2-3 共觸媒CoOx負載.......... 50 3-2-4陽極氧化中加入硝酸鈷與否........ 50 3-3 實驗設備與方法.......... 53 3-3-1 陽極氧化裝置.......... 53 3-3-2 光電化學裝置.......... 54 3-4 分析儀器原理簡介.......... 55 3-4-1 X光繞射分析......... 55 3-4-2 紫外-可見光分光光度計......... 58 3-4-3 穿透式電子顯微鏡.......... 60 3-4-4 掃描式電子顯微鏡.......... 63 3-4-5 物理吸附分析.......... 65 第四章 結果與討論........... 67 4-1 XRD圖譜及結構分析......... 67 4-2 掃描式電子顯微鏡表面分析........ 70 4-3 穿透式電子顯微鏡分析........ 72 4-4 吸收光譜圖譜分析.......... 75 4-5 Mott-Schottky分析.......... 77 4-6 氮化鉭薄膜光電極之光電化學分析...... 81 4-7 物理吸附及比表面積分析........ 85 4-8 交流阻抗分析........... 87 4-9 光觸媒長效性測試......... 89 第五章 結論........... 91 5-1 結論............. 91 5-2 未來建議........... 91 參考文獻............. 92 表目錄 第二章 文獻回顧 -表2-1 Z-Scheme複合式光觸媒在可見光下分解水之文獻回顧.. 19 -表2-2 氮化鉭光觸媒於不同犧牲試劑下的產氫與產氧活性... 43 第四章 結果與討論 表4-1 各觸媒之能隙值......... 76 表4-2 觸媒之比表面積......... 85 表4-3 觸媒之電荷傳遞阻抗....... 88 圖目錄 第一章 緒論 圖1-1 Honda- Fujishima Effect實驗裝置圖.... 3 圖1-2 Honda-Fujishima Effect實驗反應示意圖..... 3 圖1-3 光觸媒反應類型......... 5 圖1-4 常見的半導體光觸媒的能帶結構圖.... 7 圖1-5 半導體光觸媒分解水的原理.... 7 圖1-6 光觸媒效率受塊材性質的影響..... 8 圖1-7 光分解水的兩步(two-step)反應機制示意圖.... 9 圖1-8 光觸媒反應程序....... 10 圖1-9 常見的光分解水反應器 (a)內照式反應器 (b)側照式反應器 (c) 上照式反應器..... 11 第二章 文獻回顧 圖2-1 太陽光波長與能量分佈圖..... 14 圖2-2 三種不同形式增加光吸收之半導體能隙示意圖 (a)過渡金屬摻入型光觸媒 (b)價帶控制型光觸媒 (c)固相溶液型光觸媒......... 16 圖2-3 光催化水分解之單步驟(One-step)與雙步驟(Two-step)光觸媒系統........ 17 圖2-4 內部含水之層狀鈣鈦礦(Layered perovskite)結構分解水機制圖........... 18 圖2-5 光電化學分解水類型....... 22 圖2-6 由半導體陽極和金屬陰極所組成的光電解水電池:(a)未放入溶液前之半導體陽極和金屬陰極之費米能階位置;(b)放入溶液後將電極接通後,系統達能量平衡(未照光);(c)照光後光電池反應發生 (其中Δψsc 為空間電荷空乏層的電位降)......... 24 圖2-7 WO3/BiVO4複材形成 junction 以增進電子電洞傳遞示意圖........... 25 圖2-8 電化學電位刻度和半導體能量軸之對照圖:最右邊軸參 考點為電子在真空中能量為零的費米能階;中間的軸為 電化學電位軸,是以標準氫電極來定義的。EF、EC和EV 為半導體的費米能階、導帶和價帶的位置.... 30 圖2-9 半導體/電解質界面之電位降及能帶彎曲圖... 31 圖2-10 能帶彎曲和施加電位的關係。其中Vfb為半導體平帶電位........... 32 圖2-11 n型和p型半導體施加正偏壓及負偏壓後,其能帶彎曲 圖形.......... 32 圖2-12 阻抗之複數平面中代表電阻和電容兩部分.... 35 圖2-13 電阻和電容串聯 (a)電路圖 (b)複數平面阻抗圖... 37 圖2-14 電阻和電容並聯(a)電路圖(b)並聯RC電路中,電容和電 阻電流向量之總和(c)複數平面之阻抗圖.... 39 圖2-15 n型和p型半導體之Mott-Schottky圖,可由圖中的斜率 判斷其為n型或p型的半導體以及載子濃度,由截距可 得材料的平帶電位........ 40 圖2-16 板鈦礦八面體概圖........ 41 圖2-17 板鈦礦八面體晶相結構........ 41 圖2-18 擬板鈦礦八面體概圖........ 42 圖2-19 氮化鉭的單位晶格結構........ 42 圖2-20 氧化鉭與氮化鉭之能帶結構示意圖.... 43 圖2-21 陽極氧化法製備Ta2O5示意圖...... 45 第三章 實驗方法與儀器原理介紹 圖3-1 氮化鉭光電極製備流程....... 51 圖3-2 摻雜鈷之氮化鉭光電極製備流程..... 52 圖3-3 陽極氧化裝置示意圖....... 53 圖3-4 光電化學裝置:(a)工作電極:C-Ta3N5、C-Ta3N5:Co電極;(b)參考電極:Ag/AgCl;(c)相對電極:Pt..... 54 圖3-5 X光對原子散射圖......... 57 圖3-6 光對晶體繞射圖......... 57 圖3-7 光繞射分析儀(XRD)設備圖....... 57 圖3-8 紫外-可見光分光光度計(UV-Vis)設備圖..... 59 圖3-9 基本穿透式電子顯微鏡 (TEM) 之結構圖... 61 圖3-10 穿透式電子顯微鏡 (TEM) 設備圖..... 62 圖3-11 電子彈性與非彈性碰撞的結果示意圖..... 64 圖3-12 掃描式電子顯微鏡(SEM)設備圖...... 64 第四章 結果與討論 圖4-1 鉭酸鈉(NaTaO3)的X光繞射圖譜..... 68 圖4-2 摻雜鈷元素與否之立方顆粒氮化鉭(C-Ta3N5/C-Ta3N5:Co)的X光繞射圖譜及標準JCPDS圖譜.... 69 圖4-3 掃描式電子顯微鏡表面分析 (a) (b) NaTaO3;(c) (d) C-Ta3N5;(e) (f) C-Ta3N5:Co...... 70 圖4-4 (a) C-Ta3N5:Co之低倍率TEM圖;(b) C-Ta3N5:Co中Ta的選區繞射圖;(c) C-Ta3N5:Co之HRTEM圖... 73 圖4-5 氮化鉭(C-Ta3N5) 及氮化鉭摻雜鈷元素(C-Ta3N5:Co)之紫外光/可見光吸收光譜....... 76 圖4-6 分析交流阻抗圖譜假設之等效電路圖。Rs為溶液的電阻,和一個RC迴路串聯,RC迴路包含了觸媒薄膜之空間電荷層中並聯的電容值C和電阻值Rct.... 78 圖4-7 根據Mott-Schottky關係式,將擬合過後之電容值與施加電位作圖: (a) C-Ta3N5;(b) C-Ta3N5:Co;(c) C-Ta3N5:Co (immerse only)........ 78 圖4-8 C-Ta3N5:Co之p-n junction示意圖(a)形成junction前;(b)形成junction後........ 80 圖4-9 (a) Ta3N5與C-Ta3N5;(b) C-Ta3N5、C-Ta3N5-CoOx與C-Ta3N5:Co於照光下不同偏壓之光電流應答... 83 圖4-10 不同濃度之硝酸鈷所合成之C-Ta3N5:Co於偏壓0.5 V vs. Ag/AgCl的光電流比較....... 84 圖4-11 Ta3N5及C-Ta3N5孔徑分佈圖....... 86 圖4-12 Ta3N5與Co-Ta3N5電極以AM 1.5G模擬太陽光(100 mW/cm2)照射下,偏壓0.5 V vs. Ag/AgCl進行交流阻抗測試之結果。Inset為高頻區域局部放大圖,實線部分為配合模擬等效電路擬合後的結果..... 88 圖4-13 C-Ta3N5:Co觸媒於表面負載氧化鈷(CoOx)之長效性測試. 90

    1. 張立群譯,“光清淨革命-活躍的二氧化鈦光觸媒”,協志工業叢書印行,2000.
    2. A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238, 37, 1972.
    3. 藤嶋昭、本多健一、 菊池真一,“工業化學”, 72, 108, 1969.
    4. A. Kudo, H. Kato, I. Tsuji, “Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting” , Chem. Lett., 33, 1534, 2004.
    5. A. Kudo, “Photocatalyst materials for water splitting”, Catal. Surv. Asia, 31, 7, 2003.
    6. A. Mills, S. L. Hnute, “An overview of semiconductor photocatalysis”, J. Photochem. Photobiol. A:Chem., 108, 1, 1997.
    7. M. Grätzel, “Photoelectrochemical cells”, Nature, 2001, 414, 338.
    8. A. Kudo, Y. Miseki, “ Heterogeneous photocatalyst materials for water splitting”, Chem. Soc. Rev., 38, 253, 2009.
    9. F. E. Osterloh, “Inorganic Materials as Catalysts for Photochemical Splitting of Water”, Chem. Mater., 20, 35, 2008.
    10. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, “Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I− shuttle redox mediator under visible light irradiation”, Chem. Commun., 23, 2416, 2001.
    11. H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, “Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation”, Chem. Lett., 33, 1348, 2004.
    12. R. Abe, K. Sayama, H. Sugihara, “Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3−/I-”, J. Phys. Chem. B, 109, 16052, 2005.
    13. A. Kudo, “Development of photocatalyst materials for water splitting”, Int. J. Hydrog. Energy, 31, 197, 2006.
    14. M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J. Thomas, “Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production”, Catal. Today, 122, 51, 2007.
    15. Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo, H. Kato,“Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts ”, J. Solid State Chem., 177, 4205, 2004.
    16. N. Nian, C. C. Hu, H. Teng, “Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination”, Int. J. Hydrog. Energy, 33, 2897, 2008.
    17. Y. Matsumoto, A. Funatsu, D. Matsuo, U. Unal, K. Ozawa, “Electrochemistry of Titanate(IV) Layered Oxides”, J. Phys. Chem. B, 105, 10893, 2001.
    18. H. Kato, A. kudo, “Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A = Li, Na, and K)”, J. Phys. Chem. B, 105, 4285, 2001.
    19. T. Ishihara, H. Nishiguchi, K. Fukamachi, Y. Takita, “Effects of Acceptor Doping to KTaO3 on Photocatalytic Decomposition of Pure H2O”, J. Phys. Chem. B, 103, 1, 1999.
    20. K. Rajeshwar, “Hydrogen generation at irradiated oxide semiconductor–solution interfaces”, J. Appl. Electrochem., 37, 765, 2007.
    21. H. Kato, A. Kudo, “Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts”, Catal. Today, 78, 561, 2003.
    22. A. Kudo, R.Niishiro, A. Iwase, H. Kato, “Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts”, Chem. Phys., 339, 104, 2007.
    23. R. Abe, K. Sayama, K. Domen, H. Arakawa, “Efficient hydrogen evolution from aqueous mixture of I− and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation”, Chem. Phys. Lett., 362, 441, 2002.
    24. M. Higashi, R. Abe, K. Teramura, T.Takato, B. Ohtani, K. Domen, “Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO3−/I- shuttle redox mediator”, Chem. Phys. Lett., 452, 120, 2008.
    25. K. Maeda, K. Teramura, N. Saito, Y. Inoue, K. Domen, “Photocatalytic Overall Water Splitting on Gallium Nitride Powder”, Bull. Chem. Soc. Jpn., 80, 1004, 2007.
    26. K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y.Inoue, H. Kobayashi, K. Domen, “Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst:  Relationship between Physical Properties and Photocatalytic Activity”, J. Phys. Chem. B, 109, 20504, 2005.
    27. K. Maeda, H. Terashima, K. Kase, K. Domen, “Nanoparticulate precursor route to fine particles of TaON and ZrO2–TaON solid solution and their photocatalytic activity for hydrogen evolution under visible light”, Appl. Catal. A:Gener., 357, 206, 2009.
    28. M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, K.Domen, “TaON and Ta3N5 as new visible light driven photocatalysts”, Catal. Today, 78, 555, 2003.
    29. X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, “Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation”, J. Am. Chem. Soc., 130, 7176, 2008.
    30. X. Wang, K. Maeda, Y. Lee, K. Domen, “Enhancement of photocatalytic activity of (Zn1+xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen”, Chem. Phys. Lett., 457, 134, 2008.
    31. A. Kudo, I. Mikami, “Photocatalytic activities and photophysical properties of Ga2−xInxO3 solid solution”, J. Chem. Soc., 94, 2929, 1998.
    32. I. Tsuji, H. Kato, A. Kudo, “Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS–CuInS2–AgInS2 Solid-Solution Photocatalyst”, Angew. Chem. Int. Ed., 44, 3565, 2005.
    33. C. C. Lo, C. W. Huang, C. H. Liao and J. C. S. Wu, “Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting”, Int. J. Hydrog. Energy, 35, 1523, 2010.
    34. S. C. Yu, C. W. Huang, C. H. Liao, J. C. S. Wu, S. T. Chang and K. H. Chen, “A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting”, J. Membr. Sci., 382, 291, 2011.
    35. T. Takata, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, “A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure”, J. Photochem. Photobio. A: Chem., 106, 45, 1997.
    36. K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis”, J. Photochem. Photobiol. A: Chem., 148, 71, 2002.
    37. R. Abe, T. Takata, H. Sugihara and K. Domen, “Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3−/I− shuttle redox mediator”, Chem. Commun., 30, 3829, 2005.
    38. M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani and K. Domen, “Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light (λ < 500 nm)”, Chem. Lett., 37, 138, 2008.
    39. L. J. Minggu, W. R. W. Daud and M. B. Kassim, “An overview of photocells and photoreactors for photoelectrochemical water splitting”, Int. J. Hydrog. Energy, 35, 5233, 2010.
    40. C. C. Hu, J. N. Nian and H. Teng, “Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3”, Sol. Energy Mater. Sol. Cells, 92, 1071, 2008.
    41. S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto and T. Ishihara, “Preparation of p-Type CaFe2O4 Photocathodes for Producing Hydrogen from Water”, J. Am. Chem. Soc., 132, 17343, 2010.
    42. R. Abe, “Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation”, J. Photochem. Photobiol. C-Photochem. Rev., 11, 179, 2010.
    43. W. B. Ingler and S. U. M. Khan, “A Self-Driven p /n‐Fe2O3 Tandem Photoelectrochemical Cell for Water Splitting”, Electrochem. Solid State Lett., 9, G144, 2006.
    44. S. G. Yang, X. Quan, X. Y. Li, Y. Z. Liu, S. Chen and G. H. Chen, “Preparation, characterization and photoelectrocatalytic properties of nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2O3/ZnO/TiO2 composite film electrodes towards pentachlorophenol degradation”, Phys. Chem. Chem. Phys., 6, 659, 2004.
    45. N. Sato, Electrochemistry at Metal and Semiconductor Electrodes;Elsevier, New York, 1998.
    46. Yanqing Cong, Hyun S. Park, Shijun Wang, Hoang X. Dang, Fu-Ren F. Fan, C. Buddie Mullins, “Synthesis of Ta3N5 Nanotube Arrays Modified with Electrocatalysts for Photoelectrochemical Water Oxidation”, J. Phys. Chem. C, 116, 14541, 2012.
    47. K. P. Wang, H. S. Teng, “Structure-intact TiO2 nanoparticles for efficient electron transport in dye-sensitized solar cells”, Appl. Phys. Lett., 91, 173102, 2007.
    48. K. Shankar, G. K Mor, H. E Prakasam, S. Yoriya, M. Paulose, O. K Varghese, C. A Grimes, “Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells”, Nanotechnology., 18, 065707, 2007.
    49. P. Chatchai, Y. Murakami, S.-Y. Kishiokal, A. Y. Nosaka, Y. Nosaka, “Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation”, Electrochimica Acta., 54, 1147, 2009.
    50. Finklea, H.O. Semiconductor Electrode;Elsevier, New York, 1988.
    51. Memming, R. Semiconductor Electrochemistry;Wiley-VCH, New York, 2001.
    52. 李佩珊,“孔洞性三氧化鎢薄膜光分解水電極之製備與研究”,國立成功大學化學工程研究所碩士論文, 2007.
    53. Macdonald, J.R. Impedance Spectroscopy:Emphasizing Solid Materials and Systems;Wiley, New York, 1987.
    54. Brett, C.M.A.;Brett, A.M.O. Electrochemistry:Principles, Methods, and Applications;Oxford, New York, 1993.
    55. Adlkofer, K.;Tanaka, M. “Stable Surface Coating of Gallium Arsenide with Octadecylthiol Monolayers”, Langmuir, 17, 4267, 2001.
    56. N.E. Brese, F.J. Disalvo, M. O’Keeffe, P. Rauch. “Structure of Ta3N5 at 16 K by time-of-flight neutron diffraction”, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 47, 2291, 1991.
    57. 高濂、鄭珊、張青紅,“奈米光觸媒”,五南出版社, 2004.
    58. O. Carp, C.L. Huisman, A. Reller, “Photoinduced reactivity of titanium dioxide”, J. Solid State Chem., 32, 33, 2004.
    59. Peter Kroll, Timon Schroter, and Martina Peters, “Prediction of Novel Phases of Tantalum(V) Nitride and Tungsten(VI) Nitride That Can Be Synthesized under High Pressure and High Temperature”, Angew. Chem. Int. Ed., 44, 4249, 2005.
    60. Stuart J. Henderson, Andrew L. Hector, “Structural and compositional variations in Ta3N5 produced by high-temperature ammonolysis of tantalum oxide”, J. Solid State Chem., 179, 3518, 2006.
    61. Chiun-Teh Ho, Ke-Bin Low, Robert F. Klie, Kazuhiko Maeda, Kazunari Domen, Randall J. Meyer and Preston T. Snee, “Synthesis and Characterization of Semiconductor Tantalum Nitride Nanoparticles”, J. Phys. Chem. C, 115, 647, 2011.
    62. Hitoki, G., Ishikawa A., Takata, T., Kondo, J. N., Hara, M., Domen, K., “Ta3N5 as a Novel Visible Light-Driven Photocatalyst (λ<600 nm)”, Chem. Lett., 31, 736, 2002.
    63. V. Zwilling, M. Aucouturier, E. Darque-Ceretti, “Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach”, Electrochimica Acta, 45, 921, 1999.
    64. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, “Titanium oxide nanotube arrays prepare by anodic oxidation”, J. Mater. Res.,16, 3331, 2001.
    65. I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki, “Formation of self-organized niobium porous oxide on niobium”, Electrochem. Commun., 7, 97, 2005.
    66. H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, and P. Schmuki, “Self-organized porous WO3 formed in NaF electrolytes”, Electrochem. Commun., 7, 295, 2005.
    67. H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina”, Science, 268, 1466, 1995.
    68. Irina V. Sieber and Patrik Schmuki, “Porous Tantalum Oxide Prepared by Electrochemical Anodic Oxidation”, J. Electrochem. Soc., 152 (9), C639, 2005.
    69. Hany A. El-Sayed and Viola I. Birss, “Controlled interconversion of nanoarray of ta dimples and high aspect ratio ta oxide nanotubes”, Nano Lett., 9, 1350, 2009.
    70. 利宗倫,“以溶熱法合成I-III-IV族CuInS2奈米粒子及其特性探討”,國立成功大學化學工程學系碩士論文,2008
    71. S. Grigorescu, B. Bärhausen, L. Wang, A. Mazare, J. E. Yoo, R. Hahn, P. Schmuki, “Tungsten doping of Ta3N5-nanotubes for band gap narrowing and enhanced photoelectrochemical water splitting efficiency”, Electrochem. Commun., 51, 85, 2015
    72. 林志成,“染料敏化電池之二氧化鈦層結構及固態電解質製作”,國立成功大學化學工程學系碩士論文,2013
    73. S. Chen, S. Shen, G. Liu, Y. Qi, F. Zhang and C. Li, “Interface Engineering of a CoOx/Ta3N5 Photocatalyst for Unprecedented Water Oxidation Performance under Visible-Light-Irradiation”, Angew. Chem. Int. Ed., 54, 3047, 2015
    74. M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q. Jia, H. Nishiyama, T. Minegishi, M. Katayama, A. Kudo, T. Yamada and K. Domen, “Surface Modification of CoOx Loaded BiVO4 Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation”, J. Am. Chem. Soc, 137, 5053, 2015.
    75. B. D. Cullity, S. R. Stock, “Elements of X-ray Diffraction 3rd ed”, Prentice Hall, 2001.
    76. M. Yan, F. Chem. J. Zhang, M. Anpo, “Preparation of controllable crystalline titania and study on the photocatalytic properties”, J. Phys. Chem. B, 109, 8673, 2005.
    77. D. G. Barton, M. Shtein, R. D. Wilson, S. L. Solied, E. Iglesia, “Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures”, J. Phys. Chem. B, 103, 630, 1999.
    78. 蔡承達,“鎵化合物光觸媒在分解水產氧之應用”,國立成功大學化學工程研究所碩士論文,2012.
    79. S. Brunaller, P. H. Emmett, E. Teller, “Adsorption of Gases in Multimolecular Layers”, J. Am. Chem. Soc., 60, 309, 1938.
    80. Y. C. Wang, C. Y. Chang, T. F. Yeh, Y. L. Lee and H. S. Teng, “Formation of internal p-n junctions in Ta3N5 photoanodes for water splitting”, J. Mater. Chem.A, 2, 20570, 2014.
    81. A. Fernández-Osorio, A. Vázquez-Olmos, R. Sato-Berru and R. Escudero, “Hydrothermal Synthesis of Co3O4 Nano-Octahedra and Their Magnetic Properties”, Rev. Adv. Mater. Sci., 22, 60, 2009.
    82. C. U. Mordi, M. A. Eleruja, B.A. Taleatu, G. O. Egharevba, A. V. Adedeji, O. O. Akinwunmi, B. Olofinjana, C. Jeynes, E. O. B. AjayiMetal “Organic Chemical Vapour Deposited Thin Films of Cobalt Oxide Prepared via Cobalt Acetylacetonate”, J. Mater. Sci. Technol., 25, 85, 2009.
    83. Nian, J.-N. and Teng, H., “Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor.”, J. Phys. Chem. B, 110, 4193, 2006.
    84. Masanobu Higashi, Kazunari Domen and Ryu Abe, “Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation”, J. Am. Chem. Soc., 134, 6968, 2012

    無法下載圖示 校內:2017-08-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE