研究生: |
王逸杰 Wang, Yi-Chieh |
---|---|
論文名稱: |
高效率光電化學分解水之氮化鉭電極研究 High-Efficiency Tantalum-Nitride Electrodes for Photoelectrochemical Water Splitting |
指導教授: |
鄧熙聖
Teng, Hsi-sheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 陽極氧化法 、氮化鉭 、光電極 、分解水 、產氫 |
外文關鍵詞: | Anodization, Ta3N5, Photoelectrode, Water splitting, Hydrogen generation |
相關次數: | 點閱:88 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本次研究以陽極氧化法搭配水熱法來製備n型半導體氮化鉭產氧電極,藉由X光繞射儀以及掃描式電子顯微鏡分析,發現其結構仍為斜方晶相奈米顆粒,並由這些奈米顆粒組成較大且具有階層狀孔洞之立方顆粒,另外,利用鈷元素的摻雜,氮化鉭電極能大幅提升光電流,這是由於內部形成p-n電場而改善電荷分離,減少電荷再結合發生,使得其光電化學反應之效能提升。
與一般陽極氧化法所製備出的氮化鉭電極不同,此結構具有孔洞的存在,因此能夠增加觸媒之表面積,但由於所形成的立方顆粒偏大,整體結構不夠緻密且內部的連結性不佳,對於電荷的傳導有較大阻礙,因此為了能夠進一步改善此情況,利用氯化鉭溶液進行後處理來增加顆粒間的連接性,使顆粒間的緻密度提高,因此能夠減低電荷傳遞時的阻力,增加光電流的效果。
而在光電化學測試中,主要以三極式的系統中進行反應,並且以太陽模擬光AM 1.5 G照射下,0.5 M的氫氧化鉀水溶液中,結果顯示具備階層狀孔洞之氮化鉭電極在經過後處理及鈷摻雜後,所呈現之光電流效能於偏壓0.5 V vs. Ag/AgCl下可達到3.6 mA/cm2,其效能遠高於純粹氮化鉭電極。
In the present work, a new method combining anodization and hydrothermal method is used to fabricate a n-type semiconductor cubic tantalum nitride(C-Ta3N5) electrode. From XRD and SEM analysis, which can know that C-Ta3N5 belong to orthorhombic phase, and has larger size of cubic particles with the hierarchical porous structure made up of Ta3N5 nanoparticles. Besides, the Co element doping of cubic tantalum nitride(C-Ta3N5:Co) electrode can significantly increase photocurrent by the built-in p-n junction which helps for charge separation and reduces the charge recombination. Therefore, the performance can be strongly enhanced.
Different form general anodization method, the new method can synthesize cubic tantalum nitride(C-Ta3N5) electrode with pores increasing the surface area. However, the cubic particles are quit large leading to bad charge transfer because the whole structure is not compact enough and rare connection between particles. To improve this situation, the tantalum chloride solution is used for post-treatment to increase the connection of particles and make them more compact. During the photoelectrochemical test conducting in three-electrode system under AM 1.5 G simulated sunlight illumination, the photocurrent density of C-Ta3N5:Co can reach 3.6 mA/cm2, which is much higher than bare Ta3N5 electrode at 0.5 V vs. Ag/AgCl in 0.5M KOH solution.
1. 張立群譯,“光清淨革命-活躍的二氧化鈦光觸媒”,協志工業叢書印行,2000.
2. A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238, 37, 1972.
3. 藤嶋昭、本多健一、 菊池真一,“工業化學”, 72, 108, 1969.
4. A. Kudo, H. Kato, I. Tsuji, “Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting” , Chem. Lett., 33, 1534, 2004.
5. A. Kudo, “Photocatalyst materials for water splitting”, Catal. Surv. Asia, 31, 7, 2003.
6. A. Mills, S. L. Hnute, “An overview of semiconductor photocatalysis”, J. Photochem. Photobiol. A:Chem., 108, 1, 1997.
7. M. Grätzel, “Photoelectrochemical cells”, Nature, 2001, 414, 338.
8. A. Kudo, Y. Miseki, “ Heterogeneous photocatalyst materials for water splitting”, Chem. Soc. Rev., 38, 253, 2009.
9. F. E. Osterloh, “Inorganic Materials as Catalysts for Photochemical Splitting of Water”, Chem. Mater., 20, 35, 2008.
10. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, “Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I− shuttle redox mediator under visible light irradiation”, Chem. Commun., 23, 2416, 2001.
11. H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, “Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation”, Chem. Lett., 33, 1348, 2004.
12. R. Abe, K. Sayama, H. Sugihara, “Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3−/I-”, J. Phys. Chem. B, 109, 16052, 2005.
13. A. Kudo, “Development of photocatalyst materials for water splitting”, Int. J. Hydrog. Energy, 31, 197, 2006.
14. M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J. Thomas, “Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production”, Catal. Today, 122, 51, 2007.
15. Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo, H. Kato,“Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts ”, J. Solid State Chem., 177, 4205, 2004.
16. N. Nian, C. C. Hu, H. Teng, “Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination”, Int. J. Hydrog. Energy, 33, 2897, 2008.
17. Y. Matsumoto, A. Funatsu, D. Matsuo, U. Unal, K. Ozawa, “Electrochemistry of Titanate(IV) Layered Oxides”, J. Phys. Chem. B, 105, 10893, 2001.
18. H. Kato, A. kudo, “Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A = Li, Na, and K)”, J. Phys. Chem. B, 105, 4285, 2001.
19. T. Ishihara, H. Nishiguchi, K. Fukamachi, Y. Takita, “Effects of Acceptor Doping to KTaO3 on Photocatalytic Decomposition of Pure H2O”, J. Phys. Chem. B, 103, 1, 1999.
20. K. Rajeshwar, “Hydrogen generation at irradiated oxide semiconductor–solution interfaces”, J. Appl. Electrochem., 37, 765, 2007.
21. H. Kato, A. Kudo, “Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts”, Catal. Today, 78, 561, 2003.
22. A. Kudo, R.Niishiro, A. Iwase, H. Kato, “Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts”, Chem. Phys., 339, 104, 2007.
23. R. Abe, K. Sayama, K. Domen, H. Arakawa, “Efficient hydrogen evolution from aqueous mixture of I− and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation”, Chem. Phys. Lett., 362, 441, 2002.
24. M. Higashi, R. Abe, K. Teramura, T.Takato, B. Ohtani, K. Domen, “Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO3−/I- shuttle redox mediator”, Chem. Phys. Lett., 452, 120, 2008.
25. K. Maeda, K. Teramura, N. Saito, Y. Inoue, K. Domen, “Photocatalytic Overall Water Splitting on Gallium Nitride Powder”, Bull. Chem. Soc. Jpn., 80, 1004, 2007.
26. K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y.Inoue, H. Kobayashi, K. Domen, “Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst: Relationship between Physical Properties and Photocatalytic Activity”, J. Phys. Chem. B, 109, 20504, 2005.
27. K. Maeda, H. Terashima, K. Kase, K. Domen, “Nanoparticulate precursor route to fine particles of TaON and ZrO2–TaON solid solution and their photocatalytic activity for hydrogen evolution under visible light”, Appl. Catal. A:Gener., 357, 206, 2009.
28. M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, K.Domen, “TaON and Ta3N5 as new visible light driven photocatalysts”, Catal. Today, 78, 555, 2003.
29. X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, “Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation”, J. Am. Chem. Soc., 130, 7176, 2008.
30. X. Wang, K. Maeda, Y. Lee, K. Domen, “Enhancement of photocatalytic activity of (Zn1+xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen”, Chem. Phys. Lett., 457, 134, 2008.
31. A. Kudo, I. Mikami, “Photocatalytic activities and photophysical properties of Ga2−xInxO3 solid solution”, J. Chem. Soc., 94, 2929, 1998.
32. I. Tsuji, H. Kato, A. Kudo, “Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS–CuInS2–AgInS2 Solid-Solution Photocatalyst”, Angew. Chem. Int. Ed., 44, 3565, 2005.
33. C. C. Lo, C. W. Huang, C. H. Liao and J. C. S. Wu, “Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting”, Int. J. Hydrog. Energy, 35, 1523, 2010.
34. S. C. Yu, C. W. Huang, C. H. Liao, J. C. S. Wu, S. T. Chang and K. H. Chen, “A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting”, J. Membr. Sci., 382, 291, 2011.
35. T. Takata, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, “A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure”, J. Photochem. Photobio. A: Chem., 106, 45, 1997.
36. K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis”, J. Photochem. Photobiol. A: Chem., 148, 71, 2002.
37. R. Abe, T. Takata, H. Sugihara and K. Domen, “Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3−/I− shuttle redox mediator”, Chem. Commun., 30, 3829, 2005.
38. M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani and K. Domen, “Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light (λ < 500 nm)”, Chem. Lett., 37, 138, 2008.
39. L. J. Minggu, W. R. W. Daud and M. B. Kassim, “An overview of photocells and photoreactors for photoelectrochemical water splitting”, Int. J. Hydrog. Energy, 35, 5233, 2010.
40. C. C. Hu, J. N. Nian and H. Teng, “Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3”, Sol. Energy Mater. Sol. Cells, 92, 1071, 2008.
41. S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto and T. Ishihara, “Preparation of p-Type CaFe2O4 Photocathodes for Producing Hydrogen from Water”, J. Am. Chem. Soc., 132, 17343, 2010.
42. R. Abe, “Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation”, J. Photochem. Photobiol. C-Photochem. Rev., 11, 179, 2010.
43. W. B. Ingler and S. U. M. Khan, “A Self-Driven p /n‐Fe2O3 Tandem Photoelectrochemical Cell for Water Splitting”, Electrochem. Solid State Lett., 9, G144, 2006.
44. S. G. Yang, X. Quan, X. Y. Li, Y. Z. Liu, S. Chen and G. H. Chen, “Preparation, characterization and photoelectrocatalytic properties of nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2O3/ZnO/TiO2 composite film electrodes towards pentachlorophenol degradation”, Phys. Chem. Chem. Phys., 6, 659, 2004.
45. N. Sato, Electrochemistry at Metal and Semiconductor Electrodes;Elsevier, New York, 1998.
46. Yanqing Cong, Hyun S. Park, Shijun Wang, Hoang X. Dang, Fu-Ren F. Fan, C. Buddie Mullins, “Synthesis of Ta3N5 Nanotube Arrays Modified with Electrocatalysts for Photoelectrochemical Water Oxidation”, J. Phys. Chem. C, 116, 14541, 2012.
47. K. P. Wang, H. S. Teng, “Structure-intact TiO2 nanoparticles for efficient electron transport in dye-sensitized solar cells”, Appl. Phys. Lett., 91, 173102, 2007.
48. K. Shankar, G. K Mor, H. E Prakasam, S. Yoriya, M. Paulose, O. K Varghese, C. A Grimes, “Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells”, Nanotechnology., 18, 065707, 2007.
49. P. Chatchai, Y. Murakami, S.-Y. Kishiokal, A. Y. Nosaka, Y. Nosaka, “Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation”, Electrochimica Acta., 54, 1147, 2009.
50. Finklea, H.O. Semiconductor Electrode;Elsevier, New York, 1988.
51. Memming, R. Semiconductor Electrochemistry;Wiley-VCH, New York, 2001.
52. 李佩珊,“孔洞性三氧化鎢薄膜光分解水電極之製備與研究”,國立成功大學化學工程研究所碩士論文, 2007.
53. Macdonald, J.R. Impedance Spectroscopy:Emphasizing Solid Materials and Systems;Wiley, New York, 1987.
54. Brett, C.M.A.;Brett, A.M.O. Electrochemistry:Principles, Methods, and Applications;Oxford, New York, 1993.
55. Adlkofer, K.;Tanaka, M. “Stable Surface Coating of Gallium Arsenide with Octadecylthiol Monolayers”, Langmuir, 17, 4267, 2001.
56. N.E. Brese, F.J. Disalvo, M. O’Keeffe, P. Rauch. “Structure of Ta3N5 at 16 K by time-of-flight neutron diffraction”, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 47, 2291, 1991.
57. 高濂、鄭珊、張青紅,“奈米光觸媒”,五南出版社, 2004.
58. O. Carp, C.L. Huisman, A. Reller, “Photoinduced reactivity of titanium dioxide”, J. Solid State Chem., 32, 33, 2004.
59. Peter Kroll, Timon Schroter, and Martina Peters, “Prediction of Novel Phases of Tantalum(V) Nitride and Tungsten(VI) Nitride That Can Be Synthesized under High Pressure and High Temperature”, Angew. Chem. Int. Ed., 44, 4249, 2005.
60. Stuart J. Henderson, Andrew L. Hector, “Structural and compositional variations in Ta3N5 produced by high-temperature ammonolysis of tantalum oxide”, J. Solid State Chem., 179, 3518, 2006.
61. Chiun-Teh Ho, Ke-Bin Low, Robert F. Klie, Kazuhiko Maeda, Kazunari Domen, Randall J. Meyer and Preston T. Snee, “Synthesis and Characterization of Semiconductor Tantalum Nitride Nanoparticles”, J. Phys. Chem. C, 115, 647, 2011.
62. Hitoki, G., Ishikawa A., Takata, T., Kondo, J. N., Hara, M., Domen, K., “Ta3N5 as a Novel Visible Light-Driven Photocatalyst (λ<600 nm)”, Chem. Lett., 31, 736, 2002.
63. V. Zwilling, M. Aucouturier, E. Darque-Ceretti, “Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach”, Electrochimica Acta, 45, 921, 1999.
64. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, “Titanium oxide nanotube arrays prepare by anodic oxidation”, J. Mater. Res.,16, 3331, 2001.
65. I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki, “Formation of self-organized niobium porous oxide on niobium”, Electrochem. Commun., 7, 97, 2005.
66. H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, and P. Schmuki, “Self-organized porous WO3 formed in NaF electrolytes”, Electrochem. Commun., 7, 295, 2005.
67. H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina”, Science, 268, 1466, 1995.
68. Irina V. Sieber and Patrik Schmuki, “Porous Tantalum Oxide Prepared by Electrochemical Anodic Oxidation”, J. Electrochem. Soc., 152 (9), C639, 2005.
69. Hany A. El-Sayed and Viola I. Birss, “Controlled interconversion of nanoarray of ta dimples and high aspect ratio ta oxide nanotubes”, Nano Lett., 9, 1350, 2009.
70. 利宗倫,“以溶熱法合成I-III-IV族CuInS2奈米粒子及其特性探討”,國立成功大學化學工程學系碩士論文,2008
71. S. Grigorescu, B. Bärhausen, L. Wang, A. Mazare, J. E. Yoo, R. Hahn, P. Schmuki, “Tungsten doping of Ta3N5-nanotubes for band gap narrowing and enhanced photoelectrochemical water splitting efficiency”, Electrochem. Commun., 51, 85, 2015
72. 林志成,“染料敏化電池之二氧化鈦層結構及固態電解質製作”,國立成功大學化學工程學系碩士論文,2013
73. S. Chen, S. Shen, G. Liu, Y. Qi, F. Zhang and C. Li, “Interface Engineering of a CoOx/Ta3N5 Photocatalyst for Unprecedented Water Oxidation Performance under Visible-Light-Irradiation”, Angew. Chem. Int. Ed., 54, 3047, 2015
74. M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q. Jia, H. Nishiyama, T. Minegishi, M. Katayama, A. Kudo, T. Yamada and K. Domen, “Surface Modification of CoOx Loaded BiVO4 Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation”, J. Am. Chem. Soc, 137, 5053, 2015.
75. B. D. Cullity, S. R. Stock, “Elements of X-ray Diffraction 3rd ed”, Prentice Hall, 2001.
76. M. Yan, F. Chem. J. Zhang, M. Anpo, “Preparation of controllable crystalline titania and study on the photocatalytic properties”, J. Phys. Chem. B, 109, 8673, 2005.
77. D. G. Barton, M. Shtein, R. D. Wilson, S. L. Solied, E. Iglesia, “Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures”, J. Phys. Chem. B, 103, 630, 1999.
78. 蔡承達,“鎵化合物光觸媒在分解水產氧之應用”,國立成功大學化學工程研究所碩士論文,2012.
79. S. Brunaller, P. H. Emmett, E. Teller, “Adsorption of Gases in Multimolecular Layers”, J. Am. Chem. Soc., 60, 309, 1938.
80. Y. C. Wang, C. Y. Chang, T. F. Yeh, Y. L. Lee and H. S. Teng, “Formation of internal p-n junctions in Ta3N5 photoanodes for water splitting”, J. Mater. Chem.A, 2, 20570, 2014.
81. A. Fernández-Osorio, A. Vázquez-Olmos, R. Sato-Berru and R. Escudero, “Hydrothermal Synthesis of Co3O4 Nano-Octahedra and Their Magnetic Properties”, Rev. Adv. Mater. Sci., 22, 60, 2009.
82. C. U. Mordi, M. A. Eleruja, B.A. Taleatu, G. O. Egharevba, A. V. Adedeji, O. O. Akinwunmi, B. Olofinjana, C. Jeynes, E. O. B. AjayiMetal “Organic Chemical Vapour Deposited Thin Films of Cobalt Oxide Prepared via Cobalt Acetylacetonate”, J. Mater. Sci. Technol., 25, 85, 2009.
83. Nian, J.-N. and Teng, H., “Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor.”, J. Phys. Chem. B, 110, 4193, 2006.
84. Masanobu Higashi, Kazunari Domen and Ryu Abe, “Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation”, J. Am. Chem. Soc., 134, 6968, 2012