簡易檢索 / 詳目顯示

研究生: 林君玲
Lin, Chun-Ling
論文名稱: 三區塊共聚高分子應用於中孔洞氧化矽晶體 合成的研究
Study on the Synthesis of the Mesoporous Silica Crystals Templating with Triblock Copolymers
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 120
中文關鍵詞: 中孔洞晶體氧化矽
外文關鍵詞: SBA-16, crystal, mesoporous silica
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於有機-無機組成的生長結構是研究複合材料的重要基礎,在中孔洞氧化矽材料發展初期,其研究大部分以各種介尺度結構之孔洞材料的合成及改善結構穩定性為主。直到近年,許多科學家提出藉由調控界面活性劑與無機氧化矽之間的作用力和反應速率合成出具晶型的中孔洞氧化矽材料。
    本研究的內容在於探討,以適當比例的三種界面活性劑混合物(C8TMAB-SDS-F127)作為有機模板,在酸性合成條件下與矽酸鈉(Sodium Silicate)結合,並藉由控制其生成速度,使有機-無機組合材料慢慢堆積成為大尺度的晶體型態。由於氧化矽在其等電位點(pH=2.0)時聚合速率最慢,且有機模板和氧化矽之間以較弱的氫鍵作
    用力結合,於是我們選擇酸性條件為主要研究範圍。另外,由於陽性、陰性與中性界面活性劑之間的比例、反應系統的總水量、矽酸鈉的濃度、外加流場與否都將會是影響晶體長成的變因,本實驗已經找出可以一系列操控不同中孔洞氧化矽材料晶體形狀的合成條件。
    另外,在本論文中亦提到,在氧化矽聚合速率最為緩慢(pH=2.0)的合成條件下,利用酚醛樹脂與中性界面活性劑以高分子混摻法合成出具有晶型的中孔洞氧化矽晶體。由於酚醛樹脂與中性界面活性劑之間的比例、反應系統的總水量、矽酸鈉的濃度皆是影響晶體長成的變因,因此本實驗亦找出一系列操控不同中孔洞氧化矽材料晶體形狀的合成條件。
    除了合成具有SBA-16立方結構的中孔洞氧化矽晶體之研究外,本論文也進行不同型態的中孔洞氧化矽材料合成之研究。包含有:(1)利用三種界面活性劑(C10TMAB-SDS-F127)混合物當作有機模板,在氧化矽聚合速率快(pH=5.0)的反應條件下,合成出具有囊泡(vesicles)中孔洞氧化矽材料;(2)利用陽性與陰性(C14TMAB-SDS)兩種界面活性劑混合物,在氧化矽聚合速率慢(pH=2.0)的反應條件下,合成出具有扇型的中孔洞氧化矽之仿生材料。

    Understanding the growth mechanism of the organic-inorganic hybrids is intrinsically important for the synthesis of the mesoporous
    materials. In the beginning of developing the synthetic methods of themesoporous silica, most of researcher focused on the preparation of
    mesoporous silica with different mesostructures and improved framework stability. Based on the silica chemistry and well control the interaction
    between the silica and surfactants, the mesoporous silica crystals in various morphologies have been obtained.
    In this thesis, we use a ternary-surfactant system (C8TMAB-SDS-F127) as the template to synthesize the SBA-16 mesoporous silica crystals in an acidic silicate solution. At the isoelectric point of silica (pH » 2.0), the silica condensation rate is restively slowest
    and the interaction between surfactant and silica species is weakly hydrogen bonding. Therefore, the surfactant and silica species can self-assemble slowly to from micron-sized SBA-16 mesoporous silica crystals. In addition, we studied in detail of the experimental factors such as the ratio of the cationic/anionic/F127, water content, concentration of silica species, pH value and the applying flow to find the optimum conditions and chemical components for the synthesis of high-quality SBA-16 mesoporous silica crystals.
    Under the same synthetic condition (pH » 2.0), the hydrophobic phenol-formaldehyde (PF) resin can also be used to replace the C8TMAB-SDS catanionic surfactant. After a well-blending with F127,the well-identified SBA-16 mesoporous silica crystals were prepared by
    the template of PF-F127 polymer blend. Moreover, we also studied the effect of the PF/F127 ratio, water content and concentration of silica species on the crystals morphology of the PF-F127 templated SBA-16 mesoporous silicas.
    In order to obtain newly spectacular morphologies (like the diatoms in nature), we tried to use other surfactant mixtures. Here, two successful examples were illustrated. 1. The vesicle-like mesoporous silica were obtained with a fast silicification of C10TMAB-SDS-F127 template at pH » 5.0; 2. The fan-like mesoporous silica were prepared with the template of C14TMAB-SDS binary surfactant and then slow silicification at pH » 2.0.

    目 錄 第一章 序論..........................................................1 1.1 生物成礦(Biomineralization)的發展與研究..........................1 1.1.1 中孔洞氧化矽材料的生物模擬...................................3 1.2 中孔洞氧化矽材料的生物模擬.......................................3 1.2.1 孔洞性材料的研究範疇.........................................5 1.3 界面活性劑性質簡介...............................................7 1.3.1 界面活性劑的分類.............................................7 1.3.2 微胞的形成...................................................8 1.3.3 界面活性劑聚集體的結構.......................................10 1.3.4 塊狀高分子的微胞.............................................10 1.4 矽酸鹽的化學概念................................................ 11 1.5 高分子混摻(polymer blends).......................................14 1.5.1 混摻的方法...................................................14 1.6 中孔洞氧化矽材料外觀晶型的研究之簡介.............................16 1.6.1 晶面影響外觀晶型之說明.......................................17 1.7 研究目的.........................................................18 第二章 實驗部份......................................................19 2.1 化學藥品.........................................................19 2.2 合成步驟.........................................................20 2.2.1 利用陽性、陰性以及中性界面活性劑合成具有立方型結構 (Im3m)之SBA-16中孔洞氧化矽晶體................................20 2.2.2 以高分子混掺法於酸性條件下合成中孔洞氧化矽晶體.................21 2.2.3 以陽性與陰性界面活性劑合成具有扇型之中孔洞氧化矽晶體.........22 2.2.4 囊泡狀中孔洞材料合成步驟......................................23 2.2.5 中孔洞氧化矽晶體碳材的合成步驟---乾式含浸法..................24 2.3 產物鑑定.........................................................25 2.3.1 掃描式電子顯微鏡.............................................25 2.3.2 X-射線粉末繞射光譜...........................................25 2.3.3 穿透式電子顯微鏡.............................................26 2.3.4 熱重分析儀...................................................27 2.3.5 氮氣吸附/脫附測量............................................27 2.3.5.1 BET表面積測量............................................28 2.3.5.2 孔徑大小分布(Pore size distribution)之計算方法..........29 2.3.5.3 t-plot的算法.............................................30 2.3.6 拉曼光譜.....................................................30 第三章 SBA-16中孔洞氧化矽晶體型態的研究與探討.........................33 3.1 研究動機與目的....................................................33 3.2 實驗設計..........................................................35 3.3 改變pH 值對中孔洞氧化矽外觀晶型的影響.............................36 3.4 陽性/陰性與中性界面活性劑之重量比對於晶體型態的影響...............45 3.5 不同矽酸鈉含量對中孔洞氧化矽晶體SBA-16的影響......................53 3.6 水量對中孔洞氧化矽晶體的影響......................................57 3.7 流場(stirring)對中孔洞氧化矽晶體型態之影響........................60 3.8 改變陽性界面活性劑之碳鏈長合成中孔洞氧化矽SBA-16晶體..............62 3.9 改變氧化矽聚合速率調控顆粒大小....................................67 3.10 中孔洞氧化矽SBA-16晶體的形成機制.................................68 3.11 具晶型中孔洞碳材之拓印...........................................73 第四章 以高分子混掺法合成中孔洞氧化矽晶體之研究........................75 4.1 研究動機與目的....................................................75 4.2 實驗設計..........................................................76 4.3 添加酚醛樹脂與否對其外觀晶型的影響................................78 4.4 pH值對其外觀型態之影響.............................................81 4.5 不同酚醛樹脂與中性界面活性劑F127 之重量比對中孔洞氧化矽晶體的影響...84 4.6 不同矽酸鈉含量對其中孔洞氧化矽晶體的影響...........................88 4.7 不同水含量對其中孔洞氧化矽晶體的影響...............................90 4.8 探討利用三種界面活性劑混合物作為模板與利用高分子混 掺法所合成的中孔洞氧化矽晶體之差異.................................92 4.9 具有晶型的中孔洞碳材之拓印.........................................94 第五章 不同型態的中孔洞氧化矽材料之研究...............................97 5.1 囊泡狀中孔洞氧化矽材料的研究.......................................97 5.1.1 結果與討論....................................................97 5.1.2 結論..........................................................105 5.2 具扇型外觀型態之中孔洞氧化矽晶體研究..............................105 5.2.1 結果與討論....................................................106 5.2.1.1 添加不同陰性界面活性劑的量................................107 5.2.1.2 改變系統水量..............................................108 5.2.1.3 添加中性界面活性劑(EO106PO70EO106;F127) .................113 5.2.2 結論......................................................... 113 第六章 結論.......................................................... 115 參考文獻............................................................. 117

    參考文獻
    1. Mann S, J. Mater. Chem., 1995, 5, 935.
    2. Heuer A H, Fink D J, Laraia V J, Arias J L, Calvert P D, Kendall K,
    Messing G L, Blackwell J, Rieke P C, Thompson D H, Wheeler A P,
    Veis A, Caplan A I, Science, 1992, 255, 1098.
    3. Kresge C T, Adv. Mater., 1996, 2, 181.
    4. Mann S, Ozin G A, Nature, 1996, 382, 313.
    5. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck,
    Nature, 1992, 359, 710.
    6. J. S Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K.
    D. Schmitt, C. T – W. Chu, D. H. Olson, E. W Sheppard, S. B. Higgins
    and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
    7. A. Sayari, Chem. Mater., 1996, 8, 1840.
    8. Neumann, K. Khenkin, Chem. Commun., 1996, 23, 2643.
    9. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994,
    39, 63.
    10. C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
    11. C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
    12. C.-G. Wu, T. Bein, Chem. Mater., 1994, 6, 1109.
    13. (a) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996, 12, 6202.
    (b) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 1996, 2467.
    14. S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung, P.
    J. Sadler, J. Chem. Soc., Chem. Commun., 1995, 1803.
    15. T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem.
    Commun. 1995, 1617.
    118
    16. IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1,
    Colloid and Surface Chemistry , Pure Appl. Chem. 1972, 31, 578.
    17. Wang, W.; Xie, S.; Zhou, W.; Sayari, A. Chem. Mater. 2004,
    16, 1756.
    18. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou
    and D. Zhao. Angew. Chem., 2003, 115 , 3254.
    19. A. E. Garcia – Bennett, S. Williamsin, P. A. Wright and I. J. Shannon.
    J. Meter. Chem, 2002, 12, 3533.
    20. A. Vinu, V. Murugesan and M. Hartmann. Chem. Meter., 2003, 15,
    1385.
    21. H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49,
    981.
    22. V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
    23. H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
    24. Q. Huo, D. I. Margolese and G. D. Stucky. Chem. Mater., 1996, 8,
    1147.
    25. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J.
    C. Hanson and A. Monnier. Chem. Mater., 2001, 13, 2247.
    26. Z. Zhang, Y. Han, Feng – Shou Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu,
    Ze Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao and Y. Wei. J. Am.
    Chem. Soc., 2001, 123, 5014.
    27. A. Bhaumik and S. Inagaki. J. Am. Chem. Soc., 2001, 123, 691.
    28. Y. Han, S. Wu, Y. Sun, D. Li and Feng – Shou Xiao. Chem. Mater.,
    2002, 14, 1144.
    29. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and
    Feng –Shou Xiao. Angew. Chem. Int. Ed. 2001, 7, 1258.
    119
    30. D. Margolese, J. A, Melero, C. Christiansen, B. F. Chemelka and G.
    D.Stukey. Chem. Mater., 2002, 12, 2448.
    31. A. Walcarius, M. Etienne and B. Lebeau. Chem. Mater., 2003, 15,
    2161.
    32. T. Yokoi, H. Yoshitake and T. Tatsumi. J. Mater. Chem., 2004, 14,
    951.
    33. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature.,
    2000, 48, 289.
    34. E. B. Erlein. Angew. Chem. Int. Ed., 2003, 42, 614.
    35. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu. Angew. Chem.
    Int. Ed. 2003, 42, 413.
    36. F. Noll, M. Sumper and N. Hampp. Nano. Lett., 2002, 2, 91.
    37. Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y. Adv. Mater. 2000, 12, 206.
    38. Jiang, P.; Bertone, J. F.; Colvin, V. L. Science. 2001, 291, 453.
    39. Fowler, C. E.; Khushalani, D.; Mann, S. Chem. Commun. 2001, 2028.
    40. Huo, Q. S.; Feng, J. L.; Schu¨th, F.; Stucky, G. D. Chem. Mater. 1997,
    9, 14.
    41. Lu, Y. F.; Fan, H. Y.; Stump, A.; Ward, T. L.; Rieker,T.; Brinker, C. J.
    Nature. 1999, 398, 223.
    42. Fowler, C. E.;Khushalani, D.; Lebeau, B.; Mann, S. Adv. Mater. 2001,
    13, 649.
    43. T. F. Todros, Surfactants, Academic Press : London, 1984.
    44. B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation
    in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
    45. J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13,
    121.
    120
    46. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II.,
    1981, 77, 1264.
    47. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem.
    Soc. 1998, 120, 6024.
    48. R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
    49. C. J. Brinker, G. W. Scherer, Journal of Non-Crystalline Solids, 1985,
    70, 301.
    50. M. C. Chao, D. S. Wang, H. P. Lin and C. Y. Mou. J. Mater. Chem.
    2003, 13, 2853.
    51. C. Z. Yu, B. Tian, J. Fan, G. D. Stucky and D. Zhao. J. Am. Chem.
    Soc., 2002, 124, 4556.
    52. H. P. Lin and C. Y. Mou, Acc. Chem Res., 2002, 15, 2299.
    53. K. Kosuge, T. Sato, N. Kikukawa and M. Takemori, Chem. Mater.,
    2004, 16, 899.
    54. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel
    Dekker, New York 1988.
    55. H. C. Foley, J. Microporous Mater. 1995, 4, 407.
    56. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 2001, 13,
    677.
    57. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna
    and O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
    58. J. Kim, J. Lee and T. Hyeon, J. Kim et al. / Carbon, 2004, 42, 2711.

    下載圖示 校內:2007-07-12公開
    校外:2007-07-12公開
    QR CODE