簡易檢索 / 詳目顯示

研究生: 宋信毅
Sung, Hsin-Yi
論文名稱: EEG控制肩肘復健機器人對中風病患復健與功能性磁振造影評估
EEG controlled Shoulder-Elbow Robot for Rehabilitation of Stroke Patients and Functional Magnetic Resonance Imaging Evaluation
指導教授: 朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 86
中文關鍵詞: 腦機介面腦電波中風上肢復健功能性磁振造影
外文關鍵詞: Brain Computer Interface (BCI), EEG, stroke, upper limb rehabilitation, function MRI (fMRI)
相關次數: 點閱:87下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中風會造成肢體運動功能喪失、語言障礙、感覺喪失等後遺症,透過復健可對神經系統產生誘發,使大腦受到損傷的鄰近區域活化並取代損傷部位,進而恢復其功能。
    本研究以本實驗室發展的腦機介面(Brain Computer Interface,BCI)結合肩肘復健機器人系統,改良現有之BCI系統。為測試其功能與療效,招募兩位常人與一位中風病患進行8週的訓練,結果顯示常人受測者(N1)想像準確率隨訓練時間上升,最高可達75%,而想像時間會隨訓練縮短,最短可達4.5秒;另一位常人受測者(N2)想像準確率雖然沒有提升,但想像時間一樣隨訓練而縮短,最短可達5秒。中風病患(S1)的想像準確率有顯著上升,患側最高可達65%、健側最高為75%。想像時間患側最短為5秒、健側最短為4.5秒。訓練後的傅格-梅爾評估(Fugl-Meyer Assessment,FMA)與修正式艾許瓦氏量表(Modified Ashworth Scale,MAS)臨床指標顯示皆有進步,且功能性磁振造影(functional MRI,fMRI)結果顯示訓練後腦部運動感覺區有集中活化的現象。
    本研究證實改良過後的BCI系統對於腦波辨識更為精準,且新的復健訓練技術對於中風病患復健治療更為有效。唯未來仍然需要招募更多中風病患進行測試,以提升其可信度。

    Stroke causes some sequelae such as loss of unilateral motor function, speech impairment and loss of sensation. Rehabilitation can induce the central nervous system to replace the function of lesion parts with the nearby unaffected parts.
    This study combines an EEG-based BCI system which integrated with a shoulder-elbow robot. Two healthy subjects and a stroke patient were recruited to participate in the training of using the modified BCI system for 8 weeks. One of the healthy subjects (N1) can trigger the robot in 4.5 seconds and the highest accuracy is 75%. After the training, the overall trend of accuracy is increasing and the overall trend of trigger time is decreasing. The other (N2) can trigger the robot in 5 seconds, the overall trigger time is decrease but the overall accuracy isn’t changed significantly. However, the stroke patient (S1) has significant change of the accuracy. The affected side has the shortest trigger time of 5 seconds and the highest accuracy is 65%. The unaffected side has the shortest trigger time of 4.5 seconds and the highest accuracy reaches 75%. After training, the patient’s FMA and MAS improved, and the result of fMRI shows the reorganization does occur and concentrate on primary motor cortex. It shows that the new rehabilitation training can be better than previous protocol.
    This study indicates the modified BCI system is more accurate for the EEG feature identification and the new rehabilitation training is better than previous one. More stroke subjects are needed to validate the preliminary results of this study.

    摘要 i 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 x 符號表 xi 第一章 緒論 1 1.1 研究背景 1 1.1.1 復健機器人與治療現況 1 1.1.2 大腦皮質與腦波特徵介紹 2 1.1.3 腦機介面 4 1.1.4 功能性磁振造影(functional Magnetic Resonant Imaging,fMRI) 5 1.2 文獻回顧 5 1.3 研究動機與目的 7 第二章 方法與實驗 8 2.1 肩肘復健機器人 9 2.2 腦機介面控制系統 9 2.2.1 訊號擷取 9 2.2.2 訊號前處理 10 2.2.3 即時腦波特徵擷取 11 2.2.4 即時游標控制 12 2.3 功能性磁振造影實驗分析 15 2.3.1 功能性磁振造影影像前處理 15 2.3.2 功能性磁振造影數據分析 16 2.4 實驗設計 18 2.4.1 復健動作軌跡規劃 18 2.4.2 受測者 20 2.4.3 實驗步驟 20 2.5 數據分析 23 2.5.1 腦波控制能力指標 23 2.5.2 功能性磁振造影指標 24 2.5.3 臨床指標 25 第三章 結果 27 3.1 腦波訊號前處理 27 3.2 腦機介面復健訓練結果 31 3.3 功能性磁振造影實驗結果 57 3.4 臨床復健指標 66 第四章 討論 67 4.1 腦機介面訓練 67 4.1.1 腦機介面復健訓練 67 4.1.2 腦電波實驗 72 4.2 功能性磁振造影實驗 73 4.3 臨床指標評估 74 4.4 復健動作 74 第五章 結論與建議 75 參考文獻 76 附錄 81

    [1] A. Pollock, B. Gill, Pomeroy Valerie M, and L. Peter, Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke, John Wiley & Sons, Ltd. 2007
    [2] J. Carr, R.S., J. Gordon, Movement science: Foundations for Physical Therapy in Rehabilitation., Aspen Publishers, Rockville, Md.; 1987
    [3] A. Shumway-Cook and M.H. Woollacott, Motor control : theory and practical applications. Lippincott Williams & Wilkins: Philadelphia; 2001
    [4] Adler, S.S., B.Dominiek, and M. Buck., PNF in practice : an illustrated guide. Heidelberg : Springer; 2008
    [5] 胡名霞, 動作控制與動作學習. 台北: 金名圖書股份有限公司; 2009
    [6] Dipietro, L., H.I. Krebs, B.T. Volpe, J. Stein, C. Bever, S.T. Mernoff, S.E. Fasoli, and N. Hogan, Learning, Not Adaptation, Characterizes Stroke Motor Recovery: Evidence From Kinematic Changes Induced by Robot-Assisted Therapy in Trained and Untrained Task in the Same Workspace. Ieee Transactions on Neural Systems and Rehabilitation Engineering, 20(1): 48-57; 2012.
    [7] Pfurtscheller, G. and A. Aranibar, Event-Related Cortical Desynchronization Detected by Power Measurements of Scalp EEG. Electroencephalography and Clinical Neurophysiology, 42(6): 817-826; 1977.
    [8] Neuper, C. and G. Pfurtscheller, Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. International Journal of Psychophysiology, 43(1): 41-58; 2001.
    [9] Wolpaw, J.R., D.J. McFarland, G.W. Neat, and C.A. Forneris, An EEG-based Brain-computer Interface for Cursor Control. Electroencephalography and Clinical Neurophysiology, 78(3): 252-259; 1991.
    [10] Wolpaw, J.R. and D.J. McFarland, Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences of the United States of America, 101(51): 17849-17854; 2004.
    [11] Yuan, H., T. Liu, R. Szarkowski, C. Rios, J. Ashe, and B. He, Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: An EEG and fMRI study of motor imagery and movements. Neuroimage, 49(3): 2596-2606; 2010.
    [12] Daly, J.J. and J.R. Wolpaw, Brain-computer interfaces in neurological rehabilitation. Lancet Neurology, 7(11): 1032-1043; 2008.
    [13] Pfurtscheller, G., G.R. Muller-Putz, R. Scherer, and C. Neuper, Rehabilitation with Brain-Computer Interface Systems. Computer, 41(10): 58-65; 2008.
    [14] Müller-Putz, G.R., R. Scherer, G. Pfurtscheller, and C. Neuper, Temporal Coding of Brain Patterns for Direct Limb Control in Humans. 4(34); 2010.
    [15] Daly, J.J., R. Cheng, J. Rogers, K. Litinas, K. Hrovat, and M. Dohring, Feasibility of a New Application of Noninvasive Brain Computer Interface (BCI): A Case Study of Training for Recovery of Volitional Motor Control After Stroke. Journal of Neurologic Physical Therapy, 33(4): 203-211; 2009.
    [16] Gomez-Rodriguez, M., J. Peters, J. Hill, B. Scholkopf, A. Gharabaghi, and M. Grosse-Wentrup, Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery. Journal of Neural Engineering, 8(3); 2011.
    [17] Bundy, D.T., M. Wronkiewicz, M. Sharma, D.W. Moran, M. Corbetta, and E.C. Leuthardt, Using ipsilateral motor signals in the unaffected cerebral hemisphere as a signal platform for brain-computer interfaces in hemiplegic stroke survivors. Journal of Neural Engineering, 9(3); 2012.
    [18] Chen, C.-W., C.-C.K. Lin, and M.-S. Ju, Hand Orthosis Controlled Using Brain-computer Interface. Journal of Medical and Biological Engineering, 29(5): 234-241; 2009.
    [19] 李昆祐, 腦波觸發控制機器人於中風病人膝髖關節復健之研究, 國立成功大學機械工程學系碩士論文. 2009
    [20] 呂俊霆, 發展以簡化希爾伯黃轉換為基礎之即時處理腦波訊號方法及其應用, 國立成功大學機械工程學系碩士論文. 2010
    [21] 黃繪禎, EEG腦機介面控制肩肘復健機器人於中風病患復健研究, 國立成功大學機械工程學系碩士論文. 2012
    [22] Szameitat, A.J., S. Shen, A. Conforto, and A. Sterr, Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients. Neuroimage, 62(1): 266-280; 2012.
    [23] H. Asada, J.-J.E.S., Robot Analysis and Control. Canada: A Wiley-interscience publication; 1986
    [24] 龔品誠, 具量測腕部控制之上肢復健機器人, 國立成功大學機械工程學系碩士論文. 2004.
    [25] 龔品誠, 神經復健機器人於中風病患肩肘與前臂關節不正常協同動作之評估及治療, 國立成功大學機械工程學系博士論文. 2011
    [26] Pfurtscheller, G. and F.H.L. da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110(11): 1842-1857; 1999.
    [27] Karl J. Friston, J.T.A., Stefan J. Kiebel, Thomas E. Nichols, William D. Penny, Statistical Parametric Mapping: The Analysis of Functional Brain Images: The Analysis of Functional Brain Images. Elsevier/Academic Press; 2007
    [28] 張雅棻, 改良式制動療法與雙側動作訓練對慢性中風病患之相對效應:運動學分析. 台灣復健醫誌, 37(1): 19-30; 2009.
    [29] Leuthardt, E.C., C. Gaona, M. Sharma, N. Szrama, J. Roland, Z. Freudenberg, J. Solis, J. Breshears, and G. Schalk, Using the electrocorticographic speech network to control a brain-computer interface in humans. Journal of Neural Engineering, 8(3); 2011.
    [30] Caria, A., C. Weber, D. Brotz, A. Ramos, L.F. Ticini, A. Gharabaghi, C. Braun, and N. Birbaumer, Chronic stroke recovery after combined BCI training and physiotherapy: A case report. Psychophysiology, 48(4): 578-582; 2011.
    [31] 李阮曜, 腦機介面控制復健機械手於中風病患手部復健及功能性磁振照影評估, 國立成功大學機械工程學系. 2011

    下載圖示 校內:2018-08-16公開
    校外:2018-08-16公開
    QR CODE