簡易檢索 / 詳目顯示

研究生: 黃啓鈞
Huang, Chi-Chun
論文名稱: 液體溶液流經石墨烯產生電壓的實驗探討
Experimental Investigation of Voltage Generation by Liquid Solutions Flowing through Graphene
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 41
中文關鍵詞: 石墨烯電壓3D印表機能量轉換
外文關鍵詞: Graphene, Induced voltage, 3-D printer, Energy conversion
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要探討石墨烯暴露於溶液之面積比例不同時電壓的變化。我們利用正光阻S1813來定義溶液會流經石墨烯的面積比例,以銅片作為電極,以PDMS作為流道,並利用3D印表機來印製我們所需要的載台及容器。一開始我們以緩慢的流速進行實驗,發現儀器偵測不到訊號,透過法拉第箱的測試,我們推測是訊號過小以致於儀器偵測不到,所以我們利用水槽儲存溶液,再透過重力使溶液的流速提高,才順利偵測到訊號。我們發現隨著溶液濃度提高,石墨烯產生的電壓也會提高,但濃度提高到一定值後,電壓就不會再明顯的提升。而電壓也會隨著流速的提升而增加。以不同種類的溶液進行實驗發現氯化鋰溶液產生的電壓略比氯化鉀溶液產生的電壓高。石墨烯以不同比例面積暴露在溶液的實驗中發現50%的比例產生的電壓最小,40%與60%的比例產生的電壓最大。

    In this thesis, we investigated the induced voltage of liquid solution flowing over a graphene surface. The induced voltage changes with respect to different contact ratio of the liquid over the graphene surface. The contact ratio is defined as the ratio of the area of the graphene contacted by liquid solution to the total surface area of the graphene. The area of the graphene not to be contacted by liquid is covered by the photoresist S1813. We utilize copper pieces as the electrodes. We use Polydimethylsiloxane (PDMS) to fabricate the channel. The working platform and liquid tank are made by a 3D printer. It was observed that the flow speed over the graphene surface has to exceed a critical value in order to detect the induced electric voltage by a source meter.
    The induced voltage is enhanced by raising the concentration or the flow velocity of the liquid solution. But the induced voltage shows no significant increase when a critical concentration or flow velocity is achieved. The voltage induced by lithium chloride (LiCl) solution is higher than potassium chloride (KCl) solution. Local minimum voltage is obtained under 50% contact-ratio condition. Local maximum voltage is obtained under 40% and 60% contact-ratio condition, respectively, which is consistent with our former theoretical study.

    中文摘要 I 致謝 IX 目錄 X 圖目錄 XII 表目錄 XIV 縮寫說明 XV 符號說明 XVI 第一章 緒論 1 1.1 簡介 1 1.2 石墨烯 2 1.3 文獻介紹 4 第二章 原理 10 第三章 實驗材料與方法 12 3.1 材料與試劑 12 3.2 儀器與軟體 13 3.2.1 旋轉塗布機 13 3.2.2 UV曝光機 14 3.2.3 3D印表機 15 3.2.4 可調節功率產生暨量測器 16 3.3 裝置設計 17 3.3.1 石墨烯晶片 17 3.3.2 實驗裝置 19 3.4 裝置製作 21 3.4.1 石墨烯晶片 21 3.4.2 實驗裝置 23 3.5 實驗架設 23 第四章 結果與討論 26 4.1 溶液以較低流速流經石墨烯 26 4.2 溶液以較高流速流經石墨烯 30 4.2.1 濃度之效應 33 4.2.2 流速之效應 34 4.2.3 溶液之效應 35 4.2.4 接觸比例之效應 36 第五章 結論與展望 37 參考文獻 39

    [1] Král, P., & Shapiro, M. (2001). “Nanotube electron drag in flowing liquids.” Physical review letters, 86(1), 131.
    [2] Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). “Measurement of the elastic properties and intrinsic strength of monolayer graphene.” Science, 321(5887), 385-388.
    [3] Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R. & Geim, A. K. (2008). “Fine structure constant defines visual transparency of graphene.” Science, 320(5881), 1308-1308.
    [4] Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. & Stormer, H. L. (2008). “Ultrahigh electron mobility in suspended graphene.” Solid State Communications, 146(9), 351-355.
    [5] Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). “Superior thermal conductivity of single-layer graphene.” Nano letters, 8(3), 902-907.
    [6] Murali, R., Brenner, K., Yang, Y., Beck, T., & Meindl, J. D. (2009). “Resistivity of graphene nanoribbon interconnects.” IEEE Electron Device Letters, 30(6), 611-613.
    [7] Allen, M. J., Tung, V. C., & Kaner, R. B. (2009). “Honeycomb carbon: a review of graphene.” Chemical reviews, 110(1), 132-145.
    [8] Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A. N. & Conrad, E. H. (2006). “Electronic confinement and coherence in patterned epitaxial graphene.” Science, 312(5777), 1191-1196.
    [9] De Heer, W. A., Berger, C., Wu, X., First, P. N., Conrad, E. H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M. L., Potemski, M. & Potemski, M. (2007). “Epitaxial graphene.” Solid State Communications, 143(1), 92-100.
    [10] Hass, J., De Heer, W. A., & Conrad, E. H. (2008). “The growth and morphology of epitaxial multilayer graphene.” Journal of Physics: Condensed Matter, 20(32), 323202.
    [11] Kedzierski, J., Hsu, P. L., Healey, P., Wyatt, P. W., Keast, C. L., Sprinkle, M., Berger, C. & De Heer, W. A. (2008). “Epitaxial graphene transistors on SiC substrates.” IEEE Transactions on Electron Devices, 55(8), 2078-2085.
    [12] Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y. & Hong, B. H. (2009). “Large-scale pattern growth of graphene films for stretchable transparent electrodes.” nature, 457(7230), 706.
    [13] Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresslhaus, M. S. & Kong, J. (2008). “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition.” Nano letters, 9(1), 30-35.
    [14] Sutter, P. W., Flege, J. I. & Sutter, E. A. (2008). “Epitaxial graphene on ruthenium.” Nature Materials 7(5), 406-411.
    [15] Král, P., & Shapiro, M. (2001). “Nanotube electron drag in flowing liquids.” Physical review letters, 86(1), 131.
    [16] Ghosh, S., Sood, A. K., & Kumar, N. (2003). “Carbon nanotubes provide a charge-Response.” Science, 300(5623), 1235-1236.
    [17] Persson, B. N. J., Tartaglino, U., Tosatti, E., & Ueba, H. (2004). “Electronic friction and liquid-flow-induced voltage in nanotubes.” Physical Review B, 69(23), 235410.
    [18] Ghosh, S., Sood, A. K., & Kumar, N. (2003). “Carbon nanotube flow sensors.” Science, 299(5609), 1042-1044.
    [19] Ghosh, S., Sood, A. K., Ramaswamy, S., & Kumar, N. (2004). “Flow-induced voltage and current generation in carbon nanotubes.” Physical Review B, 70(20), 205423.
    [20] Liu, Z., Zheng, K., Hu, L., Liu, J., Qiu, C., Zhou, H., Huang, H., Yang, H., Li, M., Gu, C., Xie, S., Qiao, L. & Sun, L. (2010). “Surface‐Energy Generator of Single‐Walled Carbon Nanotubes and Usage in a Self‐Powered System.” Advanced Materials, 22(9), 999-1003.
    [21] Zhao, Y., Song, L., Deng, K., Liu, Z., Zhang, Z., Yang, Y., Wang, C., Yang, H., Jin, A., Luo, Q., Gu, C., Xie, S. & Sun, L. (2008). “Individual Water‐Filled Single‐Walled Carbon Nanotubes as Hydroelectric Power Converters.” Advanced Materials, 20(9), 1772-1776.
    [22] Dhiman, P., Yavari, F., Mi, X., Gullapalli, H., Shi, Y., Ajayan, P. M., & Koratkar, N. (2011). “Harvesting energy from water flow over graphene.” Nano letters, 11(8), 3123-3127.
    [23] Yin, J., Li, X., Yu, J., Zhang, Z., Zhou, J., & Guo, W. (2014). “Generating electricity by moving a droplet of ionic liquid along graphene.” Nature nanotechnology, 9(5), 378-383.
    [24] Robinson, J. T., Perkins, F. K., Snow, E. S., Wei, Z., & Sheehan, P. E. (2008). “Reduced graphene oxide molecular sensors.” Nano letters, 8(10), 3137-3140.
    [25] Wehling, T. O., Novoselov, K. S., Morozov, S. V., Vdovin, E. E., Katsnelson, M. I., Geim, A. K., & Lichtenstein, A. I. (2008). “Molecular doping of graphene.” Nano letters, 8(1), 173-177.
    [26] Fowler, J. D., Allen, M. J., Tung, V. C., Yang, Y., Kaner, R. B., & Weiller, B. H. (2009). “Practical chemical sensors from chemically derived graphene.” ACS nano, 3(2), 301-306.
    [27] Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., & Novoselov, K. S. (2007). “Detection of individual gas molecules adsorbed on graphene.” Nature materials, 6(9), 652-655.
    [28] Yin, J., Zhang, Z., Li, X., Yu, J., Zhou, J., Chen, Y., & Guo, W. (2014). “Waving potential in graphene.” Nature communications, 5, 3582.
    [29] Tsai, S. J., & Yang, R. J. (2016). “Bimodal behaviour of charge carriers in graphene induced by electric double layer.” Scientific reports, 6.
    [30] Parsons, R. (1990). “The electrical double layer: recent experimental and theoretical developments.” Chemical Reviews, 90(5), 813-826.
    [31] Attard, P. (2001). “Recent advances in the electric double layer in colloid science.” Current opinion in colloid & interface science, 6(4), 366-371.
    [32] Kirby, B. J., & Hasselbrink, E. F. (2004). “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations.” Electrophoresis, 25(2), 187-202.
    [33] Park, J., Yang, Y., Kwon, S. H., & Kim, Y. S. (2015). “Influences of surface and ionic properties on electricity generation of an active transducer driven by water motion.” The journal of physical chemistry letters, 6(4), 745-749.
    [34] Zhong, H., Wu, Z., Li, X., Xu, W., Xu, S., Zhang, S., Xu, Z., Chen, H. & Lin, S. (2016). “Graphene based two dimensional hybrid nanogenerator for concurrently harvesting energy from sunlight and water flow.” Carbon, 105, 199-204.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE