簡易檢索 / 詳目顯示

研究生: 曾仁宏
Tzeng, Ren-Hung
論文名稱: 改良分佈元素模型於循環潛變之應用
Application of The Modified Distributed Element Model to Cyclic Ratcheting
指導教授: 江達雲
Chiang, Dar-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 100
中文關鍵詞: 潛變率循環潛變循環穩定硬化速率
外文關鍵詞: ratcheting rate, ratcheting, cyclic stability, hardening rate
相關次數: 點閱:109下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   分佈元素模型(DEM)在結合前人改良的A-F移動硬化法則後,對材料單軸向的循環潛變行為已具備良好的模擬能力,但對雙軸向循環潛變行為仍無法適當地加以描述。而原始的A-F移動硬化法則在雙軸向之彈塑性循環加載時,會導致次降伏面發生變形,並不符合移動硬化的假設,因此本文於DEM中提出兩種硬化法則之修正,首先修正原來的A-F移動硬化法則,以避開降伏面變形的問題,接著修改Ziegler所提出的移動硬化法則,使之能產生循環潛變之行為。為了驗證修正後的DEM模型,我們針對CS 1070進行循環潛變行為的模擬分析,並與文獻上的實驗結果做一比較。

    The Distributed Element Model (DEM) in combination with the modified A-F kinematic hardening rule (A-F rule) is capable of adequately describing the uni-axial behavior of cyclic creep (ratcheting) of materials. However, it still has the disadvantage of not being able to describe appropriately multi-axial behavior of cyclic creep. The original A-F rule would lead to a subsequent yield surface which changes its shape during the bi-axial elastic-plastic cyclic loading and would not fit in with the assumption of kinematic hardening rule. Thus we propose two modifications of hardening rule in DEM. Firstly, we modify the original A-F rule to avoid the shape change of the yielding surface. Secondly, we modify the Ziegler kinematic hardening rule to make it proper for modeling of cyclic creep. To verify the modified DEM, we consider the simulation of ratcheting of CS 1070, and the results are compared with experimental results, which are obtained from the literature.

    目錄 授權書 簽署人須知 中文摘要 英文摘要 誌謝 目錄 表目錄 圖目錄 第一章 緒論 1-1 引言 ……………………………………………………1 1-2 文獻回顧 ………………………………………………2 1-3 研究目的及方法 ………………………………………5 1-4 論文架構 ………………………………………………7 第二章 分佈元素模型 2-1 前言 ……………………………………………………8 2-2 分佈元素模型(DEM)理論推導…………………………9 2-3 應力控制的分佈元素模型 ……………………………13 第三章 改良分佈元素模型 3-1 前言 ……………………………………………………16 3-2 A-F移動硬化法則………………………………………17 3-3 拉伸扭轉之雙軸向A-F 法則 …………………………26 3-4 非線性之Ziegler移動硬化法則………………………30 第四章 循環潛變之實例模擬 4-1 前言 ……………………………………………………35 4-2 潛變率之探討 …………………………………………35 4-3 模型參數對累積應變及潛變率之影響 ………………41 4-4 實例模擬 ………………………………………………43 4-5 硬化法則修正 …………………………………………47 4-6 修正硬化法則後之實例模擬 …………………………49 4-7 A-F法則與 Zielger法則累積應變之比較……………52 4-8 結果與討論 ……………………………………………53 第五章 結論 5-1 結論 ……………………………………………………56 5-2 未來研究方向 …………………………………………57 參考文獻………………………………………………………59 附表……………………………………………………………63 附圖……………………………………………………………66 自述……………………………………………………………100

    1. Amstrong, P.J. and Frederick, C.O., 1966, “A Mathematical Representation of the Multiaxial Baushinger Effect,” GEGB Report No.RD/B/N 731.
    2. Bari, S. and Hassan, T., 2001, “Kinematic hardening rules in uncoupled modeling for multiaxial ratcheting simulation,” International Journal of Plasticity, Vol. 17, pp.885-905.
    3. Basuroychowdhury, I.N. and Voyiadjis, G.Z., 1998, “A Multiaxial Cyclic Plasticity Model for Non-Proportional Loading Cases,” International Journal of Plasticity, Vol.14, pp.855-870.
    4. Chaboche, J.L., 1986,“ Time-independent consistutive theories for cyclic plasticity,” International Journal of Plasticity, Vol.2, pp.149-188.
    5. Chiang, D.Y. and Beck, J.L., 1994,“ A New Class of DEM for Cyclic Plasticity-I. Theory and Application,” International Journal of Solids Structures, Vol.31, No.4, pp.469-484.
    6. Chiang, D.Y. and Beck, J.L., 1994, “A New Class of DEM for Cyclic Plasticity -II. On Important Properties of Material Behavior,” International Journal of Solids Structures, Vol.31, No.4, pp.485-496.
    7. Chiang, D.Y., 1997, “A Phenomenological Model for Cyclic Plasticity,” ASME Journal of Engineering Materials and Technology, Vol.119, pp.7-11.
    8. Dafalias, Y.F. and Popov, E.P., 1975, “ A Modal of Nonlinear Hardening Materials for Complex Loading,” Acta Mech., Vol.21, 1975, pp.173-182
    9. Guionnet, C., 1992, “Modeling of Ratcheting in Biaxial Experiments,” Journal of Engineering Materials and Technology, Vol.114, pp.56-62.
    10. Hassan, T. and Kyriakides, S., 1992, “Ratcheting in Cyclic Plasticity, Part 1:Uniaxial Behavior,” International Journal of Plasticity, Vol.8, pp.91-116.
    11. Hassan, T., Corona, E. and Kyriakides, S., 1992, “Ratcheting in Cyclic Plasticity, Part 2:Multiaxial Behavior,” International Journal of Plasticity, Vol.8, pp.117-146
    12. Iwan, W.D., 1966, “A Distributed Element Model for Hysteresis and Its Steady State Dynamic Response,” ASME Journal of Applied Mechanics, Vol.34, No.4, pp.893-900.
    13. Iwan, W.D., 1967, “On a Class of Models for the Yielding of Continuous and Composite System,” ASME Journal of Applied Mechanics, Vol.34, No.3, pp.612-617.
    14. Jiang, Y. and Sehitoglu, H., 1994, “Cyclic Ratchetting of 1070 Steel under Multiaxial Stress States,” International Journal of Plasticity, Vol.10, No.5, pp.579-608.
    15. Kaneko, K., 1981, “Proposition of New Translation Rule in Kinematic Hardening,” Bulletion of the JSME Journal, 24, pp.9-14.
    16. McDowell, D.L., and Moosbrugger, J.C., 1992, “Continuum Slip Foundation of Elasto-Viscoplasticity,” Acta. Mech, pp.73-93.
    17. McDowell, D.L., 1995, “Stress State Dependence of Cyclic Ratcheting Behavior of Two Rails Steels,” International Journal of Plasticity, pp.397-421.
    18. Mroz, Z., 1967, “On the Description of Anisotropic Work-Hardening,” Journal Mechanics and Physics of Solids, Vol.15, pp.163-178.
    19. Ohno, N. and Wang, J.D., 1991, “Transformation of a Nonlinear Kinematic Hardening Rule to a Multisurface Form under Isothermal and Nonisothermal Conditions,” International Journal of Plasticity, Vol.7, pp.879-891.
    20. Phillips, A. and Tang, J.-L., 1972, “The Effect of Loading Path on the Yield Surface at Elevated Temperatures,” International Journal of solids and structures, Vol.8, pp.463-474.
    21. Portier, L. and Calloch, S., Marquis, D. and Geyer, P., 2000, “Ratchetting under Tension-Torsion Loadings:Experiments and Modelling,” International Journal of Plasticity, Vol.16, pp.303-335.
    22. Prager, W., 1955, “The Theory of Plasticity-A Survey of Recent Achievements,” Proceedings of the Institution of Mechanical Engineers, London, Vol.169, pp.41-57.
    23. Valanis, K.C., 1971, “Therory of Thermoviscoplasticity without a Yield Surface,” Arch. Mech. Stosow, 23, 4, 517.
    24. Valanis, K.C. and Lee, C.F., 1981, “Deformation Kinetics Theory of Steady-State Creep in Metals,” Int. J. Solid and Structures, Vol.17, pp.589-604.
    25. Valanis, K.C. and Lee, C.F., 1984, “Endochronic Theory of Cyclic Plasticity With Applications,” ASME Journal of Applied Mechanic, Vol.51, pp.367-374.
    26. W.F. Chen, D.J. Han, 1988,“ Plasticity for structural engineers, pp.244-249.
    27. Xia, Z. and Ellyin, F., 1997, “A Constitutive Model with Capability to Simulate Complex Multiaxial Ratcheting Behaviour of Materials,” International Journal of Plasticity, Vol.13, No.1/2, pp.127-142.
    28. Yoder, P.J., 1980, “A Strain-Space Plasticity Theory and Numerical Implementation,” Report No. EERL 80-07, California of Technology, American.
    29. Ziegler, H., 1958, “A Modification of Prager’s Hardening Rule,” Quarterly of Applied Mathematics, Vol. 17, pp.55-65.
    30. 江達雲, 1995, “非彈性系統的分析模式與識別”, 行政院國家科學委員會專題研究計劃成果報告, NSC.83-0424E-006-002 and NSC.84-2212E-006-087.
    31. 郭義順, 1998, “循環鬆弛及潛變行為之研究,” 碩士論文, 國立成功大學航空太空工程研究所.
    32. 周慶珩, 2000, “非比例雙軸向循環潛變行為之研究,” 碩士論文, 國立成功大學航空太空工程研究所.
    33. 張明凱, 2001, “變形動力學之銲錫材料的穩態潛變行為,” 碩士論文, 國立成功大學工程科學研究所.
    34. 蔡敬賢, 2002, “應用分佈元素模型於循環潛變行為之研究,” 碩士論文, 國立成功大學航空太空工程研究所.
    35. 梁志隆, 2001, “內涵時間理論分析1020碳鋼在循環彎曲及外壓負載下皺曲行為之研究,” 碩士論文, 國立成功大學工程科學研究所.

    下載圖示 校內:立即公開
    校外:2003-07-22公開
    QR CODE