| 研究生: |
林君玲 Lin, Chun-Ling |
|---|---|
| 論文名稱: |
三區塊共聚高分子應用於中孔洞氧化矽晶體
合成的研究 Study on the Synthesis of the Mesoporous Silica Crystals Templating with Triblock Copolymers |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 中孔洞 、晶體 、氧化矽 |
| 外文關鍵詞: | SBA-16, crystal, mesoporous silica |
| 相關次數: | 點閱:91 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於有機-無機組成的生長結構是研究複合材料的重要基礎,在中孔洞氧化矽材料發展初期,其研究大部分以各種介尺度結構之孔洞材料的合成及改善結構穩定性為主。直到近年,許多科學家提出藉由調控界面活性劑與無機氧化矽之間的作用力和反應速率合成出具晶型的中孔洞氧化矽材料。
本研究的內容在於探討,以適當比例的三種界面活性劑混合物(C8TMAB-SDS-F127)作為有機模板,在酸性合成條件下與矽酸鈉(Sodium Silicate)結合,並藉由控制其生成速度,使有機-無機組合材料慢慢堆積成為大尺度的晶體型態。由於氧化矽在其等電位點(pH=2.0)時聚合速率最慢,且有機模板和氧化矽之間以較弱的氫鍵作
用力結合,於是我們選擇酸性條件為主要研究範圍。另外,由於陽性、陰性與中性界面活性劑之間的比例、反應系統的總水量、矽酸鈉的濃度、外加流場與否都將會是影響晶體長成的變因,本實驗已經找出可以一系列操控不同中孔洞氧化矽材料晶體形狀的合成條件。
另外,在本論文中亦提到,在氧化矽聚合速率最為緩慢(pH=2.0)的合成條件下,利用酚醛樹脂與中性界面活性劑以高分子混摻法合成出具有晶型的中孔洞氧化矽晶體。由於酚醛樹脂與中性界面活性劑之間的比例、反應系統的總水量、矽酸鈉的濃度皆是影響晶體長成的變因,因此本實驗亦找出一系列操控不同中孔洞氧化矽材料晶體形狀的合成條件。
除了合成具有SBA-16立方結構的中孔洞氧化矽晶體之研究外,本論文也進行不同型態的中孔洞氧化矽材料合成之研究。包含有:(1)利用三種界面活性劑(C10TMAB-SDS-F127)混合物當作有機模板,在氧化矽聚合速率快(pH=5.0)的反應條件下,合成出具有囊泡(vesicles)中孔洞氧化矽材料;(2)利用陽性與陰性(C14TMAB-SDS)兩種界面活性劑混合物,在氧化矽聚合速率慢(pH=2.0)的反應條件下,合成出具有扇型的中孔洞氧化矽之仿生材料。
Understanding the growth mechanism of the organic-inorganic hybrids is intrinsically important for the synthesis of the mesoporous
materials. In the beginning of developing the synthetic methods of themesoporous silica, most of researcher focused on the preparation of
mesoporous silica with different mesostructures and improved framework stability. Based on the silica chemistry and well control the interaction
between the silica and surfactants, the mesoporous silica crystals in various morphologies have been obtained.
In this thesis, we use a ternary-surfactant system (C8TMAB-SDS-F127) as the template to synthesize the SBA-16 mesoporous silica crystals in an acidic silicate solution. At the isoelectric point of silica (pH » 2.0), the silica condensation rate is restively slowest
and the interaction between surfactant and silica species is weakly hydrogen bonding. Therefore, the surfactant and silica species can self-assemble slowly to from micron-sized SBA-16 mesoporous silica crystals. In addition, we studied in detail of the experimental factors such as the ratio of the cationic/anionic/F127, water content, concentration of silica species, pH value and the applying flow to find the optimum conditions and chemical components for the synthesis of high-quality SBA-16 mesoporous silica crystals.
Under the same synthetic condition (pH » 2.0), the hydrophobic phenol-formaldehyde (PF) resin can also be used to replace the C8TMAB-SDS catanionic surfactant. After a well-blending with F127,the well-identified SBA-16 mesoporous silica crystals were prepared by
the template of PF-F127 polymer blend. Moreover, we also studied the effect of the PF/F127 ratio, water content and concentration of silica species on the crystals morphology of the PF-F127 templated SBA-16 mesoporous silicas.
In order to obtain newly spectacular morphologies (like the diatoms in nature), we tried to use other surfactant mixtures. Here, two successful examples were illustrated. 1. The vesicle-like mesoporous silica were obtained with a fast silicification of C10TMAB-SDS-F127 template at pH » 5.0; 2. The fan-like mesoporous silica were prepared with the template of C14TMAB-SDS binary surfactant and then slow silicification at pH » 2.0.
參考文獻
1. Mann S, J. Mater. Chem., 1995, 5, 935.
2. Heuer A H, Fink D J, Laraia V J, Arias J L, Calvert P D, Kendall K,
Messing G L, Blackwell J, Rieke P C, Thompson D H, Wheeler A P,
Veis A, Caplan A I, Science, 1992, 255, 1098.
3. Kresge C T, Adv. Mater., 1996, 2, 181.
4. Mann S, Ozin G A, Nature, 1996, 382, 313.
5. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck,
Nature, 1992, 359, 710.
6. J. S Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K.
D. Schmitt, C. T – W. Chu, D. H. Olson, E. W Sheppard, S. B. Higgins
and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
7. A. Sayari, Chem. Mater., 1996, 8, 1840.
8. Neumann, K. Khenkin, Chem. Commun., 1996, 23, 2643.
9. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994,
39, 63.
10. C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
11. C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
12. C.-G. Wu, T. Bein, Chem. Mater., 1994, 6, 1109.
13. (a) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996, 12, 6202.
(b) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 1996, 2467.
14. S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung, P.
J. Sadler, J. Chem. Soc., Chem. Commun., 1995, 1803.
15. T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem.
Commun. 1995, 1617.
118
16. IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1,
Colloid and Surface Chemistry , Pure Appl. Chem. 1972, 31, 578.
17. Wang, W.; Xie, S.; Zhou, W.; Sayari, A. Chem. Mater. 2004,
16, 1756.
18. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou
and D. Zhao. Angew. Chem., 2003, 115 , 3254.
19. A. E. Garcia – Bennett, S. Williamsin, P. A. Wright and I. J. Shannon.
J. Meter. Chem, 2002, 12, 3533.
20. A. Vinu, V. Murugesan and M. Hartmann. Chem. Meter., 2003, 15,
1385.
21. H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49,
981.
22. V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
23. H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
24. Q. Huo, D. I. Margolese and G. D. Stucky. Chem. Mater., 1996, 8,
1147.
25. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J.
C. Hanson and A. Monnier. Chem. Mater., 2001, 13, 2247.
26. Z. Zhang, Y. Han, Feng – Shou Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu,
Ze Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao and Y. Wei. J. Am.
Chem. Soc., 2001, 123, 5014.
27. A. Bhaumik and S. Inagaki. J. Am. Chem. Soc., 2001, 123, 691.
28. Y. Han, S. Wu, Y. Sun, D. Li and Feng – Shou Xiao. Chem. Mater.,
2002, 14, 1144.
29. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and
Feng –Shou Xiao. Angew. Chem. Int. Ed. 2001, 7, 1258.
119
30. D. Margolese, J. A, Melero, C. Christiansen, B. F. Chemelka and G.
D.Stukey. Chem. Mater., 2002, 12, 2448.
31. A. Walcarius, M. Etienne and B. Lebeau. Chem. Mater., 2003, 15,
2161.
32. T. Yokoi, H. Yoshitake and T. Tatsumi. J. Mater. Chem., 2004, 14,
951.
33. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature.,
2000, 48, 289.
34. E. B. Erlein. Angew. Chem. Int. Ed., 2003, 42, 614.
35. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu. Angew. Chem.
Int. Ed. 2003, 42, 413.
36. F. Noll, M. Sumper and N. Hampp. Nano. Lett., 2002, 2, 91.
37. Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y. Adv. Mater. 2000, 12, 206.
38. Jiang, P.; Bertone, J. F.; Colvin, V. L. Science. 2001, 291, 453.
39. Fowler, C. E.; Khushalani, D.; Mann, S. Chem. Commun. 2001, 2028.
40. Huo, Q. S.; Feng, J. L.; Schu¨th, F.; Stucky, G. D. Chem. Mater. 1997,
9, 14.
41. Lu, Y. F.; Fan, H. Y.; Stump, A.; Ward, T. L.; Rieker,T.; Brinker, C. J.
Nature. 1999, 398, 223.
42. Fowler, C. E.;Khushalani, D.; Lebeau, B.; Mann, S. Adv. Mater. 2001,
13, 649.
43. T. F. Todros, Surfactants, Academic Press : London, 1984.
44. B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation
in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
45. J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13,
121.
120
46. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II.,
1981, 77, 1264.
47. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem.
Soc. 1998, 120, 6024.
48. R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
49. C. J. Brinker, G. W. Scherer, Journal of Non-Crystalline Solids, 1985,
70, 301.
50. M. C. Chao, D. S. Wang, H. P. Lin and C. Y. Mou. J. Mater. Chem.
2003, 13, 2853.
51. C. Z. Yu, B. Tian, J. Fan, G. D. Stucky and D. Zhao. J. Am. Chem.
Soc., 2002, 124, 4556.
52. H. P. Lin and C. Y. Mou, Acc. Chem Res., 2002, 15, 2299.
53. K. Kosuge, T. Sato, N. Kikukawa and M. Takemori, Chem. Mater.,
2004, 16, 899.
54. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel
Dekker, New York 1988.
55. H. C. Foley, J. Microporous Mater. 1995, 4, 407.
56. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 2001, 13,
677.
57. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna
and O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
58. J. Kim, J. Lee and T. Hyeon, J. Kim et al. / Carbon, 2004, 42, 2711.