| 研究生: |
葉鎧嘉 Yeh, Kai-Chia |
|---|---|
| 論文名稱: |
受到共軛高分子有序排列引導之碳同素異形體聚集與結晶行為 Crystallization and assembly of carbon allotropies guided by oriented organization of conjugated polymers |
| 指導教授: |
阮至正
Ruan, Jr-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 共軛高分子 、液晶相 、磊晶 |
| 外文關鍵詞: | PBTTT-C14, liquid crystal, carbon nanotubes, epitaxy |
| 相關次數: | 點閱:80 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討以PBTTT-C14液晶相作為基板,探索不同維度分子於PBTTT-C14表面的聚集以及磊晶行為,藉由磊晶機制成長出具特定取向的晶相。
此研究首先製備PBTTT-C14和PMMA兩相分佈的薄膜,並藉由PBTTT-C14液晶相的融合,形成PBTTT-C14鏈段有序排列的網狀區域。再將溶有零維的具有甲基的奈米碳球衍生物(PCBM)的溶液,塗佈於PBTTT-C14有序相薄膜表面。藉由不同溫度的持溫,觀察PCBM分子的聚集排列行為。由於PCBM分子於高溫會優先嵌入PBTTT-C14的側鏈之間,因此我們塗佈過量的PCBM,使PCBM完全嵌入PBTTT-C14的側鏈之後,探索其餘PCBM分子於嵌入後的PBTTT-C14液晶相表面的聚集。此研究證實PBTTT-C14液晶相於高溫時,可以引導PCBM的磊晶成長。此外,磊晶成長的進行,亦影響了PBTTT-C14液晶相的分佈與表面形貌。
將一維的長鏈半導體高分子P3HT/甲苯溶液塗佈於PBTTT-C14 / PMMA二相分佈的薄膜,並藉由溶液濃度以及後續熱歷程的調控,來探索P3HT於PBTTT-C14液晶相表面的磊晶行為。可觀察到,P3HT分子傾向聚集於PBTTT-C14區域,且當P3HT分子的均質成核的趨勢被抑制時,可於較低的PBTTT-C14液晶相溫度發生磊晶成長。
最後,利用P3HT貼附於奈米碳管,使得奈米碳管可以於溶液中懸浮,再將此溶液加入到溶有PBTTT-C14與PMMA的溶液之中,旋轉塗佈於玻璃基板上之後,發展出含有奈米碳管/ P3HT分佈的PBTTT-C14 / PMMA薄膜。此研究設計是希望探索是否可以藉由P3HT分子磊晶成長的發生,來形成奈米碳管的有序排列的陣列。
In this study, we use large area of ordered PBTTT-C14 phase as the substrate and investigate of the epitaxial crystalize and assembling mechanism of different molecules on the substrate. Furthermore, we can grow highly oriented polymer crystalline phase by epitaxy and utilize the aligned polymer phase to induce the distribution of the carbon nanotubes.
First, we used PBTTT-C14 and PMMA to make the substrate. While the temperature raised to the liquid phase temperature of PBTTT-C14, the ordered phase of PBTTT-C14 can be development.
Coating the zero-dimensional PCBM molecules on the surface of the ordered PBTTT-C14 thin film. Annealing with different temperature to development different assembling behaviors of PCBM. The film has annealing at two different temperatures to observe the change of PCBM aggregation and the epitaxial crystallization of PCBM which induced by the liquid crystalline phase of PBTTT-C14 at higher temperature.
Coating the one-dimensional P3HT molecules on the surface of the ordered PBTTT-C14 thin film. The concentration of P3HT and annealing temperature can be adjusting and hence influence the crystallization behavior of P3HT on the surface of PBTTT-C14 liquid crystalline phase. Therefore, the requirement of P3HT epitaxial crystallization on PBTTT-C14 substrate can be discuss.
Finally, we use the P3HT adsorption to reduce the tendency of aggregation of carbon nanotubes, so that carbon nanotubes can be stably suspended in solution. Add this solution to the PBTTT-C14 and PMMA solution and then spin coating the solution on glass to form thin film. Annealing the sample to observe the distribution of carbon nanotubes in PBTTT-C14 phase. We can discuss how the temperature effect the aggregation of carbon nanotubes by change the ramp rate from melting point of PBTTT-C14 to PBTTT-C14 liquid phase temperature.
[1] Mauritz, K. A., Baer, E., and Hopfinger, A. J., The epitaxial crystallization of macromolecules, Journal of Polymer Science: Macromolecular Reviews, 13, 1, 1-61, (1978).
[2] Thierry, A., Mathieu, C., Straupé, C., Wittmann, J. C., Lotz, B., Da Costa. V., and Le Moigne, J., Polymer and organic molecules ordered via epitaxy: geometrical and molecular interactions, Macromolecular Symposia, 166, 1, 43-58, (2001).
[3] Carr, S. H., Keller, A., and Baer. E., Relationship between self‐seeded and epitaxial crystallization from polymer solutions: A potentially new method for molecular weight separation and a new decoration method for alkali halides, Journal of Polymer Science Part A‐2: Polymer Physics, 8, 9, 1467-1490, (1970).
[4] Wen, K., Weiqiang, L. and Weidong, H., Interfacial lattice-strain effects on improving the overall performance of micro-solid oxide fuel cells, Journal of Materials Chemistry A, 3, 40, 20031-20050, (2015).
[5] Wittmann, J. C., and Lotz, B., Epitaxial crystallization of polymers on organic and polymeric substrates, Progress in Polymer Science, 15, 6, 909-948, (1990).
[6] Bethanie, J., Hills, S., Vapor Processes, Materials Processing, 7, 513-588, (2016).
[7] Kashchiev, D., Nucleation, Elsevier, (2000).
[8] Soresi, S., InP based tandem solar cells integrated onto Si substrates by heteroepitaxial MOVPE, Diss. Montpellier, (2018).
[9] Aleksic, J., Paul, Z., and Janusz, A. S., Temperature and Flow Visualization In A Simulation Of The Czochralski Process Using Temperature-Sensitive Liquid Crystals (TLCS), Ann. NY Acad. Sci, (2002).
[10] Latyshev, A. V., Aseev, A. L., Krasilnikov, A. B., and Stenin, S. I., Initial stages of silicon homoepitaxy studied by in situ reflection electron microscopy, physica status solidi (a), 113, 2, 421-430, (1989).
[11] Zhang, S., Fu, L., Yang, D., and Wu, Z., Formation of a metastable phase induced by a liquid crystalline phase in a novel chloropoly (aryl ether ketone). Macromolecular rapid communications, 21, 16, 1144-1147, (2000).
[12] Fu, L., Zhang, S., Liu, J., Wu, Z., and Yang, D., Homoepitaxial Crystallization in Films of a Thermotropic Liquid Crystalline Chloro‐Poly (aryl ether ketone), Macromolecular Chemistry and Physics 202, 14, 2853-2856, (2001).
[13] Zur, A., and McGill, T. C., Lattice match: An application to heteroepitaxy, Journal of applied physics, 55, 2, 378-386, (1984).
[14] Koma, A., Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system, Thin Solid Films, 216, 1, 72-76, (1992).
[15] Jiang, X., Boettger, E., Paul, M., and Klages, C. P., Approach of selective nucleation and epitaxy of diamond films on Si (100), Applied physics letters, 65, 12, 1519-1521, (1994).
[16] Yan, S., Späth, T., and Petermann, J., Morphological studies of PE crystallized between iPP and PTFE oriented films, Polymer, 41, 13, 4863-4868, (2000).
[17] Katzenberg, F., Liebertz, H., and Petermann, J., Friction-induced molecular orientation of thin polymer films and bulk surfaces, Sen'i Gakkaishi, 53, 12, 549-554, (1997).
[18] Takahashi, T., Teraoka, F., and Tsujmoto, I., Epitaxial crystallization of crystalline polymers on the surface of drawn polytetrafluoroethylene, Journal of Macromolecular Science, Part B: Physics, 12, 3, 303-315, (1976).
[19] Hamidi, S. A., Schiefer, D., Covindarassou, S., Biniek, L., Sommer, M., and Brinkmann, M., Highly oriented and crystalline films of a phenyl-substituted polythiophene prepared by epitaxy: Structural model and influence of molecular weight, Macromolecules, 49, 9, 3452-3462, (2016).
[20] Mahi, F. T., and Nakajima, K., Liquid Phase Epitaxy, Elsevier, (2016).
[21] Zhou, H., Jiang, S., and Yan, S., Epitaxial crystallization of poly (3-hexylthiophene) on a highly oriented polyethylene thin film from solution, The Journal of Physical Chemistry B, 115, 46, 13449-13454, (2011).
[22] Li, J., Xue, M., Xue, N., Li, H., Zhang, L., Ren, Z., and Sun, X., Highly anisotropic P3HT film fabricated via epitaxy on an oriented polyethylene film and solvent vapor treatment, Langmuir, 35,24, 7841-7847, (2019).
[23] Jang, P. W., and Kim, J. Y., New growth method of solid phase epitaxy in sputtered YIG films, IEEE transactions on magnetics, 37, 4, 2438-2440, (2001).
[24] Deng, P., Whiteside, B., Wang, F., Norris, K., and Zhang, J., Epitaxial growth and morphological characteristics of isotactic polypropylene/polyethylene blends: Scale effect and mold temperature, Polymer testing, 34, 192-201, (2014).
[25] Yang, X., Wang, L., Wang, C., Long, W., and Shuai, Z., Influences of crystal structures and molecular sizes on the charge mobility of organic semiconductors: oligothiophenes, Chemistry of materials, 20, 9, 3205-3211. (2008).
[26] Hutchison, G. R., Ratner, M. A., and Marks, T. J., Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors, Journal of the American Chemical Society, 127, 48, 16866-16881, (2005).
[27] Brédas, J. L., Calbert, J. P., da Silva Filho, D. A., and Cornil, J., Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport, Proceedings of the National Academy of Sciences, 99, 9, 5804-5809, (2002).
[28] Cheng, Y. C., Silbey, R. J., da Silva Filho, D. A., Calbert, J. P., Cornil, J., and Brédas, J. L., Three-dimensional band structure and bandlike mobility in oligoacene single crystals: A theoretical investigation, The Journal of chemical physics, 118, 8, 3764-3774, (2003).
[29] Bredas, J. L., Beljonne, D., Cornil, J., Calbert, J. P., Shuai, Z., and Silbey, R., Electronic structure of π-conjugated oligomers and polymers: a quantum–chemical approach to transport properties, Synthetic metals, 125, 1, 107-116, (2001).
[30] Zimmerman, J. D., Lassiter, B. E., Xiao, X., Sun, K., Dolocan, A., Gearba, R., and Forrest, S. R., Control of interface order by inverse quasi-epitaxial growth of squaraine/fullerene thin film photovoltaics, ACS nano, 7, 10, 9268-9275, (2013).
[31] Wu, M. C., Liao, H. C., Chou, Y., Hsu, C. P., Yen, W. C., Chuang, C. M., and Su, W. F., Manipulation of nanoscale phase separation and optical properties of P3HT/PMMA polymer blends for photoluminescent electron beam resist, The Journal of Physical Chemistry B, 114, 32, 10277-10284, (2010).
[32] Matsuyama, A., and Tanaka, F., Theory of solvation-induced reentrant phase separation in polymer solutions, Physical review letters, 65, 3, 341, (1990).
[33] Bohn, L., Incompatibility and phase formation in solid polymer mixures and graft and block copolymers, Rubber Chemistry and Technology, 41, 2, 495-513, (1968).
[34] Chabinyc, M. L., Toney, M. F., Kline, R. J., McCulloch, I., Heeney, M., X-ray Scattering Study of Thin Films of Poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene), J. Am. Chem, Soc, 129, 3226, (2007).
[35] Wang, C. C., Jimison, L. H., Goris, L., McCulloch, I., Heeney, M., Ziegler, A., Salleo, A., Microstructural Origin of High Mobility in High‐Performance Poly (thieno‐thiophene) Thin‐Film Transistors, Adv. Mater, 22, 697, (2010).
[36] Miller, N. C., Cho, E., Gysel, R., Risko, C., Coropceanu, V., Miller, C. E., and Brédas, J. L., Factors governing intercalation of fullerenes and other small molecules between the side chains of semiconducting polymers used in solar cells, Advanced Energy Materials, 2, 10, 1208-1217, (2012).
[37] Scarongella, M., De Jonghe-Risse, J., Buchaca-Domingo, E., Causa’, M., Fei, Z., Heeney, M., and Banerji, N., A close look at charge generation in polymer: fullerene blends with microstructure control, Journal of the American chemical society, 137, 8, 2908-2918, (2015).
[38] Miller, N. C., Molecular Packing in Organic Solar Cells, Doctoral dissertation, Stanford University, (2012).
[39] Rastogi, R., Kaushal, R., Tripathi, S. K., Sharma, A. L., Kaur, I., and Bharadwaj, L. M., Comparative study of carbon nanotube dispersion using surfactants, Journal of colloid and interface science, 328, 2, 421-428, (2008).
[40] Uchida, T., and Kumar, S., Single wall carbon nanotube dispersion and exfoliation in polymers, Journal of Applied Polymer Science, 98, 3, 985-989, (2005).
[41] Zou, J., Liu, L., Chen, H., Khondaker, S. I., McCullough, R. D., Huo, Q., and Zhai, L., Dispersion of pristine carbon nanotubes using conjugated block copolymers, Advanced Materials, 20, 11, 2055-2060, (2008).
[42] Lee, H. W., You, W., Barman, S., Hellstrom, S., LeMieux, M. C., Oh, J. H., and Jin, Y. W., Lyotropic Liquid‐Crystalline Solutions of High‐Concentration Dispersions of Single‐Walled Carbon Nanotubes with Conjugated Polymers, small, 5, 9, 1019-1024, (2009).