| 研究生: |
瓦席瑪 Wafee, Seema |
|---|---|
| 論文名稱: |
反溶劑法應用於苯乙基銨 (PEA+) 準二維複合鈣鈦礦之探討 Investigation of anti-solvent methods for Phenethylammonium (PEA+)-based Quasi-2D hybrid perovskites, (PEA)2MAn-1PbnI3n+1), n = 5-3 |
| 指導教授: |
劉浩志
Liu, Bernard Haochih |
| 共同指導教授: |
呂正傑
Leu, Ching-Chich |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 227 |
| 中文關鍵詞: | 準二維有機鈣鈦礦 、反溶劑製程 、無反溶劑 、環境穩定性 、結晶性 、垂直取向 |
| 外文關鍵詞: | Quasi-2D perovskite , Anti-solvent process, Without anti-solvent, Environmental stability, Crystallinity, Vertical orientation |
| 相關次數: | 點閱:33 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] J.-a. Yang, T. Qin, L. Xie, K. Liao, T. Li, and F. Hao, “Methylamine-induced defect-healing and cationic substitution: a new method for low-defect perovskite thin films and solar cells,” Journal of Materials Chemistry C, vol. 7, no. 35, pp. 10724-10742, 2019.
[2] A. E. Magdalin, P. D. Nixon, E. Jayaseelan, M. Sivakumar, S. K. N. Devi, M. Subathra, N. M. Kumar, and N. Ananthi, “Development of lead-free perovskite solar cells: Opportunities, challenges, and future technologies,” Results in Engineering, pp. 101438, 2023.
[3] S. Ahmad, P. K. Kanaujia, H. J. Beeson, A. Abate, F. Deschler, D. Credgington, U. Steiner, G. V. Prakash, and J. J. Baumberg, “Strong photocurrent from two-dimensional excitons in solution-processed stacked perovskite semiconductor sheets,” ACS applied materials & interfaces, vol. 7, no. 45, pp. 25227-25236, 2015.
[4] Z. Yao, W. Wang, H. Shen, Y. Zhang, Q. Luo, X. Yin, X. Dai, J. Li, and H. Lin, “CH3NH3PbI3 grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition,” Science and Technology of advanced MaTerialS, vol. 18, no. 1, pp. 253-262, 2017.
[5] J. Han, X. Yin, H. Nan, Y. Zhou, Z. Yao, J. Li, D. Oron, and H. Lin, “Enhancing the performance of perovskite solar cells by hybridizing SnS quantum dots with CH3NH3PbI3,” Small, vol. 13, no. 32, pp. 1700953, 2017.
[6] X. Yin, Z. Yao, Q. Luo, X. Dai, Y. Zhou, Y. Zhang, Y. Zhou, S. Luo, J. Li, and N. Wang, “High efficiency inverted planar perovskite solar cells with solution-processed NiO x hole contact,” ACS applied materials & interfaces, vol. 9, no. 3, pp. 2439-2448, 2017.
[7] X. Zhao, H. Shen, C. Zhou, S. Lin, X. Li, X. Zhao, X. Deng, J. Li, and H. Lin, “Preparation of aluminum doped zinc oxide films with low resistivity and outstanding transparency by a sol–gel method for potential applications in perovskite solar cell,” Thin Solid Films, vol. 605, pp. 208-214, 2016.
[8] E. Li, Y. Guo, T. Liu, W. Hu, N. Wang, H. He, and H. Lin, “Preheating-assisted deposition of solution-processed perovskite layer for an efficiency-improved inverted planar composite heterojunction solar cell,” RSC advances, vol. 6, no. 37, pp. 30978-30985, 2016.
[9] Q. Luo, H. Ma, Y. Zhang, X. Yin, Z. Yao, N. Wang, J. Li, S. Fan, K. Jiang, and H. Lin, “Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells,” Journal of Materials Chemistry A, vol. 4, no. 15, pp. 5569-5577, 2016.
[10] X. Dai, Y. Zhang, H. Shen, Q. Luo, X. Zhao, J. Li, and H. Lin, “Working from both sides: composite metallic semitransparent top electrode for high performance perovskite solar cells,” ACS applied materials & interfaces, vol. 8, no. 7, pp. 4523-4531, 2016.
[11] Q. Luo, Y. Zhang, C. Liu, J. Li, N. Wang, and H. Lin, “Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells,” Journal of Materials Chemistry A, vol. 3, no. 31, pp. 15996-16004, 2015.
[12] M. Li, B. Jiao, Y. Peng, J. Zhou, L. Tan, N. Ren, Y. Ye, Y. Liu, Y. Yang, and Y. Chen, “High‐Efficiency Perovskite Solar Cells with Improved Interfacial Charge Extraction by Bridging Molecules,” Advanced Materials, vol. 36, no. 38, pp. 2406532, 2024.
[13] "NREL Best Research-Cell Efficiency chart " 26, 11, 2024, 2024; https://www.nrel.gov/pv/cell-efficiency.html.
[14] P. R. Varma, "Low-dimensional perovskites," Perovskite Photovoltaics, pp. 197-229: Elsevier, 2018.
[15] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nature photonics, vol. 8, no. 7, pp. 506-514, 2014.
[16] Z. Yi, N. H. Ladi, X. Shai, H. Li, Y. Shen, and M. Wang, “Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications?,” Nanoscale Advances, vol. 1, no. 4, pp. 1276-1289, 2019.
[17] V. M. Goldschmidt, “Die gesetze der krystallochemie,” Naturwissenschaften, vol. 14, no. 21, pp. 477-485, 1926.
[18] I. C. Ribeiro, P. I. R. Moraes, A. F. Bittencourt, and J. L. Da Silva, “Role of the Adsorption of Alkali Cations on Ultrathin n-Layers of Two-Dimensional Perovskites,” The Journal of Physical Chemistry C, vol. 127, no. 28, pp. 13667-13677, 2023.
[19] D. B. Mitzi, “Synthesis, structure, and properties of organic‐inorganic perovskites and related materials,” Progress in inorganic chemistry, pp. 1-121, 1999.
[20] C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, and A. J. Freeman, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection,” Crystal growth & design, vol. 13, no. 7, pp. 2722-2727, 2013.
[21] A. Poglitsch, and D. Weber, “Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy,” The Journal of chemical physics, vol. 87, no. 11, pp. 6373-6378, 1987.
[22] J. Kang, and L.-W. Wang, “High defect tolerance in lead halide perovskite CsPbBr3,” The journal of physical chemistry letters, vol. 8, no. 2, pp. 489-493, 2017.
[23] V. Sarritzu, N. Sestu, D. Marongiu, X. Chang, Q. Wang, S. Masi, S. Colella, A. Rizzo, A. Gocalinska, and E. Pelucchi, “Direct or indirect bandgap in hybrid lead halide perovskites?,” Advanced Optical Materials, vol. 6, no. 10, pp. 1701254, 2018.
[24] M. Ledinsky, T. Schönfeldová, J. Holovský, E. Aydin, Z. k. Hájková, L. Landová, N. Neyková, A. Fejfar, and S. De Wolf, “Temperature dependence of the urbach energy in lead iodide perovskites,” The journal of physical chemistry letters, vol. 10, no. 6, pp. 1368-1373, 2019.
[25] B. N. Ezealigo, A. C. Nwanya, S. Ezugwu, S. Offiah, D. Obi, R. U. Osuji, R. Bucher, M. Maaza, P. Ejikeme, and F. I. Ezema, “Method to control the optical properties: Band gap energy of mixed halide Organolead perovskites,” Arabian Journal of Chemistry, vol. 13, no. 1, pp. 988-997, 2020.
[26] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[27] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
[28] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J. E. Moser, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Scientific reports, vol. 2, no. 1, pp. 1-7, 2012.
[29] N. T. Energy, "Best research-cell efficiency chart," 2020.
[30] D. Zhou, T. Zhou, Y. Tian, X. Zhu, and Y. Tu, “Perovskite-based solar cells: materials, methods, and future perspectives,” Journal of Nanomaterials, vol. 2018, pp. 1-15, 2018.
[31] J. Jiao, C. Yang, Z. Wang, C. Yan, and C. Fang, “Solvent engineering for the formation of high-quality perovskite films: a review,” Results in Engineering, pp. 101158, 2023.
[32] J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue, X. Li, C.-C. Chueh, H.-L. Yip, Z. Zhu, and A. K. Jen, “Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base,” Nature communications, vol. 11, no. 1, pp. 177, 2020.
[33] H. J. Gogoi, and A. T. Mallajosyula, “Enhancing the switching performance of CH3NH3PbI3 memristors by the control of size and characterization parameters,” Advanced Electronic Materials, vol. 7, no. 11, pp. 2100472, 2021.
[34] R. Waser, and M. Aono, “Nanoionics-based resistive switching memories,” Nature materials, vol. 6, no. 11, pp. 833-840, 2007.
[35] H. Pagnia, and N. Sotnik, “Bistable switching in electroformed metal–insulator–metal devices,” physica status solidi (a), vol. 108, no. 1, pp. 11-65, 1988.
[36] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive switches for passive nanocrossbar memories,” Nature materials, vol. 9, no. 5, pp. 403-406, 2010.
[37] F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, “Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications,” Nanoscale research letters, vol. 15, pp. 1-26, 2020.
[38] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov, “Training and operation of an integrated neuromorphic network based on metal-oxide memristors,” Nature, vol. 521, no. 7550, pp. 61-64, 2015.
[39] H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J.-E. Kim, J. Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, and R. S. Ruoff, “Graphene oxide thin films for flexible nonvolatile memory applications,” Nano letters, vol. 10, no. 11, pp. 4381-4386, 2010.
[40] L. Liang, K. Li, C. Xiao, S. Fan, J. Liu, W. Zhang, W. Xu, W. Tong, J. Liao, and Y. Zhou, “Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device,” Journal of the American Chemical Society, vol. 137, no. 8, pp. 3102-3108, 2015.
[41] Z. Yan, and J.-M. Liu, “Resistance switching memory in perovskite oxides,” Annals of Physics, vol. 358, pp. 206-224, 2015.
[42] T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, “Organic nonvolatile memory transistors for flexible sensor arrays,” Science, vol. 326, no. 5959, pp. 1516-1519, 2009.
[43] X.-F. Cheng, X. Hou, W.-H. Qian, J.-H. He, Q.-F. Xu, H. Li, N.-J. Li, D.-Y. Chen, and J.-M. Lu, “Poly (3, 4-ethylenedioxythiophene)–Poly (styrenesulfonate) Interlayer Insertion Enables Organic Quaternary Memory,” ACS Applied Materials & Interfaces, vol. 9, no. 33, pp. 27847-27852, 2017.
[44] T. Roy, M. Tosun, J. S. Kang, A. B. Sachid, S. B. Desai, M. Hettick, C. C. Hu, and A. Javey, “Field-effect transistors built from all two-dimensional material components,” ACS nano, vol. 8, no. 6, pp. 6259-6264, 2014.
[45] W.-J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, and Y. Yan, “Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics,” Energy & Environmental Science, vol. 12, no. 2, pp. 442-462, 2019.
[46] A. Kumar, A. Kumar, and V. Krishnan, “Perovskite oxide based materials for energy and environment-oriented photocatalysis,” Acs catalysis, vol. 10, no. 17, pp. 10253-10315, 2020.
[47] C. Gu, and J.-S. Lee, “Flexible hybrid organic–inorganic perovskite memory,” ACS nano, vol. 10, no. 5, pp. 5413-5418, 2016.
[48] J. Choi, Q. V. Le, K. Hong, C. W. Moon, J. S. Han, K. C. Kwon, P.-R. Cha, Y. Kwon, S. Y. Kim, and H. W. Jang, “Enhanced endurance organolead halide perovskite resistive switching memories operable under an extremely low bending radius,” ACS applied materials & interfaces, vol. 9, no. 36, pp. 30764-30771, 2017.
[49] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science, vol. 342, no. 6156, pp. 341-344, 2013.
[50] L. Zhou, Z. Lin, Z. Ning, T. Li, X. Guo, J. Ma, J. Su, C. Zhang, J. Zhang, and S. Liu, “Highly efficient and stable planar perovskite solar cells with modulated diffusion passivation toward high power conversion efficiency and ultrahigh fill factor,” Solar RRL, vol. 3, no. 11, pp. 1900293, 2019.
[51] A. Solanki, S. S. Lim, S. Mhaisalkar, and T. C. Sum, “Role of water in suppressing recombination pathways in CH3NH3PbI3 perovskite solar cells,” ACS Applied Materials & Interfaces, vol. 11, no. 28, pp. 25474-25482, 2019.
[52] F. Yan, S. T. Tan, X. Li, and H. V. Demir, “Light generation in lead halide perovskite nanocrystals: LEDs, color converters, lasers, and other applications,” Small, vol. 15, no. 47, pp. 1902079, 2019.
[53] Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng, and Z. Liang, “2D Ruddlesden–Popper perovskites for optoelectronics,” Advanced Materials, vol. 30, no. 2, pp. 1703487, 2018.
[54] J. Calabrese, N. Jones, R. Harlow, N. Herron, D. Thorn, and Y. Wang, “Preparation and characterization of layered lead halide compounds,” Journal of the American Chemical Society, vol. 113, no. 6, pp. 2328-2330, 1991.
[55] J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala, R. H. Friend, H. Yang, and T.-W. Lee, “Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes,” Advanced Materials (Deerfield Beach, Fla.), vol. 28, no. 34, pp. 7515-7520, 2016.
[56] X. Zhang, G. Wu, W. Fu, M. Qin, W. Yang, J. Yan, Z. Zhang, X. Lu, and H. Chen, “Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%,” Advanced Energy Materials, vol. 8, no. 14, pp. 1702498, 2018.
[57] L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, and A. Amassian, “Ligand-stabilized reduced-dimensionality perovskites,” Journal of the American Chemical Society, vol. 138, no. 8, pp. 2649-2655, 2016.
[58] D. Bi, P. Gao, R. Scopelliti, E. Oveisi, J. Luo, M. Grätzel, A. Hagfeldt, and M. K. Nazeeruddin, “High‐performance perovskite solar cells with enhanced environmental stability based on amphiphile‐modified CH3NH3PbI3,” Advanced Materials, vol. 28, no. 15, pp. 2910-2915, 2016.
[59] N. Li, Z. Zhu, Q. Dong, J. Li, Z. Yang, C. C. Chueh, A. K. Y. Jen, and L. Wang, “Enhanced moisture stability of cesium‐containing compositional perovskites by a feasible interfacial engineering,” Advanced Materials Interfaces, vol. 4, no. 20, pp. 1700598, 2017.
[60] F. Zhang, D. H. Kim, and K. Zhu, “3D/2D multidimensional perovskites: balance of high performance and stability for perovskite solar cells,” Current Opinion in Electrochemistry, vol. 11, pp. 105-113, 2018.
[61] M. Rahil, P. Rajput, D. Ghosh, and S. Ahmad, “Highly tunable single-phase excitons in mixed halide layered perovskites,” ACS Applied Electronic Materials, vol. 2, no. 10, pp. 3199-3210, 2020.
[62] J. V. Passarelli, C. M. Mauck, S. W. Winslow, C. F. Perkinson, J. C. Bard, H. Sai, K. W. Williams, A. Narayanan, D. J. Fairfield, and M. P. Hendricks, “Tunable exciton binding energy in 2D hybrid layered perovskites through donor–acceptor interactions within the organic layer,” Nature chemistry, vol. 12, no. 8, pp. 672-682, 2020.
[63] I. C. Smith, E. T. Hoke, D. Solis‐Ibarra, M. D. McGehee, and H. I. Karunadasa, “A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability,” Angewandte Chemie International Edition, vol. 53, no. 42, pp. 11232-11235, 2014.
[64] D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, “2D homologous perovskites as light-absorbing materials for solar cell applications,” Journal of the American Chemical Society, vol. 137, no. 24, pp. 7843-7850, 2015.
[65] W. Fu, J. Wang, L. Zuo, K. Gao, F. Liu, D. S. Ginger, and A. K.-Y. Jen, “Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency,” ACS Energy Letters, vol. 3, no. 9, pp. 2086-2093, 2018.
[66] J. Qing, X. K. Liu, M. Li, F. Liu, Z. Yuan, E. Tiukalova, Z. Yan, M. Duchamp, S. Chen, and Y. Wang, “Aligned and graded type‐II Ruddlesden–Popper perovskite films for efficient solar cells,” Advanced Energy Materials, vol. 8, no. 21, pp. 1800185, 2018.
[67] J. Rodríguez-Romero, B. C. Hames, I. n. Mora-Seró, and E. M. Barea, “Conjugated organic cations to improve the optoelectronic properties of 2D/3D perovskites,” ACS Energy Letters, vol. 2, no. 9, pp. 1969-1970, 2017.
[68] C. M. M. Soe, C. C. Stoumpos, M. Kepenekian, B. Traoré, H. Tsai, W. Nie, B. Wang, C. Katan, R. Seshadri, and A. D. Mohite, “New type of 2D perovskites with alternating cations in the interlayer space,(C (NH2) 3)(CH3NH3) n Pb n I3 n+ 1: Structure, properties, and photovoltaic performance,” Journal of the American Chemical Society, vol. 139, no. 45, pp. 16297-16309, 2017.
[69] B. E. Cohen, M. Wierzbowska, and L. Etgar, “High efficiency and high open circuit voltage in quasi 2D perovskite based solar cells,” Advanced Functional Materials, vol. 27, no. 5, pp. 1604733, 2017.
[70] J. Shi, Y. Gao, X. Gao, Y. Zhang, J. Zhang, X. Jing, and M. Shao, “Fluorinated low‐dimensional Ruddlesden–Popper perovskite solar cells with over 17% power conversion efficiency and improved stability,” Advanced Materials, vol. 31, no. 37, pp. 1901673, 2019.
[71] H. Pan, X. Zhao, X. Gong, Y. Shen, and M. Wang, “Atomic-scale tailoring of organic cation of layered Ruddlesden–Popper perovskite compounds,” The Journal of Physical Chemistry Letters, vol. 10, no. 8, pp. 1813-1819, 2019.
[72] Y. Jiang, J. Yuan, Y. Ni, J. Yang, Y. Wang, T. Jiu, M. Yuan, and J. Chen, “Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics,” Joule, vol. 2, no. 7, pp. 1356-1368, 2018.
[73] J. Hu, I. W. Oswald, S. J. Stuard, M. M. Nahid, N. Zhou, O. F. Williams, Z. Guo, L. Yan, H. Hu, and Z. Chen, “Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites,” Nature communications, vol. 10, no. 1, pp. 1276, 2019.
[74] X. Gan, O. Wang, K. Liu, X. Du, L. Guo, and H. Liu, “2D homologous organic-inorganic hybrids as light-absorbers for planer and nanorod-based perovskite solar cells,” Solar Energy Materials and Solar Cells, vol. 162, pp. 93-102, 2017.
[75] F. Wang, X. Jiang, H. Chen, Y. Shang, H. Liu, J. Wei, W. Zhou, H. He, W. Liu, and Z. Ning, “2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability,” Joule, vol. 2, no. 12, pp. 2732-2743, 2018.
[76] A. H. Proppe, R. Quintero-Bermudez, H. Tan, O. Voznyy, S. O. Kelley, and E. H. Sargent, “Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics,” Journal of the American Chemical Society, vol. 140, no. 8, pp. 2890-2896, 2018.
[77] W. Fu, H. Liu, X. Shi, L. Zuo, X. Li, and A. K. Y. Jen, “Tailoring the functionality of organic spacer cations for efficient and stable quasi‐2D perovskite solar cells,” Advanced Functional Materials, vol. 29, no. 25, pp. 1900221, 2019.
[78] F. Zhang, D. H. Kim, H. Lu, J.-S. Park, B. W. Larson, J. Hu, L. Gao, C. Xiao, O. G. Reid, and X. Chen, “Enhanced charge transport in 2D perovskites via fluorination of organic cation,” Journal of the American Chemical Society, vol. 141, no. 14, pp. 5972-5979, 2019.
[79] X. Wang, K. Rakstys, K. Jack, H. Jin, J. Lai, H. Li, C. S. K. Ranasinghe, J. Saghaei, G. Zhang, and P. L. Burn, “Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of> 21% and improved stability towards humidity,” Nature communications, vol. 12, no. 1, pp. 52, 2021.
[80] X. Lian, J. Chen, M. Qin, Y. Zhang, S. Tian, X. Lu, G. Wu, and H. Chen, “The second spacer cation assisted growth of a 2D perovskite film with oriented large grain for highly efficient and stable solar cells,” Angewandte Chemie, vol. 131, no. 28, pp. 9509-9513, 2019.
[81] H. Zheng, T. Zhang, Y. Wang, C. Li, Z. Su, Z. Wang, H. Chen, S. Yuan, Y. Gu, and L. Ji, “Zwitterion-Assisted Crystal Growth of 2D Perovskites with Unfavorable Phase Suppression for High-Performance Solar Cells,” ACS Applied Materials & Interfaces, vol. 14, no. 1, pp. 814-825, 2021.
[82] Y. Yang, C. Liu, O. A. Syzgantseva, M. A. Syzgantseva, S. Ma, Y. Ding, M. Cai, X. Liu, S. Dai, and M. K. Nazeeruddin, “Defect suppression in oriented 2D perovskite solar cells with efficiency over 18% via rerouting crystallization pathway,” Advanced Energy Materials, vol. 11, no. 1, pp. 2002966, 2021.
[83] R. Quintero-Bermudez, A. Gold-Parker, A. H. Proppe, R. Munir, Z. Yang, S. O. Kelley, A. Amassian, M. F. Toney, and E. H. Sargent, “Compositional and orientational control in metal halide perovskites of reduced dimensionality,” Nature materials, vol. 17, no. 10, pp. 900-907, 2018.
[84] Z. Wang, Q. Wei, X. Liu, L. Liu, X. Tang, J. Guo, S. Ren, G. Xing, D. Zhao, and Y. Zheng, “Spacer cation tuning enables vertically oriented and graded quasi‐2D perovskites for efficient solar cells,” Advanced Functional Materials, vol. 31, no. 5, pp. 2008404, 2021.
[85] Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, and L. N. Quan, “Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance,” Journal of the American Chemical Society, vol. 139, no. 19, pp. 6693-6699, 2017.
[86] J. Shi, X. Jin, Y. Wu, and M. Shao, “Mixed bulky cations for efficient and stable Ruddlesden− Popper perovskite solar cells,” APL Materials, vol. 8, no. 10, 2020.
[87] R. Yang, R. Li, Y. Cao, Y. Wei, Y. Miao, W. L. Tan, X. Jiao, H. Chen, L. Zhang, and Q. Chen, “Oriented quasi‐2D perovskites for high performance optoelectronic devices,” Advanced Materials, vol. 30, no. 51, pp. 1804771, 2018.
[88] Y. Bai, S. Xiao, C. Hu, T. Zhang, X. Meng, H. Lin, Y. Yang, and S. Yang, “Dimensional engineering of a graded 3D–2D halide perovskite interface enables ultrahigh Voc enhanced stability in the p‐i‐n photovoltaics,” Advanced Energy Materials, vol. 7, no. 20, pp. 1701038, 2017.
[89] H.-S. Yoo, and N.-G. Park, “Post-treatment of perovskite film with phenylalkylammonium iodide for hysteresis-less perovskite solar cells,” Solar Energy Materials and Solar Cells, vol. 179, pp. 57-65, 2018.
[90] Q. Zhou, L. Liang, J. Hu, B. Cao, L. Yang, T. Wu, X. Li, B. Zhang, and P. Gao, “High‐performance perovskite solar cells with enhanced environmental stability based on a (p‐FC6H4C2H4NH3) 2 [PbI4] capping layer,” Advanced Energy Materials, vol. 9, no. 12, pp. 1802595, 2019.
[91] P. Chen, Y. Bai, S. Wang, M. Lyu, J. H. Yun, and L. Wang, “In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells,” Advanced Functional Materials, vol. 28, no. 17, pp. 1706923, 2018.
[92] J.-Y. Seo, J. Choi, H.-S. Kim, J. Kim, J.-M. Yang, C. Cuhadar, J. S. Han, S.-J. Kim, D. Lee, and H. W. Jang, “Wafer-scale reliable switching memory based on 2-dimensional layered organic–inorganic halide perovskite,” Nanoscale, vol. 9, no. 40, pp. 15278-15285, 2017.
[93] H. Tian, L. Zhao, X. Wang, Y.-W. Yeh, N. Yao, B. P. Rand, and T.-L. Ren, “Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing,” Acs Nano, vol. 11, no. 12, pp. 12247-12256, 2017.
[94] A. Solanki, A. Guerrero, Q. Zhang, J. Bisquert, and T. C. Sum, “Interfacial mechanism for efficient resistive switching in Ruddlesden–Popper perovskites for non-volatile memories,” The Journal of Physical Chemistry Letters, vol. 11, no. 2, pp. 463-470, 2019.
[95] H. Kim, M.-J. Choi, J. M. Suh, J. S. Han, S. G. Kim, Q. V. Le, S. Y. Kim, and H. W. Jang, “Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109,” NPG Asia Materials, vol. 12, no. 1, pp. 21, 2020.
[96] H. Kim, K. A. Huynh, S. Y. Kim, Q. V. Le, and H. W. Jang, “2D and quasi‐2D halide perovskites: applications and progress,” physica status solidi (RRL)–Rapid Research Letters, vol. 14, no. 2, pp. 1900435, 2020.
[97] Z. Liu, H. Tang, P. Cheng, R. Kang, J. Zhou, X. Zhao, J. Zhao, and Z. Zuo, “High‐Performance and Environmentally Robust Multilevel Lead‐Free Organotin Halide Perovskite Memristors,” Advanced Electronic Materials, vol. 9, no. 1, pp. 2201005, 2023.
[98] M. Patel, D. D. Kumbhar, J. Gosai, M. R. Sekhar, A. T. Mallajosyula, and A. Solanki, “Hybrid Perovskite‐Based Flexible and Stable Memristor by Complete Solution Process for Neuromorphic Computing,” Advanced Electronic Materials, vol. 9, no. 4, pp. 2200908, 2023.
[99] P. Ushasree, and B. Bora, “Silicon Solar Cells,” 2019.
[100] L. Meng, J. You, and Y. Yang, “Addressing the stability issue of perovskite solar cells for commercial applications,” Nature communications, vol. 9, no. 1, pp. 1-4, 2018.
[101] Q.-Q. Ge, J. Ding, J. Liu, J.-Y. Ma, Y.-X. Chen, X.-X. Gao, L.-J. Wan, and J.-S. Hu, “Promoting crystalline grain growth and healing pinholes by water vapor modulated post-annealing for enhancing the efficiency of planar perovskite solar cells,” Journal of Materials Chemistry A, vol. 4, no. 35, pp. 13458-13467, 2016.
[102] M. L. Agiorgousis, Y.-Y. Sun, H. Zeng, and S. Zhang, “Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3,” Journal of the American Chemical Society, vol. 136, no. 41, pp. 14570-14575, 2014.
[103] K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu, and J. J. Berry, “Defect tolerance in methylammonium lead triiodide perovskite,” ACS Energy Letters, vol. 1, no. 2, pp. 360-366, 2016.
[104] J. Kim, S.-H. Lee, J. H. Lee, and K.-H. Hong, “The role of intrinsic defects in methylammonium lead iodide perovskite,” The journal of physical chemistry letters, vol. 5, no. 8, pp. 1312-1317, 2014.
[105] H. Uratani, and K. Yamashita, “Charge carrier trapping at surface defects of perovskite solar cell absorbers: a first-principles study,” The journal of physical chemistry letters, vol. 8, no. 4, pp. 742-746, 2017.
[106] Z. Liu, J. Hu, H. Jiao, L. Li, G. Zheng, Y. Chen, Y. Huang, Q. Zhang, C. Shen, and Q. Chen, “Chemical reduction of intrinsic defects in thicker heterojunction planar perovskite solar cells,” Advanced Materials, vol. 29, no. 23, pp. 1606774, 2017.
[107] Y. Kato, L. K. Ono, M. V. Lee, S. Wang, S. R. Raga, and Y. Qi, “Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes,” Advanced Materials Interfaces, vol. 2, no. 13, pp. 1500195, 2015.
[108] B. Chen, P. N. Rudd, S. Yang, Y. Yuan, and J. Huang, “Imperfections and their passivation in halide perovskite solar cells,” Chemical Society Reviews, vol. 48, no. 14, pp. 3842-3867, 2019.
[109] G. J. A. Wetzelaer, M. Scheepers, A. M. Sempere, C. Momblona, J. Ávila, and H. J. Bolink, “Trap‐assisted non‐radiative recombination in organic–inorganic perovskite solar cells,” Advanced Materials, vol. 27, no. 11, pp. 1837-1841, 2015.
[110] Q. Wang, B. Chen, Y. Liu, Y. Deng, Y. Bai, Q. Dong, and J. Huang, “Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films,” Energy & Environmental Science, vol. 10, no. 2, pp. 516-522, 2017.
[111] M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, and A. Geddo Lehmann, “Correlated electron–hole plasma in organometal perovskites,” Nature communications, vol. 5, no. 1, pp. 5049, 2014.
[112] W.-J. Yin, T. Shi, and Y. Yan, “Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber,” Applied Physics Letters, vol. 104, no. 6, 2014.
[113] P. Umari, E. Mosconi, and F. De Angelis, “Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications,” Scientific reports, vol. 4, no. 1, pp. 4467, 2014.
[114] G. W. Kim, and A. Petrozza, “Defect tolerance and intolerance in metal‐halide perovskites,” Advanced Energy Materials, vol. 10, no. 37, pp. 2001959, 2020.
[115] Y. Zhao, Q. Ye, Z. Chu, F. Gao, X. Zhang, and J. You, “Recent progress in high‐efficiency planar‐structure perovskite solar cells,” Energy & Environmental Materials, vol. 2, no. 2, pp. 93-106, 2019.
[116] F. Zhang, D. Bi, N. Pellet, C. Xiao, Z. Li, J. J. Berry, S. M. Zakeeruddin, K. Zhu, and M. Grätzel, “Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells,” Energy & Environmental Science, vol. 11, no. 12, pp. 3480-3490, 2018.
[117] S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X. C. Zeng, and J. Huang, “Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells,” Journal of the American Chemical Society, vol. 141, no. 14, pp. 5781-5787, 2019.
[118] J. Chen, S.-G. Kim, X. Ren, H. S. Jung, and N.-G. Park, “Effect of bidentate and tridentate additives on the photovoltaic performance and stability of perovskite solar cells,” Journal of Materials Chemistry A, vol. 7, no. 9, pp. 4977-4987, 2019.
[119] S. Wafee, B. H. Liu, and C.-C. Leu, “Lewis bases: promising additives for enhanced performance of perovskite solar cells,” Materials Today Energy, vol. 22, pp. 100847, 2021.
[120] S. Wang, A. Wang, X. Deng, L. Xie, A. Xiao, C. Li, Y. Xiang, T. Li, L. Ding, and F. Hao, “Lewis acid/base approach for efficacious defect passivation in perovskite solar cells,” Journal of Materials Chemistry A, vol. 8, no. 25, pp. 12201-12225, 2020.
[121] S. Chen, X. Zhang, J. Zhao, Y. Zhang, G. Kong, Q. Li, N. Li, Y. Yu, N. Xu, and J. Zhang, “Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite,” Nature communications, vol. 9, no. 1, pp. 1-8, 2018.
[122] G. Divitini, S. Cacovich, F. Matteocci, L. Cinà, A. Di Carlo, and C. Ducati, “In situ observation of heat-induced degradation of perovskite solar cells,” Nature Energy, vol. 1, no. 2, pp. 1-6, 2016.
[123] S. Fu, X. Li, L. Wan, Y. Wu, W. Zhang, Y. Wang, Q. Bao, and J. Fang, “Efficient Passivation with Lead Pyridine‐2‐Carboxylic for High‐Performance and Stable Perovskite Solar Cells,” Advanced Energy Materials, vol. 9, no. 35, pp. 1901852, 2019.
[124] H. Zhang, X. Ren, X. Chen, J. Mao, J. Cheng, Y. Zhao, Y. Liu, J. Milic, W.-J. Yin, and M. Grätzel, “Improving the stability and performance of perovskite solar cells via off-the-shelf post-device ligand treatment,” Energy & Environmental Science, vol. 11, no. 8, pp. 2253-2262, 2018.
[125] H. Yang, S. Cong, Y. Lou, L. Han, J. Zhao, Y. Sun, and G. Zou, “Organic–inorganic hybrid interfacial layer for high-performance planar perovskite solar cells,” ACS applied materials & interfaces, vol. 9, no. 37, pp. 31746-31751, 2017.
[126] S.-C. Yun, S. Ma, H.-C. Kwon, K. Kim, G. Jang, H. Yang, and J. Moon, “Amino acid salt-driven planar hybrid perovskite solar cells with enhanced humidity stability,” Nano Energy, vol. 59, pp. 481-491, 2019.
[127] N. Wei, Y. Miao, X. Wang, Z. Qin, X. Liu, H. Chen, H. Wang, Y. Liang, S. Wang, and Y. Zhao, “Post-Treatment-Free Dual-Interface Passivation via Facile 1D/3D Perovskite Heterojunction Construction,” JACS Au, 2023.
[128] Y. Hu, J. Schlipf, M. Wussler, M. L. Petrus, W. Jaegermann, T. Bein, P. Müller-Buschbaum, and P. Docampo, “Hybrid perovskite/perovskite heterojunction solar cells,” ACS nano, vol. 10, no. 6, pp. 5999-6007, 2016.
[129] Y. Lin, Y. Bai, Y. Fang, Z. Chen, S. Yang, X. Zheng, S. Tang, Y. Liu, J. Zhao, and J. Huang, “Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures,” The journal of physical chemistry letters, vol. 9, no. 3, pp. 654-658, 2018.
[130] Z. Wang, Q. Lin, F. P. Chmiel, N. Sakai, L. M. Herz, and H. J. Snaith, “Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites,” Nature Energy, vol. 2, no. 9, pp. 1-10, 2017.
[131] F. Zhang, H. Lu, B. W. Larson, C. Xiao, S. P. Dunfield, O. G. Reid, X. Chen, M. Yang, J. J. Berry, and M. C. Beard, “Surface lattice engineering through three-dimensional lead iodide perovskitoid for high-performance perovskite solar cells,” Chem, vol. 7, no. 3, pp. 774-785, 2021.
[132] C. Yang, H. Wang, Y. Miao, C. Chen, M. Zhai, Q. Bao, X. Ding, X. Yang, and M. Cheng, “Interfacial molecular doping and energy level alignment regulation for perovskite solar cells with efficiency exceeding 23%,” ACS Energy Letters, vol. 6, no. 8, pp. 2690-2696, 2021.
[133] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, and A. Hagfeldt, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy & environmental science, vol. 9, no. 6, pp. 1989-1997, 2016.
[134] M. Abdi-Jalebi, M. Pazoki, B. Philippe, M. I. Dar, M. Alsari, A. Sadhanala, G. Divitini, R. Imani, S. Lilliu, and J. Kullgren, “Dedoping of lead halide perovskites incorporating monovalent cations,” Acs Nano, vol. 12, no. 7, pp. 7301-7311, 2018.
[135] R. Chen, D. Hou, C. Lu, J. Zhang, P. Liu, H. Tian, Z. Zeng, Q. Xiong, Z. Hu, and Y. Zhu, “Zinc ion as effective film morphology controller in perovskite solar cells,” Sustainable Energy & Fuels, vol. 2, no. 5, pp. 1093-1100, 2018.
[136] R. Brakkee, and R. M. Williams, “Minimizing defect states in lead halide perovskite solar cell materials,” Applied Sciences, vol. 10, no. 9, pp. 3061, 2020.
[137] A. R. Bowman, M. T. Klug, T. A. Doherty, M. D. Farrar, S. P. Senanayak, B. Wenger, G. Divitini, E. P. Booker, Z. Andaji-Garmaroudi, and S. Macpherson, “Microsecond carrier lifetimes, controlled p-doping, and enhanced air stability in low-bandgap metal halide perovskites,” ACS Energy Letters, vol. 4, no. 9, pp. 2301-2307, 2019.
[138] M. I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan, G. Long, F. Tan, A. Johnston, Y. Zhao, and O. Voznyy, “Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air,” Nature Energy, vol. 3, no. 8, pp. 648-654, 2018.
[139] Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, and K. Zhu, “Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys,” Chemistry of Materials, vol. 28, no. 1, pp. 284-292, 2016.
[140] A. Zohar, I. Levine, S. Gupta, O. Davidson, D. Azulay, O. Millo, I. Balberg, G. Hodes, and D. Cahen, “What is the mechanism of MAPbI3 p-doping by I2? Insights from optoelectronic properties,” ACS Energy Letters, vol. 2, no. 10, pp. 2408-2414, 2017.
[141] A. Szemjonov, K. Galkowski, M. Anaya, Z. Andaji-Garmaroudi, T. K. Baikie, S. Mackowski, I. D. Baikie, S. D. Stranks, and M. S. Islam, “Impact of oxygen on the electronic structure of triple-cation halide perovskites,” ACS Materials Letters, vol. 1, no. 5, pp. 506-510, 2019.
[142] X. Wang, D. Liu, R. Liu, X. Du, B. Zhang, X. Sun, C. Chen, Z. Li, Q. Zhao, and Z. Shao, “PbI6 Octahedra Stabilization Strategy Based on π‐π Stacking Small Molecule Toward Highly Efficient and Stable Perovskite Solar Cells,” Advanced Energy Materials, vol. 13, no. 11, pp. 2203635, 2023.
[143] D. Pérez‐del‐Rey, D. Forgács, E. M. Hutter, T. J. Savenije, D. Nordlund, P. Schulz, J. J. Berry, M. Sessolo, and H. J. Bolink, “Strontium insertion in methylammonium lead iodide: long charge carrier lifetime and high fill‐factor solar cells,” Advanced Materials, vol. 28, no. 44, pp. 9839-9845, 2016.
[144] H. Zhang, M.-h. Shang, X. Zheng, Z. Zeng, R. Chen, Y. Zhang, J. Zhang, and Y. Zhu, “Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells,” Electrochimica Acta, vol. 254, pp. 165-171, 2017.
[145] O. A. Lozhkina, A. A. Murashkina, V. V. Shilovskikh, Y. V. Kapitonov, V. K. Ryabchuk, A. V. Emeline, and T. Miyasaka, “Invalidity of band-gap engineering concept for Bi3+ heterovalent doping in CsPbBr3 halide perovskite,” The journal of physical chemistry letters, vol. 9, no. 18, pp. 5408-5411, 2018.
[146] J. T.-W. Wang, Z. Wang, S. Pathak, W. Zhang, D. W. deQuilettes, F. Wisnivesky-Rocca-Rivarola, J. Huang, P. K. Nayak, J. B. Patel, and H. A. M. Yusof, “Efficient perovskite solar cells by metal ion doping,” Energy & Environmental Science, vol. 9, no. 9, pp. 2892-2901, 2016.
[147] S. Zou, G. Yang, T. Yang, D. Zhao, Z. Gan, W. Chen, H. Zhong, X. Wen, B. Jia, and B. Zou, “Template-free synthesis of high-yield Fe-doped cesium lead halide perovskite ultralong microwires with enhanced two-photon absorption,” The Journal of Physical Chemistry Letters, vol. 9, no. 17, pp. 4878-4885, 2018.
[148] Q. Zhang, F. Hao, J. Li, Y. Zhou, Y. Wei, and H. Lin, “Perovskite solar cells: must lead be replaced–and can it be done?,” Science and Technology of advanced MaTerialS, vol. 19, no. 1, pp. 425-442, 2018.
[149] M. Shao, T. Bie, L. Yang, Y. Gao, X. Jin, F. He, N. Zheng, Y. Yu, and X. Zhang, “Over 21% efficiency stable 2D perovskite solar cells,” Advanced Materials, vol. 34, no. 1, pp. 2107211, 2022.
[150] S. M. Yoon, H. Min, J. B. Kim, G. Kim, K. S. Lee, and S. I. Seok, “Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells,” Joule, vol. 5, no. 1, pp. 183-196, 2021.
[151] S. Tan, B. Yu, Y. Cui, F. Meng, C. Huang, Y. Li, Z. Chen, H. Wu, J. Shi, and Y. Luo, “Temperature‐Reliable Low‐Dimensional Perovskites Passivated Black‐Phase CsPbI3 toward Stable and Efficient Photovoltaics,” Angewandte Chemie International Edition, vol. 61, no. 23, pp. e202201300, 2022.
[152] Y. Qiu, J. Liang, Z. Zhang, Z. Deng, H. Xu, M. He, J. Wang, Y. Yang, L. Kong, and C.-C. Chen, “Tuning the interfacial dipole moment of spacer cations for charge extraction in efficient and ultrastable perovskite solar cells,” The Journal of Physical Chemistry C, vol. 125, no. 2, pp. 1256-1268, 2021.
[153] X. Li, W. Ke, B. Traoré, P. Guo, I. Hadar, M. Kepenekian, J. Even, C. Katan, C. C. Stoumpos, and R. D. Schaller, “Two-dimensional Dion–Jacobson hybrid lead iodide perovskites with aromatic diammonium cations,” Journal of the American Chemical Society, vol. 141, no. 32, pp. 12880-12890, 2019.
[154] C. Ortiz‐Cervantes, P. Carmona‐Monroy, and D. Solis‐Ibarra, “Two‐dimensional halide perovskites in solar cells: 2D or not 2D?,” ChemSusChem, vol. 12, no. 8, pp. 1560-1575, 2019.
[155] Z. Cheng, and J. Lin, “Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering,” CrystEngComm, vol. 12, no. 10, pp. 2646-2662, 2010.
[156] L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, A. Fu, C. G. Bischak, J. Ma, and T. Ding, “Atomically thin two-dimensional organic-inorganic hybrid perovskites,” Science, vol. 349, no. 6255, pp. 1518-1521, 2015.
[157] H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, and S. Tretiak, “High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells,” Nature, vol. 536, no. 7616, pp. 312-316, 2016.
[158] L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan, J. Even, M. R. Wasielewski, C. C. Stoumpos, and M. G. Kanatzidis, “Hybrid Dion–Jacobson 2D lead iodide perovskites,” Journal of the American Chemical Society, vol. 140, no. 10, pp. 3775-3783, 2018.
[159] H. Tsai, R. Asadpour, J.-C. Blancon, C. C. Stoumpos, J. Even, P. M. Ajayan, M. G. Kanatzidis, M. A. Alam, A. D. Mohite, and W. Nie, “Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells,” Nature communications, vol. 9, no. 1, pp. 2130, 2018.
[160] X. Hong, T. Ishihara, and A. Nurmikko, “Dielectric confinement effect on excitons in PbI 4-based layered semiconductors,” Physical Review B, vol. 45, no. 12, pp. 6961, 1992.
[161] D. B. Mitzi, K. Chondroudis, and C. R. Kagan, “Organic-inorganic electronics,” IBM journal of research and development, vol. 45, no. 1, pp. 29-45, 2001.
[162] J. Even, L. Pedesseau, and C. Katan, “Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites,” ChemPhysChem, vol. 15, no. 17, pp. 3733-3741, 2014.
[163] D. Sapori, M. Kepenekian, L. Pedesseau, C. Katan, and J. Even, “Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic–inorganic perovskites,” Nanoscale, vol. 8, no. 12, pp. 6369-6378, 2016.
[164] X. Hong, T. Ishihara, and A. Nurmikko, “Photoconductivity and electroluminescence in lead iodide based natural quantum well structures,” Solid state communications, vol. 84, no. 6, pp. 657-661, 1992.
[165] C. M. M. Soe, G. Nagabhushana, R. Shivaramaiah, H. Tsai, W. Nie, J.-C. Blancon, F. Melkonyan, D. H. Cao, B. Traoré, and L. Pedesseau, “Structural and thermodynamic limits of layer thickness in 2D halide perovskites,” Proceedings of the National Academy of Sciences, vol. 116, no. 1, pp. 58-66, 2019.
[166] X. Li, J. M. Hoffman, and M. G. Kanatzidis, “The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency,” Chemical reviews, vol. 121, no. 4, pp. 2230-2291, 2021.
[167] Y. Li, J. Wu, Y. Zhang, L. Zhang, X. Zhou, B. Hu, Z. Jiang, J. Zeng, D. Wang, and Y. Liu, “Whether organic spacer cations induced 2D/3D or quasi-2D/3D mixed dimensional perovskites?,” Chemical Engineering Journal, vol. 450, pp. 137887, 2022.
[168] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, and H. Uzu, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nature energy, vol. 2, no. 5, pp. 1-8, 2017.
[169] X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, and J. Huang, “Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations,” Nature Energy, vol. 2, no. 7, pp. 1-9, 2017.
[170] K. T. Cho, G. Grancini, Y. Lee, E. Oveisi, J. Ryu, O. Almora, M. Tschumi, P. A. Schouwink, G. Seo, and S. Heo, “Selective growth of layered perovskites for stable and efficient photovoltaics,” Energy & Environmental Science, vol. 11, no. 4, pp. 952-959, 2018.
[171] T. Niu, J. Lu, X. Jia, Z. Xu, M.-c. Tang, D. Barrit, N. Yuan, J. Ding, X. Zhang, and Y. Fan, “Interfacial engineering at the 2D/3D heterojunction for high-performance perovskite solar cells,” Nano letters, vol. 19, no. 10, pp. 7181-7190, 2019.
[172] Y.-W. Jang, S. Lee, K. M. Yeom, K. Jeong, K. Choi, M. Choi, and J. H. Noh, “Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth,” Nature Energy, vol. 6, no. 1, pp. 63-71, 2021.
[173] M. Wei, K. Xiao, G. Walters, R. Lin, Y. Zhao, M. I. Saidaminov, P. Todorović, A. Johnston, Z. Huang, and H. Chen, “Combining efficiency and stability in mixed tin–lead perovskite solar cells by capping grains with an ultrathin 2D layer,” Advanced Materials, vol. 32, no. 12, pp. 1907058, 2020.
[174] G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, and M. Graetzel, “One-Year stable perovskite solar cells by 2D/3D interface engineering,” Nature communications, vol. 8, no. 1, pp. 15684, 2017.
[175] J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang, S.-J. Lee, N. De Marco, H. Zhao, P. Sun, and Y. Huang, “2D perovskite stabilized phase-pure formamidinium perovskite solar cells,” Nature communications, vol. 9, no. 1, pp. 3021, 2018.
[176] R. Quintero-Bermudez, A. H. Proppe, A. Mahata, P. Todorović́, S. O. Kelley, F. De Angelis, and E. H. Sargent, “Ligand-induced surface charge density modulation generates local type-II band alignment in reduced-dimensional perovskites,” Journal of the American Chemical Society, vol. 141, no. 34, pp. 13459-13467, 2019.
[177] A. Mahata, E. Mosconi, D. Meggiolaro, and F. De Angelis, “Modulating band alignment in mixed dimensionality 3D/2D perovskites by surface termination ligand engineering,” Chemistry of Materials, vol. 32, no. 1, pp. 105-113, 2019.
[178] A. H. Proppe, A. Johnston, S. Teale, A. Mahata, R. Quintero-Bermudez, E. H. Jung, L. Grater, T. Cui, T. Filleter, and C.-Y. Kim, “Multication perovskite 2D/3D interfaces form via progressive dimensional reduction,” Nature communications, vol. 12, no. 1, pp. 3472, 2021.
[179] Z. Liu, K. Meng, X. Wang, Z. Qiao, Q. Xu, S. Li, L. Cheng, Z. Li, and G. Chen, “In situ observation of vapor-assisted 2D–3D heterostructure formation for stable and efficient perovskite solar cells,” Nano Letters, vol. 20, no. 2, pp. 1296-1304, 2020.
[180] J.-C. Blancon, J. Even, C. C. Stoumpos, M. G. Kanatzidis, and A. D. Mohite, “Semiconductor physics of organic–inorganic 2D halide perovskites,” Nature nanotechnology, vol. 15, no. 12, pp. 969-985, 2020.
[181] P. Liu, N. Han, W. Wang, R. Ran, W. Zhou, and Z. Shao, “High‐quality Ruddlesden–Popper perovskite film formation for high‐performance perovskite solar cells,” Advanced Materials, vol. 33, no. 10, pp. 2002582, 2021.
[182] S. Sidhik, W. Li, M. H. Samani, H. Zhang, Y. Wang, J. Hoffman, A. K. Fehr, M. S. Wong, C. Katan, and J. Even, “Memory seeds enable high structural phase purity in 2D perovskite films for high‐efficiency devices,” Advanced Materials, vol. 33, no. 29, pp. 2007176, 2021.
[183] Y. Chen, S. Yu, Y. Sun, and Z. Liang, “Phase engineering in quasi-2D Ruddlesden–Popper perovskites,” The journal of physical chemistry letters, vol. 9, no. 10, pp. 2627-2631, 2018.
[184] H. Tsai, W. Nie, J. C. Blancon, C. C. Stoumpos, C. M. M. Soe, J. Yoo, J. Crochet, S. Tretiak, J. Even, and A. Sadhanala, “Stable light‐emitting diodes using phase‐pure Ruddlesden–Popper layered perovskites,” Advanced materials, vol. 30, no. 6, pp. 1704217, 2018.
[185] J. M. Hoffman, X. Che, S. Sidhik, X. Li, I. Hadar, J.-C. Blancon, H. Yamaguchi, M. Kepenekian, C. Katan, and J. Even, “From 2D to 1D electronic dimensionality in halide perovskites with stepped and flat layers using propylammonium as a spacer,” Journal of the American Chemical Society, vol. 141, no. 27, pp. 10661-10676, 2019.
[186] K.-z. Du, Q. Tu, X. Zhang, Q. Han, J. Liu, S. Zauscher, and D. B. Mitzi, “Two-dimensional lead (II) halide-based hybrid perovskites templated by acene alkylamines: crystal structures, optical properties, and piezoelectricity,” Inorganic chemistry, vol. 56, no. 15, pp. 9291-9302, 2017.
[187] M. H. Li, H. H. Yeh, Y. H. Chiang, U. S. Jeng, C. J. Su, H. W. Shiu, Y. J. Hsu, N. Kosugi, T. Ohigashi, and Y. A. Chen, “Highly efficient 2D/3D hybrid perovskite solar cells via low‐pressure vapor‐assisted solution process,” Advanced Materials, vol. 30, no. 30, pp. 1801401, 2018.
[188] Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, and J. You, “Surface passivation of perovskite film for efficient solar cells,” Nature Photonics, vol. 13, no. 7, pp. 460-466, 2019.
[189] N. Li, Z. Zhu, C. C. Chueh, H. Liu, B. Peng, A. Petrone, X. Li, L. Wang, and A. K. Y. Jen, “Mixed cation FAxPEA1–xPbI3 with enhanced phase and ambient stability toward high‐performance perovskite solar cells,” Advanced Energy Materials, vol. 7, no. 1, pp. 1601307, 2017.
[190] X. Li, M. Ibrahim Dar, C. Yi, J. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H. Han, and M. Grätzel, “Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides,” Nature chemistry, vol. 7, no. 9, pp. 703-711, 2015.
[191] T. Leijtens, G. E. Eperon, N. K. Noel, S. N. Habisreutinger, A. Petrozza, and H. J. Snaith, “Stability of metal halide perovskite solar cells,” Advanced Energy Materials, vol. 5, no. 20, pp. 1500963, 2015.
[192] K. Yao, X. Wang, F. Li, and L. Zhou, “Mixed perovskite based on methyl-ammonium and polymeric-ammonium for stable and reproducible solar cells,” Chemical Communications, vol. 51, no. 84, pp. 15430-15433, 2015.
[193] J. Lu, L. Jiang, W. Li, F. Li, N. K. Pai, A. D. Scully, C. M. Tsai, U. Bach, A. N. Simonov, and Y. B. Cheng, “Diammonium and monoammonium mixed‐organic‐cation perovskites for high performance solar cells with improved stability,” Advanced Energy Materials, vol. 7, no. 18, pp. 1700444, 2017.
[194] M. A. Green, and A. Ho-Baillie, “Perovskite solar cells: the birth of a new era in photovoltaics,” ACS Energy Letters, vol. 2, no. 4, pp. 822-830, 2017.
[195] D. S. Lee, J. S. Yun, J. Kim, A. M. Soufiani, S. Chen, Y. Cho, X. Deng, J. Seidel, S. Lim, and S. Huang, “Passivation of grain boundaries by phenethylammonium in formamidinium-methylammonium lead halide perovskite solar cells,” ACS Energy Letters, vol. 3, no. 3, pp. 647-654, 2018.
[196] M. Long, T. Zhang, D. Chen, M. Qin, Z. Chen, L. Gong, X. Lu, F. Xie, W. Xie, and J. Chen, “Interlayer interaction enhancement in Ruddlesden–Popper perovskite solar cells toward high efficiency and phase stability,” ACS Energy Letters, vol. 4, no. 5, pp. 1025-1033, 2019.
[197] H. Ye, Y. Peng, M. Wei, X. Zhang, T. Zhu, Q. Guan, L. Li, S. Chen, X. Liu, and J. Luo, “Bulk Photovoltaic Effect in Chiral Layered Hybrid Perovskite Enables Highly Sensitive Near-Infrared Circular Polarization Photodetection,” Chemistry of Materials, vol. 35, no. 17, pp. 6591-6597, 2023.
[198] D. H. Kim, C. P. Muzzillo, J. Tong, A. F. Palmstrom, B. W. Larson, C. Choi, S. P. Harvey, S. Glynn, J. B. Whitaker, and F. Zhang, “Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS,” Joule, vol. 3, no. 7, pp. 1734-1745, 2019.
[199] Y. Wei, H. Chu, Y. Tian, B. Chen, K. Wu, J. Wang, X. Yang, B. Cai, Y. Zhang, and J. Zhao, “Reverse‐graded 2D ruddlesden–popper perovskites for efficient air‐stable solar cells,” Advanced Energy Materials, vol. 9, no. 21, pp. 1900612, 2019.
[200] L. Yan, J. Ma, P. Li, S. Zang, L. Han, Y. Zhang, and Y. Song, “Charge‐carrier transport in quasi‐2D Ruddlesden–Popper perovskite solar cells,” Advanced Materials, vol. 34, no. 7, pp. 2106822, 2022.
[201] Y.-W. Chen, “Degradation Mechansim and Resistive Switching Characteristics of Methylammonium Lead Iodide Perovskite Resistive Memory Devices,” Materials science and Engineering, National Cheng Kung University, Taiwan, 2021.
[202] S. Wafee, C.-C. Leu, Y.-W. Chen, and B. H. Liu, “Resistive switching characteristics of methyl-ammonium lead iodide perovskite during atmosphere degradation,” Journal of Alloys and Compounds, vol. 963, pp. 171231, 2023.
[203] Y. Yuan, and J. Huang, “Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability,” Accounts of chemical research, vol. 49, no. 2, pp. 286-293, 2016.
[204] S. Y. Leblebici, L. Leppert, Y. Li, S. E. Reyes-Lillo, S. Wickenburg, E. Wong, J. Lee, M. Melli, D. Ziegler, and D. K. Angell, “Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite,” Nature Energy, vol. 1, no. 8, pp. 1-7, 2016.
[205] Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, and A. Gruverman, “Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films,” Energy & Environmental Science, vol. 9, no. 5, pp. 1752-1759, 2016.
[206] J. Xing, Q. Wang, Q. Dong, Y. Yuan, Y. Fang, and J. Huang, “Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals,” Physical Chemistry Chemical Physics, vol. 18, no. 44, pp. 30484-30490, 2016.
[207] J.-J. Li, J.-Y. Ma, J.-S. Hu, D. Wang, and L.-J. Wan, “Influence of N, N-dimethylformamide annealing on the local electrical properties of organometal halide perovskite solar cells: An atomic force microscopy investigation,” ACS Applied Materials & Interfaces, vol. 8, no. 39, pp. 26002-26007, 2016.
[208] Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, and J. Huang, “Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells,” Advanced Energy Materials, vol. 5, no. 15, pp. 1500615, 2015.
[209] Q. Wali, M. Aamir, A. Ullah, F. J. Iftikhar, M. E. Khan, J. Akhtar, and S. Yang, "Fundamentals of Hysteresis in Perovskite Solar Cells: From Structure‐Property Relationship to Neoteric Breakthroughs," Wiley Online Library, 2022.
[210] T. Y. Yang, G. Gregori, N. Pellet, M. Grätzel, and J. Maier, “The significance of ion conduction in a hybrid organic–inorganic lead‐iodide‐based perovskite photosensitizer,” Angewandte Chemie, vol. 127, no. 27, pp. 8016-8021, 2015.
[211] Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, and J. Huang, “Giant switchable photovoltaic effect in organometal trihalide perovskite devices,” Nature materials, vol. 14, no. 2, pp. 193-198, 2015.
[212] C. Eames, J. M. Frost, P. R. Barnes, B. C. O’regan, A. Walsh, and M. S. Islam, “Ionic transport in hybrid lead iodide perovskite solar cells,” Nature communications, vol. 6, no. 1, pp. 7497, 2015.
[213] W.-J. Yin, T. Shi, and Y. Yan, “Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber,” Applied Physics Letters, vol. 104, no. 6, pp. 063903, 2014.
[214] H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, and W. Zhang, “Anomalous hysteresis in perovskite solar cells,” The journal of physical chemistry letters, vol. 5, no. 9, pp. 1511-1515, 2014.
[215] J. Haruyama, K. Sodeyama, L. Han, and Y. Tateyama, “First-principles study of ion diffusion in perovskite solar cell sensitizers,” Journal of the American Chemical Society, vol. 137, no. 32, pp. 10048-10051, 2015.
[216] D. A. Egger, L. Kronik, and A. M. Rappe, “Theory of hydrogen migration in organic–inorganic halide perovskites,” Angewandte Chemie International Edition, vol. 54, no. 42, pp. 12437-12441, 2015.
[217] D. Seol, A. Jeong, M. H. Han, S. Seo, T. S. Yoo, W. S. Choi, H. S. Jung, H. Shin, and Y. Kim, “Origin of hysteresis in CH3NH3PbI3 perovskite thin films,” Advanced Functional Materials, vol. 27, no. 37, pp. 1701924, 2017.
[218] J. Chen, D. Lee, and N.-G. Park, “Stabilizing the Ag electrode and reducing J–V hysteresis through suppression of iodide migration in perovskite solar cells,” ACS applied materials & interfaces, vol. 9, no. 41, pp. 36338-36349, 2017.
[219] Z.-X. Lu, X. Song, L.-N. Zhao, Z.-W. Li, Y.-B. Lin, M. Zeng, Z. Zhang, X.-B. Lu, S.-J. Wu, and X.-S. Gao, “Temperature dependences of ferroelectricity and resistive switching behavior of epitaxial BiFeO3 thin films,” Chinese Physics B, vol. 24, no. 10, pp. 107705, 2015.
[220] G. Wang, C. Li, Y. Chen, Y. Xia, D. Wu, and Q. Xu, “Reversible voltage dependent transition of abnormal and normal bipolar resistive switching,” Scientific reports, vol. 6, no. 1, pp. 36953, 2016.
[221] F. Zhu, G. Lian, D. Cui, Q. Wang, H. Yu, H. Zhang, Q. Meng, and C.-P. Wong, “A General Strategy for Ordered Carrier Transport of Quasi-2D and 3D Perovskite Films for Giant Self-Powered Photoresponse and Ultrahigh Stability,” Nano-Micro Letters, vol. 15, no. 1, pp. 115, 2023.
[222] J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, and J. J. McDowell, “Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes,” Nature communications, vol. 6, no. 1, pp. 1-8, 2015.
[223] F. Gao, Y. Zhao, X. Zhang, and J. You, “Recent progresses on defect passivation toward efficient perovskite solar cells,” Advanced Energy Materials, vol. 10, no. 13, pp. 1902650, 2020.
[224] T. Zhang, C. Hu, and S. Yang, “Ion Migration: A “Double‐Edged Sword” for Halide‐Perovskite‐Based Electronic Devices,” Small Methods, vol. 4, no. 5, pp. 1900552, 2020.
[225] P. Delugas, C. Caddeo, A. Filippetti, and A. Mattoni, “Thermally activated point defect diffusion in methylammonium lead trihalide: anisotropic and ultrahigh mobility of iodine,” The journal of physical chemistry letters, vol. 7, no. 13, pp. 2356-2361, 2016.
[226] C. Eames, J. M. Frost, P. R. Barnes, B. C. O’regan, A. Walsh, and M. S. Islam, “Ionic transport in hybrid lead iodide perovskite solar cells,” Nature communications, vol. 6, no. 1, pp. 1-8, 2015.
[227] L. Dou, Y. M. Yang, J. You, Z. Hong, W.-H. Chang, G. Li, and Y. Yang, “Solution-processed hybrid perovskite photodetectors with high detectivity,” Nature communications, vol. 5, no. 1, pp. 1-6, 2014.
[228] X. Zhu, J. Lee, and W. D. Lu, “Iodine vacancy redistribution in organic–inorganic halide perovskite films and resistive switching effects,” Advanced Materials, vol. 29, no. 29, pp. 1700527, 2017.
[229] J. S. Han, Q. V. Le, J. Choi, K. Hong, C. W. Moon, T. L. Kim, H. Kim, S. Y. Kim, and H. W. Jang, “Air‐stable cesium lead iodide perovskite for ultra‐low operating voltage resistive switching,” Advanced Functional Materials, vol. 28, no. 5, pp. 1705783, 2018.
[230] W.-C. Liao, B. H. Liu, and C.-C. Leu, “Nanoscale mapping of humid degradation-induced local mechanical property variation in CH3NH3PbI3 polycrystalline film by scanning probe microscopy,” Applied Surface Science, vol. 507, pp. 145078, 2020.
[231] W.-C. Liao, B. H. Liu, and C.-C. Leu, “Photodegradation pathways of CH3NH3PbI3 organic perovskite polycrystalline film observed by in-situ scanning probe microscopy,” Applied Surface Science, vol. 545, pp. 149081, 2021.
[232] O. Almora, L. Vaillant-Roca, and G. Garcia-Belmonte, “Perovskite solar cells: A brief introduction and some remarks,” Revista cubana de fisica, vol. 34, no. 1, pp. 58-68, 2017.
[233] P. Holzhey, P. Yadav, S.-H. Turren-Cruz, A. Ummadisingu, M. Grätzel, A. Hagfeldt, and M. Saliba, “A chain is as strong as its weakest link–stability study of MAPbI3 under light and temperature,” Materials Today, vol. 29, pp. 10-19, 2019.
[234] E. Mosconi, D. Meggiolaro, H. J. Snaith, S. D. Stranks, and F. De Angelis, “Light-induced annihilation of Frenkel defects in organo-lead halide perovskites,” Energy & Environmental Science, vol. 9, no. 10, pp. 3180-3187, 2016.
[235] C.-J. Tong, W. Geng, O. V. Prezhdo, and L.-M. Liu, “Role of methylammonium orientation in ion diffusion and current–voltage hysteresis in the CH3NH3PbI3 perovskite,” ACS Energy Letters, vol. 2, no. 9, pp. 1997-2004, 2017.
[236] Y. Yin, S. Zhang, L. Zhou, J. Ma, X. Guo, S. Wang, Z. Lin, and J. Chang, “Combining in-situ formed PbI2 passivation and secondary passivation for highly efficient and stable planar heterojunction perovskite solar cells,” Organic Electronics, vol. 100, pp. 106361, 2022.
[237] C. Wang, and Y. Gao, “Stability of perovskites at the surface analytic level,” The Journal of Physical Chemistry Letters, vol. 9, no. 16, pp. 4657-4666, 2018.
[238] W. Wei, and Y. H. Hu, “Catalytic role of H2O in degradation of inorganic–organic perovskite (CH3NH3PbI3) in air,” International Journal of Energy Research, vol. 41, no. 7, pp. 1063-1069, 2017.
[239] S. Chen, A. Solanki, J. Pan, and T. C. Sum, “Compositional and morphological changes in water-induced early-stage degradation in lead halide perovskites,” Coatings, vol. 9, no. 9, pp. 535, 2019.
[240] Z. Chen, H. He, Z. Wen, Z. Cui, S. Mei, D. Yang, X. Wei, W. Zhang, F. Xie, and B. Yang, “Highly efficient Mn-doped CsPb (Br/Cl) 3 mixed-halide perovskite via a simple large-scale synthesis method,” Materials Science and Engineering: B, vol. 273, pp. 115426, 2021.
[241] R. C. Shallcross, Y. Zheng, S. S. Saavedra, and N. R. Armstrong, “Determining band-edge energies and morphology-dependent stability of formamidinium lead perovskite films using spectroelectrochemistry and photoelectron spectroscopy,” Journal of the American Chemical Society, vol. 139, no. 13, pp. 4866-4878, 2017.
[242] M. T. Hörantner, P. K. Nayak, S. Mukhopadhyay, K. Wojciechowski, C. Beck, D. McMeekin, B. Kamino, G. E. Eperon, and H. J. Snaith, “Shunt‐blocking layers for semitransparent perovskite solar cells,” Advanced materials interfaces, vol. 3, no. 10, pp. 1500837, 2016.
[243] S. Jariwala, S. Burke, S. Dunfield, R. C. Shallcross, M. Taddei, J. Wang, G. E. Eperon, N. R. Armstrong, J. J. Berry, and D. S. Ginger, “Reducing surface recombination velocity of methylammonium-free mixed-cation mixed-halide perovskites via surface passivation,” Chemistry of Materials, vol. 33, no. 13, pp. 5035-5044, 2021.
[244] S. M. Yoon, S. C. Warren, and B. A. Grzybowski, “Storage of electrical information in metal–organic‐framework memristors,” Angewandte Chemie International Edition, vol. 53, no. 17, pp. 4437-4441, 2014.
[245] G. Yang, C. Jia, Y. Chen, X. Chen, and W. Zhang, “Negative differential resistance and resistance switching behaviors in BaTiO3 thin films,” Journal of Applied Physics, vol. 115, no. 20, pp. 204515, 2014.
[246] S. Ge, Y. Huang, X. Chen, X. Zhang, Z. Xiang, R. Zhang, W. Li, and Y. Cui, “Silver Iodide Induced Resistive Switching in CsPbI3 Perovskite‐Based Memory Device,” Advanced Materials Interfaces, vol. 6, no. 7, pp. 1802071, 2019.
[247] T. Leijtens, E. T. Hoke, G. Grancini, D. J. Slotcavage, G. E. Eperon, J. M. Ball, M. De Bastiani, A. R. Bowring, N. Martino, and K. Wojciechowski, “Mapping electric field‐induced switchable poling and structural degradation in hybrid lead halide perovskite thin films,” Advanced Energy Materials, vol. 5, no. 20, pp. 1500962, 2015.
[248] H. Ma, W. Wang, H. Xu, Z. Wang, Y. Tao, P. Chen, W. Liu, X. Zhang, J. Ma, and Y. Liu, “Interface state-induced negative differential resistance observed in hybrid perovskite resistive switching memory,” ACS applied materials & interfaces, vol. 10, no. 25, pp. 21755-21763, 2018.
[249] B. P. Dhamaniya, P. Chhillar, B. Roose, V. Dutta, and S. K. Pathak, “Unraveling the effect of crystal structure on degradation of methylammonium lead halide perovskite,” ACS applied materials & interfaces, vol. 11, no. 25, pp. 22228-22239, 2019.
[250] X. Guo, C. McCleese, C. Kolodziej, A. C. Samia, Y. Zhao, and C. Burda, “Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI 3 perovskite,” Dalton Transactions, vol. 45, no. 9, pp. 3806-3813, 2016.
[251] R. Lindblad, D. Bi, B.-w. Park, J. Oscarsson, M. Gorgoi, H. Siegbahn, M. Odelius, E. M. Johansson, and H. k. Rensmo, “Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces,” The journal of physical chemistry letters, vol. 5, no. 4, pp. 648-653, 2014.
[252] M. R. Kiran, H. Ulla, M. Satyanarayan, and G. Umesh, “Observation of resistance switching in Vanadyl-phthalocyanine thin films,” Synthetic Metals, vol. 269, pp. 116524, 2020.
[253] Y. Sun, M. Tai, C. Song, Z. Wang, J. Yin, F. Li, H. Wu, F. Zeng, H. Lin, and F. Pan, “Competition between metallic and vacancy defect conductive filaments in a CH3NH3PbI3-based memory device,” The Journal of Physical Chemistry C, vol. 122, no. 11, pp. 6431-6436, 2018.
[254] C. Wang, Y. Chen, B. Zhang, S. Liu, Q. Chen, Y. Cao, and S. Sun, “High-efficiency bulk heterojunction memory devices fabricated using organometallic halide perovskite: poly (N-vinylcarbazole) blend active layers,” Dalton Transactions, vol. 45, no. 2, pp. 484-488, 2016.
[255] Y. Yang, X. Zhang, L. Qin, Q. Zeng, X. Qiu, and R. Huang, “Probing nanoscale oxygen ion motion in memristive systems,” Nature communications, vol. 8, no. 1, pp. 1-10, 2017.
[256] T. Whitcher, K. Woon, W. Wong, N. Chanlek, H. Nakajima, T. Saisopa, and P. Songsiriritthigul, “Interfacial behavior of resistive switching in ITO–PVK–Al WORM memory devices,” Journal of Physics D: Applied Physics, vol. 49, no. 7, pp. 075104, 2016.
[257] T. F. Schranghamer, A. Oberoi, and S. Das, “Graphene memristive synapses for high precision neuromorphic computing,” Nature communications, vol. 11, no. 1, pp. 1-11, 2020.
[258] S. Wafee, C.-C. Leu, K.-C. Chang, and B. H. Liu, “Achieving vertical orientation films with superior environmental stability in quasi-2D lead iodide perovskites,” Journal of Alloys and Compounds, vol. 1009, pp. 176919, 2024.
[259] H. J. Jeong, C. Park, H. Jeon, K.-N. Lee, J. Lee, S. C. Lim, G. Namkoong, and M. S. Jeong, “Quasi-2D halide perovskite memory device formed by acid–base binary ligand solution composed of oleylamine and oleic acid,” ACS Applied Materials & Interfaces, vol. 13, no. 34, pp. 40891-40900, 2021.
[260] Y. Kim, S. J. Baik, and H. Shin, “Vertically oriented 2D layered perovskite-based resistive random access memory (ReRAM) crossbar arrays,” Current Applied Physics, vol. 44, pp. 46-54, 2022.
[261] S. J. Kim, T. H. Lee, J.-M. Yang, J. W. Yang, Y. J. Lee, M.-J. Choi, S. A. Lee, J. M. Suh, K. J. Kwak, and J. H. Baek, “Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses,” Materials Today, vol. 52, pp. 19-30, 2022.
[262] D. Lee, B. Hwang, and J.-S. Lee, “Impact of grain sizes on programmable memory characteristics in two-dimensional organic–inorganic hybrid perovskite memory,” ACS applied materials & interfaces, vol. 11, no. 22, pp. 20225-20231, 2019.
[263] S.-Y. Kim, J.-M. Yang, E.-S. Choi, and N.-G. Park, “Effect of interlayer spacing in layered perovskites on resistive switching memory,” Nanoscale, vol. 11, no. 30, pp. 14330-14338, 2019.
[264] M. M. Ganaie, G. Bravetti, S. Sahu, M. Kumar, and J. V. Milić, “Resistive switching in benzylammonium-based Ruddlesden–Popper layered hybrid perovskites for non-volatile memory and neuromorphic computing,” Materials advances, vol. 5, no. 5, pp. 1880-1886, 2024.
[265] S. J. Kim, I. H. Im, J. H. Baek, S. H. Park, J. Y. Kim, J. J. Yang, and H. W. Jang, “Reliable and Robust Two-Dimensional Perovskite Memristors for Flexible-Resistive Random-Access Memory Array,” ACS nano, vol. 18, no. 41, pp. 28131-28141, 2024.
[266] X. Chen, X. Pan, B. Jiang, J. Wei, Y. Long, J. Tang, X. Li, J. Zhang, J. Duan, and L. Tao, “Strongly stable resistive random access memory based on quasi-two-dimensional perovskites,” Science China Materials, vol. 67, no. 3, pp. 879-886, 2024.
[267] J. H. Heo, D. H. Shin, S. H. Moon, M. H. Lee, D. H. Kim, S. H. Oh, W. Jo, and S. H. Im, “Memory effect behavior with respect to the crystal grain size in the organic-inorganic hybrid perovskite nonvolatile resistive random access memory,” Scientific reports, vol. 7, no. 1, pp. 16586, 2017.
[268] M. Liu, D. Zheng, T. Zhu, K. Vegso, P. Siffalovic, and T. Pauporté, “2D Halide Perovskite Phase Formation Dynamics and Their Regulation by Co‐Additives for Efficient Solar Cells,” Advanced Materials Interfaces, vol. 11, no. 6, pp. 2300773, 2024.
[269] X. Gan, W. Zhao, T. Xu, Y. Liang, L. Guo, and H. Liu, “Multilayered Ruddlesden–Popper perovskite hybrids with alternative organic spacers of 4-XC6H4C2H4NH2 (where X= H, Br, Cl) for solar cell applications,” Journal of Materials Science, vol. 56, no. 30, pp. 17167-17177, 2021.
[270] A. Z. Chen, M. Shiu, X. Deng, M. Mahmoud, D. Zhang, B. J. Foley, S.-H. Lee, G. Giri, and J. J. Choi, “Understanding the formation of vertical orientation in two-dimensional metal halide perovskite thin films,” Chemistry of Materials, vol. 31, no. 4, pp. 1336-1343, 2019.
[271] L. Yan, J. Hu, Z. Guo, H. Chen, M. F. Toney, A. M. Moran, and W. You, “General post-annealing method enables high-efficiency two-dimensional perovskite solar cells,” ACS applied materials & interfaces, vol. 10, no. 39, pp. 33187-33197, 2018.
[272] H. Yao, W. Zhu, J. Hu, C. Wu, S. Wang, X. Zhao, X. Niu, L. Ding, and F. Hao, “Halogen engineering of 2D/3D tin halide perovskite for enhanced structural stability,” Chemical Engineering Journal, vol. 455, pp. 140862, 2023.
[273] Y. Wang, Y. Shi, G. Xin, J. Lian, and J. Shi, “Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide,” Crystal Growth & Design, vol. 15, no. 10, pp. 4741-4749, 2015.
[274] X. Huang, Q. Cui, W. Bi, L. Li, P. Jia, Y. Hou, Y. Hu, Z. Lou, and F. Teng, “Two-dimensional additive diethylammonium iodide promoting crystal growth for efficient and stable perovskite solar cells,” RSC advances, vol. 9, no. 14, pp. 7984-7991, 2019.
[275] H. Zheng, G. Liu, L. Zhu, J. Ye, X. Zhang, A. Alsaedi, T. Hayat, X. Pan, and S. Dai, “The effect of hydrophobicity of ammonium salts on stability of quasi‐2D perovskite materials in moist condition,” Advanced Energy Materials, vol. 8, no. 21, pp. 1800051, 2018.
[276] D. Ramirez, K. Schutt, Z. Wang, A. J. Pearson, E. Ruggeri, H. J. Snaith, S. D. Stranks, and F. Jaramillo, “Layered mixed tin–lead hybrid perovskite solar cells with high stability,” ACS Energy Letters, vol. 3, no. 9, pp. 2246-2251, 2018.
[277] M.-G. La-Placa, L. Gil-Escrig, D. Guo, F. Palazon, T. J. Savenije, M. Sessolo, and H. J. Bolink, “Vacuum-deposited 2D/3D perovskite heterojunctions,” ACS Energy Letters, vol. 4, no. 12, pp. 2893-2901, 2019.
[278] B.-w. Park, N. Kedem, M. Kulbak, D. Y. Lee, W. S. Yang, N. J. Jeon, J. Seo, G. Kim, K. J. Kim, and T. J. Shin, “Understanding how excess lead iodide precursor improves halide perovskite solar cell performance,” Nature communications, vol. 9, no. 1, pp. 3301, 2018.
[279] Z. Yang, A. Qin, H. Qin, Z. Li, Y. Xiang, H. Liu, J. Qiu, and X. Wang, “Ion migration and dark current suppression in quasi-2D perovskite-based X-ray detectors,” RSC advances, vol. 14, no. 27, pp. 19124-19133, 2024.
[280] J. Gong, M. Hao, Y. Zhang, M. Liu, and Y. Zhou, “Layered 2D halide perovskites beyond the Ruddlesden–Popper phase: tailored interlayer chemistries for high‐performance solar cells,” Angewandte Chemie, vol. 134, no. 10, pp. e202112022, 2022.
[281] Y. Miao, M. Ren, H. Wang, L. Lu, X. Liu, Y. Chen, and Y. Zhao, “Surface Termination on Unstable Methylammonium‐based Perovskite Using a Steric Barrier for Improved Perovskite Solar Cells,” Angewandte Chemie International Edition, vol. 62, no. 51, pp. e202312726, 2023.
[282] D. He, R. Li, B. Liu, Q. Zhou, H. Yang, X. Yu, S. Gong, X. Chen, B. Xu, and S. Yang, “Unraveling abnormal buried interface anion defect passivation mechanisms depending on cation-induced steric hindrance for efficient and stable perovskite solar cells,” Journal of Energy Chemistry, vol. 80, pp. 1-9, 2023.
[283] B. Roose, K. Dey, Y.-H. Chiang, R. H. Friend, and S. D. Stranks, “Critical assessment of the use of excess lead iodide in lead halide perovskite solar cells,” The Journal of Physical Chemistry Letters, vol. 11, no. 16, pp. 6505-6512, 2020.
[284] M. S. Abbas, S. Hussain, J. Zhang, B. Wang, Z. Wang, C. Yang, and R. Ahmad, “A bromide substituted 2D additive for stable and efficient perovskite photovoltaics,” Physical Chemistry Chemical Physics, vol. 26, no. 13, pp. 10392-10398, 2024.
[285] A. Krishna, S. Gottis, M. K. Nazeeruddin, and F. Sauvage, “Mixed dimensional 2D/3D hybrid perovskite absorbers: the future of perovskite solar cells?,” Advanced Functional Materials, vol. 29, no. 8, pp. 1806482, 2019.
[286] B. R. Wygant, A. Z. Ye, A. Dolocan, Q. Vu, D. M. Abbot, and C. B. Mullins, “Probing the degradation chemistry and enhanced stability of 2D organolead halide perovskites,” Journal of the American Chemical Society, vol. 141, no. 45, pp. 18170-18181, 2019.
[287] Y. Zha, Y. Wang, Y. Sheng, S. Wu, J. Zhang, K. Ma, L. Yang, C. Liu, Y. Di, and Z. Gan, “Structural characterizations on the degradation of 2D organic–inorganic hybrid perovskites and its enlightenment to improved stability,” Nanotechnology, vol. 33, no. 28, pp. 285702, 2022.
[288] Z. Liu, L. Wang, and X. Xie, “Improving the performance of inverted two-dimensional perovskite solar cells by adding an anti-solvent into the perovskite precursor,” Journal of Materials Chemistry C, vol. 8, no. 34, pp. 11882-11889, 2020.
[289] J. Zhang, S. Langner, J. Wu, C. Kupfer, L. Lüer, W. Meng, B. Zhao, C. Liu, M. Daum, and A. Osvet, “Intercalating-organic-cation-induced stability bowing in quasi-2D metal-halide perovskites,” ACS Energy Letters, vol. 7, no. 1, pp. 70-77, 2021.
校內:2030-01-20公開