簡易檢索 / 詳目顯示

研究生: 魯祿康
Lu, Lu-Kan
論文名稱: 體外震波碎石機改良結石追蹤系統之性能評估
Performance Evaluation of an Improved Stone Tracking System of Extracorporeal Shock Wave Lithotriptors
指導教授: 梁勝明
Liang, Shen-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 97
中文關鍵詞: 震波超音波結石追蹤系統體外震波碎石機
外文關鍵詞: extracorporeal Shock Wave Lithotriptors, ultrasound-based stone tracking system. shock wa
相關次數: 點閱:91下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   體外震波碎石機(Extracorporeal Shock Wave Lithotriptor,ESWL)在現今醫療運用相當廣泛,但一般在療程中大概只有30%至50%的震波能量會落在結石上,其原因為震波衝擊、患者呼吸及患者身體的移動導致結石位置偏移,而導致震波落在其他正常組織上。針對以上缺點,本論文採用影像處理及伺服馬達控制的技術,對結石作即時追蹤,讓每次發射出去的震波都能落在結石上。在影像處理方面由超音波影像計算出結石的位置,再經由伺服馬達控制將聚焦點移動到計算出來的結石位置,重覆執行以上的程序即可達到定位與即時追蹤的效果。
      但在經過許多實驗後,我們發現某些鈣化的腎臟組織所產生的超音波影像,與結石的影像極為類似,使得結石辨認有時會發生困難。因此,我們又對此軟體加以修正,增加其他辨認條件,乃是結合超音波下結石亮點及其下方所產生的陰影,二者一起用來辨認結石。在此,我們針對此一新系統做測試。在相符合率試驗中,不追蹤的結果為68.8%,舊系統為89.9%,新系統為94.34%,在結石破碎有效性試驗中,不追蹤的結果為49.51%,舊追蹤系統為85.11%,新系統為89.5%;在結石粉碎重量測試中,不追蹤為49.12%,舊系統與新系統皆為100%,但舊系統的追蹤平均失敗次數為22.15次,新系統為5.31次,失敗率各為0.738%及0.177%。

      Extracorporeal Shock Wave Lithotripsy is widely used in clinical treatment of renal calculi. Generally, only 30-50% of shock waves are focused on the kidney stone, because of stone’s motion due to the shock wave strikes and patient’s respiration or movement. The stone motion also results that a great amount of shock waves are focused on normal tissues instead of the stone. This study utilizes the servomotor control and image processing technologies to track the stone during treatment so that the shock waves generated are focused on the stone. In order to track the stone in a real time, the stone ultrasound image is used to determine the stone location. A servomotor control system is used to automatically move the geometrical focus of the shock wave reflector to the stone location.
      It was found that there are some problems existing on the current stone-tracking system established in our laboratory. Occasionally, the images of some calcified tissues are similar to the stone images, resulting in a difficulty for stone identification. Thus it is necessary to modify the existing software of image processing that used the frame matching technique by adding more stone detection skills. Here we combine the bright region of stone with the stone shadow in ultrasound image for detecting a stone. The modified image processing software is tested by performing some testing-coincidence, efficiency, and fragment weight tests. It is found that the coincidence ratio for the improved software is improved from 89.9% to 94.3%, the efficiency ratio is improved from 85.1% to 89.5%, and the fragment weight ratio retains 100% at a stone-tracking condition. Without a stone-tracking condition, the coincidence ratio is only 68.8%, 49.5% for efficiency ratio, and 49.1 for the fragment weight ratio. Moreover, the average number of miss tracking is improved from 22.2 to 5.3. The corresponding failure rate is 0.18% for the improved software and 0.74% for the original software.

    ABSTRACT………………………………………………………………………i CONTENTS………………………………………………………………………iii LIST OF TABLES………………………………………………………………vii LIST OF FIGURES………………………………………………………………viii NOMENCLATURES…………………………………………………………………xii Chapter1: INTRODUCTION 1-1 Motivation and problem………………………………………………1 1-2 Review of Papers………………………………………………………2 1-3 Property of Shock Wave Focusing……………………………………3 1-4 Contents in This Book…………………………………………………6 Chapter2: An Ultrasound-based Real-time Tracking System 2-1 Introduction…………………………………………………………………8 2-2 Electrohydraulic Shock Wave Generators………………………………9 2-3 Applications of Extracorporeal Shock Wave Lithotriptors………10 2-4 Principle of Real-time Stone Tracking System……………………12 2-5 PMAC AC Servo Motor Controller………………………………………15 2-6 Stone Detection Technique………………………………………………17 Chapter3: MATERIALS AND METHODS 3-1 Introduction………………………………………………………………20 3-2 Equipment for Experiments………………………………………………20 3-2-1 Extracorporeal Shock Wave Lithotriptor (ESWL)…………20 3-2-2 Shock Wave Generator……………………………………………24 3-2-3 Water Tank and Electrodes……………………………………26 3-2-4 Ultrasound Scanner………………………………………………29 3-2-5 Probe Holder………………………………………………………30 3-2-6 Image Grabbing System…………………………………………31 3-3 Performance Evaluation of Stone Tracking System………………32 3-4 Coincidence Test…………………………………………………………33 3-5 Stone Fragmentation Efficiency Test………………………………39 3-6 Fragment-to-Weight Ratio Test in a Simulated Animal Model……45 3-7 Gap Adjustment Test………………………………………………………52 Chapter4: RESULTS AND DISCUSSION 4-1 Introduction……………………………………………………………………………60 4-2 Coincidence Test………………………………………………………………………60 4-2-1 Evaluation of the coincidence ratio in non-tracking condition…60 4-2-2 Evaluation of the coincidence ratio with frame matching technique in tracking condition…………………………………………61 4-2-3 Evaluation of the coincidence ratio with shadow tracking technique in tracking condition……………………………61 4-3 Stone Fragmentation Efficiency Test…………70 4-3-1 Evaluation of the stone fragmentation efficiency ratio in fixed condition…………………………………………………………70 4-3-2 Evaluation of the stone fragmentation efficiency ratio in non-tracking condition………………………………………70 4-3-3 Evaluation of stone fragmentation efficiency ratio with frame matching technique in tracking condition………………71 4-3-4 Evaluation of stone fragmentation efficiency ratio with shadow tracking technique in tracking condition………………71 4-4 Fragment-to-Weight Ratio Test in a Simulated Animal Model…………76 4-4-1 Evaluation of the fragment-to-weight ratio in non-tracking condition…………………………………………………………76 4-4-2 Evaluation of the fragment-to-weight ratio with frame matching technique in tracking condition……………………………76 4-4-3 Evaluation of the fragment-to-weight ratio with shadow tracking technique in tracking condition……………………………76 4-5 Gap Adjustment Test…………………………………86 4-5-1 Evaluation of the stone fragments ratio without adjustment……86 4-5-2 Evaluation of the stone fragments ratio with adjustment…………86 4-5-3 Evaluation of the stone fragment ratio without adjustment in a simulated animal model………………………………………86 4-5-4 Evaluation of the stone fragment ratio with adjustment in a simulated animal model………………………………………87 4-5-5 Evaluation of the stone fragment ratio with adjustment in a simulated animal model after 3000 shock waves…………87 Chapter5: CONCLUSIONS AND FUTURE WORK 5-1 Conclusions………………………………………………………………93 5-2 Future Work………………………………………………………………93 REFERENCES……………………………………………………………………………95

    [1] Liang, S. M, Chang, C. C., Pu, Y. R., Yu, F. M., “Technological Developments of Improving Taiwan-made Extracorporeal Shock Wave Lithotriptors,” NSC86-2622- E006-004R, 1998.
    [2] Chang, C. C., Liang, S. M., Pu, Y. R., Yu, F. M., “In Vitro Study of Ultrasound- Based Real-Time Tracking for Renal Stones in Shock Wave Lithotripsy: part I,” J. Urol., Vol. 166, pp. 28-32, 2001.
    [3] Chang, C. C., Manousakas, I., Pu, Y. R., Liang, S. M., Chen, C. H., Chen, T. S., Yu, F. M., Yang, W. H., Tong, Y. C., Kuo, C. L., “In Vitro Study of Ultrasound-Based Real-Time Tracking for Renal Stones in Shock Wave Lithotripsy: Part II - A Simulated Animal Experiment,” J. Urol., Vol. 167, pp. 2594-2597, June 2002.
    [4] Petty, R. W. and Kantrowitz, A., “The Production and Stability of Coverging Shock Waves,” Journal of Applied Physics, Vol. 22, No. 7, pp. 878-886, 1951.
    [5] Bailitis, E., “Der Schallimpuls Eines Flüssigkeitsfunkens (The Pressure Pulse of a Liquid Spark),” Zeitschrift für angewandte Physik einschlieβlch Nukleonik, Vol. 9, pp. 429-434, 1957.
    [6] Häusler, E. and Kiefer, W., “Anregung von Stosswellen in Flüssigkeiten durch Hochgeschwindigkeitswassertropfen (Generation of Shock Waves in Liquid by High-velocity Water Drops),” Verh Dtsch Physik Ges, Vol. 10, pp. 36, 1971.
    [7] Chaussy, C., Schmiedt, E., Jocham, D., Schuller, J., Brendel, H., and Liedl, B., “Extracorporeal Shock-Wave Lithotripsy (ESWL) for Treatment of Urolithiasis,” Journal of Urology, Vol. 93, pp. 59-66, 1984.
    [8] Chaussy, C., Schmiedt, E., Jocham, D., Brendel, W., Forssmann, B., and Walther, W., “First Clinical Experience with Extracorporeally Induced Destruction of Kidney Stones by Shock Waves,” Journal of Urology, Vol. 127, pp. 417-420, 1982.
    [9] Sturtevant, B., “Shock Wave Physics of Lithotriptors,” in Smith’s Textbook of Endourology, Quality Medical Publishing, Inc., pp. 529-552, 1996.
    [10] Hunter, P. T., Finayson, B., Robert, J., Hiroko, W. C., Voreck, R.W., Scott W., Mohammed, N., “Measurement of Shock Waves Pressures Used for Lithotripsy,” Journal of Urology, Vol. 136, pp. 733-738, 1986.
    [11] Chuong, C. J. “Different Stone Damage Modes during Lithotripsy Shock Wave Delivery,” Biomechanics Symposium, pp. 5-8, 1989.
    [12] Chuong, C. J., Zhong, P. and Glenn, P. M., “A Comparison of Stone Damage Caused by Different Methods of Shock Wave Generation,” Journal of Urology, Vol. 148, pp. 200-205, July 1992.
    [13] Orkisz, M., Farchtchian, T., Saiphi, D., Bourlion, M., Thiounn, N., Gimenez, G., Debre, B. and Flam, T. A., “Image Based Renal Stone Tracking to Improve Efficacy in Extracorporeal Lithotridsy,” Journal of Urology, Vol. 160, pp. 1237-1240, 1998.
    [14] Suramo, I., Paivansalo, M. and Myllyla, V., “Cranio-caudal Movements of the Lover, Pancreas and Kidneys in Respiration,” Acta Radiologica Diagnosis, 25 (2): 129, 1984.
    [15] 戴興邦、尤芳忞、楊智光、梁勝明、蒲永仁、郭昭霖、陳天送、陳進興, “中華民國醫學工程科技研討會論文集” , pp. 256-263, 1998.
    [16] 楊智光,“體外震波碎石機反射罩杯之設計”,國立成功大學航空太空工程研究所,碩士論文,台南市,1998.
    [17] 李衍德,“水電型體外震波碎石機中電極棒之性能改進研究” ,國立成功大學航空太空工程研究所,碩士論文,台南市,1999.
    [18] 陳進興、陳天送,“改進國產體外震波碎石機之技術開發: 體外震波碎石機即時超音波結石定位系統之開發”,行政院國科會產學合作計劃成果報告,台南市,1997.
    [19] Coleman, A. J. and Saunders, J. E., “A Survey of the Acoustic Output of Commercial Extracorporeal Shock Wave Lithotriptors,” Ultrasound in Medicine and Biology, Vol. 15, No. 3, pp. 213-227, 1989.
    [20] 郭昭霖,“體外震波碎石機自動追蹤系統”, 國立成功大學醫學工程研究所,碩士論文,台南市,2000。
    [21] Delta Tau Data Systems, “PMAC User’s Manual,” Delta Tau Data Systems, Inc., Chatsworth, Ca., USA, 1997.
    [22] Delta Tau Data Systems, “PMAC Software Reference,” Delta Tau Data Systems, Inc., Chatsworth, Ca., USA, 1997.
    [23] Kapur, N., Sahoo, A. C., and Wong, A. K. C., “A New Method for Gray-Level Thresholding Using the Entropy of the Histogram,” Computer Vision, Graphics and Image Processing, Vol. 29, pp. 273-285, 1985.
    [24] 馬亞尼、陳進興、陳一弘、陳天送、梁勝明、楊文宏,“體外震波碎石機即時超音波結石影像追蹤” ,行政院國科會產學合作計劃成果報告,台南市,1999.
    [25] 王嘉輝,“水電式體外震波碎石機電極間距自動控制系統設計和性能評估”,國立成功大學航空太空工程研究所,碩士論文,台南市,2002.
    [26] 萬龍瑞,“具結石粉碎分析功能之高效率震波產生器研究”,國立成功大學航空太空工程研究所,碩士論文,台南市,2003.

    下載圖示 校內:2005-07-08公開
    校外:2005-07-08公開
    QR CODE