簡易檢索 / 詳目顯示

研究生: 黃俊瑋
Huang, Jyun-Wei
論文名稱: CH4/CO/H2/AIR混合燃氣之層流火焰速度分析
An Analysis of the Laminar Flame Speed of CH4/CO/H2/AIR Mixture
指導教授: 袁曉峰
Yuan, Tony
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 152
中文關鍵詞: 合成燃氣火焰速度化學反應機構
外文關鍵詞: CH4, CO, H2, Synthesis Gas, Flame Speed
相關次數: 點閱:108下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 經氣化反應後生質能所產生的可燃氣體主要包括一氧化碳、氫氣及少量的甲烷。本論文將以甲烷為主燃料,添加兩種固定比例的一氧化碳及氫氣([CO]:[H2]=2:1、[CO]:[H2]=1:1),在當量比等於一的狀態下,以不同的混合比做層流火焰速度的量測。並從火焰傳遞速度、火焰面積、層流火焰速度之變化以及化學反應機構的部分,各別比較加入氫氣後對於甲烷/一氧化碳混合燃氣整體的影響。
    實驗結果顯示甲烷/一氧化碳/氫氣混合燃氣火焰傳遞速度與層流火焰速度皆會隨著添加燃氣的比例提高而增加,而添加燃氣中的氫氣比例越高,其火焰傳遞速度及層流火焰速度提升的越多,並未出現甲烷/一氧化碳混合燃氣所發生的減速現象;且火焰面積的變化幅度,亦會隨著添加燃氣比例增加而變大。
    研究中使用模擬軟體CHEMKIN v3.6配合GRI-Mech 3.0比對實驗與模擬的差異,再利用靈敏度分析從反應動力學分析氫氣對化學反應路徑的影響,並與未添加氫氣的甲烷與一氧化碳混合燃氣做比較。經分析後發現,系統中的O2及O會隨著CO比例提高不斷地增加卻無法有效的消耗。H+O2+M<=>HO2+M為一終止反應與活性基的分歧反應H+O2<=>OH+O彼此互相競爭,H+O2<=>OH+O的逆反應速率(Reverse Rate)會因為大量的O而變快,使淨反應速率變慢,所產生OH的量減少,而使OH+CO<=>H+CO2速率隨之減緩,H及OH活性基濃度隨之下降,進而影響層流火焰速度的變化而出現減速的現象。
    添加了H2的甲烷/一氧化碳/氫氣混合燃氣能夠彌補甲烷/一氧化碳混合燃氣中不足的H,這將使H+O2<=>OH+O的淨反應速率能夠持續增加,使系統中產生更多的OH,也使得OH+CO<=>H+CO2能夠隨著CO比例提高而持續氧化CO並製造更多的H,經由如此的循環將使H及OH活性基能夠穩定的增加,並提升層流火焰速度。

    The major combustible constituents in the fuel gas produced by gasification of biomass are carbon monoxide, hydrogen and small amounts of methane. This thesis researched the laminar flame speed variation of methane added with the mixtures of carbon monoxide and hydrogen ([CO]: [H2]=2:1, [CO]:[H2]=1:1) at the stoichiometric condition. A simple tube method was adopted. The premixed flame propagation speed and the area of flame front were estimated to determine the laminar flame speed, and the shifting of the reaction path was discussed.
    The experimental results showed that the flame propagation speed in the tube and the laminar flame speed increased with the amount of the addition of CO/H2 mixture in methane fuel, and the amount of hydrogen in the mixture further increased the flame propagation speed and laminar flame speed.
    Unlike the observed deceleration of flame speed at methane mixed with high percentages (>80%) of CO, the flame speeds were continue increasing at the high CO/H2 addition in methane conditions. In order to interpret the phenomenon, this research used CHEMKIN v3.6 with GRI-3.0 to simulate the experimental conditions. The analysis results showed that the peek H atom concentrations at different CO addition followed the same trend as that of the laminar flame speed variations, and the concentration of O2 and O in flame increased with the amount of CO addition for their low consumption rates in the direct reactions with CO. The gas phase termination reaction H+O2+M<=>HO2+M was then competed with the major branching reaction H+O2<=>OH+O at high O and O2 concentrations environment resulted in lower OH production in the system, thus to decrease the rate of reaction OH+CO<=>H+CO2 and the laminar flame speed.
    In the above described mechanism, the insufficient H atom concentration in methane/CO mixtures was changed through adding H2 into the mixtures. The net reaction rate of H+O2<=>OH+O accelerated with H2 addition, and the system produced more OH to oxidize CO through OH+CO<=>H+CO2 so as to steadily increase the laminar flame speed.

    摘要 I Abstract III 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 XII 第一章 導論 1 1-1 前言 1 1-2 火焰速度量測技術 4 1-3 研究動機與目的 8 第二章 文獻回顧 10 2-1 文獻回顧 10 2-2 火焰速度影響因素 12 第三章 實驗設備與方法 16 3-1 實驗設備 16 3-2 實驗步驟 18 3-3 實驗分析 19 第四章 實驗結果與討論 23 4-1 氫氣比例對火焰傳遞速度之影響 23 4-2 氫氣比例對火焰面積之影響 25 4-3 氫氣比例對層流火焰速度之影響 27 4-4 氫氣比例對化學反應機構之影響 29 第五章 結論與未來工作 36 5-1 結論 36 5-2 未來工作 38 參考文獻 40 自述 152

    【1】 經濟部能源局網站(www.moeaboe.tw),97年國內能源供需概況
    【2】 廢棄物能源利用技術開發與推廣計畫,經濟部能源局委辦,財團法人工業技術研究院執行,93年
    【3】 K.K. Kuo, PRINCIPLES OF COMBUSTION, SECOND EDITION Chapter 5, Wiley-interscience, 2005
    【4】 V. Karpov, A. LipatniKov and V. Zimont, Twenty-Sixth International Symposium on Comubsiton, 1996
    【5】 R.G. Abdel-Gayed, , and D. Bradley, Philosophical Transactions of the Royal Society, A301 (1457):1, 1981
    【6】 N.A. Al-Dabbagh, and G.E. Andrews, Combustion and Flame 55:31-52, 1984
    【7】 G.E. Andrews, D. Bradley, Combustion and Flame, 18:133-153, 1972
    【8】 J. Natarajan, T. Lieuwen and J. Seitzman, Combustion and Flame, 151:104-119, 2007
    【9】 F.N. Egolfopoulos,H. Zhang, and Z. Zhang, Combustion and Flame, 109:237-252, 1997
    【10】 F.N. Egolfopoulos, P. Cho, C.K. Law, Combustion and Flame, 76:375-391, 1989
    【11】 R.J. Kee, J.F. Grcar, M.D. Smoke, and J.A. Miller, Sandia Repot SAND85-8240, 1985
    【12】 Warnatz J., Combustion Chemistry (W.C. Gardiner, Jr., Ed.), Springer-Verlag, New York, p.197, 1984
    【13】 M. Ilbas, A.P. Crayford, I. Yılmaza, P.J. Bowen, N. Syred, International Journal ofHydrogen Energy, 31:1768-1779, 2006
    【14】 Khizer Saeed, C.R. Stone, Combustion and Flame, 139:152-166, 2004
    【15】 H.N. Phylakton, G.E. Andrews, and P.Herath, Journal of Loss Prevention in the Process Industries, 3:355-364, 1990
    【16】 H.F. Coward and F.J.Hartwell, Journal of the Chemical society, 2676-2684, 1932
    【17】 G. Yu, C.K. Law, C.K. Wu, Combustion and Flame, 63:339-347, 1986
    【18】 B.E. Milton, and J.C. Keck, Combustion and Flame, 58:13-22,1984
    【19】 C.K. Law, and O.C. Kown, International Journal ofHydrogen Energy, 29:867-879, 2004
    【20】 T.G. Scholte, P.B. Vaags, Combustion and Flame, 3:503-510, 1959
    【21】 T.G. Scholte, P.B. Vaags, Combustion and Flame, 3:511-524, 1959
    【22】 C.M. Velopoulos and F.N. Egolfoulos, Twenty-Fifth Symposium (International) on Combustion/The Combustion Institute, 1317-1323, 1994
    【23】 Chen Dong, Qulan Zhou, Qinxin Zhao, Yaqing Zhang, Tongmo Xu, ShienHui, Fuel, 88:1858-1863, 2009
    【24】 C.-Y. Wu, Y.-C. Chao, T.S. Cheng, C.-P. Chen, C.-T.Ho, Combustion and Flame, 156:362-373, 2009
    【25】 S.Y. Liao, D.M. Jianga, Z.H.Huanga, K. Zeng, Fuel, 85:1346-1353, 2006
    【26】 E. Mallard andH. L. LeChatelier, Ann. Mines 4:379, 1883
    【27】 B. Lewis, “Discussion” Selected Combustion Problem, AGARD, p.177, 1954
    【28】 A. M. Kanury, Introduction to Combustion Phenomena, Chapter 8, Gordon and Breach, New York, 1975
    【29】 T.W. Reynolds, and M. Gerstein, Third Symposium (International) on Combustion/The Combustion Institute, p.190-194, 1949
    【30】 C. Tanford, and R.N. Pease, Journal of Chemical Physics, vol.15 P.431, 1947
    【31】 J. Natarajan *, Y. Kochar, T. Lieuwen, J. Seitzman, Proceedings of the Combustion Institute, 32:1261-1268, 2009
    【32】 Hugo J. Burbano*, Jhon Pareja, Andre´s A. Amell, Journal ofHydrogen Energy, 36:3232-3242, 2011
    【33】 Experimental studies of the fundamental flame speeds of syngas (H2/CO)/air mixtures, Proceeding of the Combustion Institute 33:913-920, 2011
    【34】 張彥丞 氫氣加入一氧化碳與甲烷混合燃料對火焰結構影響之研究,碩士論文,成功大學,2010
    【35】 王煥清CH4/CO/AIR混合燃氣之火焰速度分析,碩士論文,成功大學,2010

    下載圖示 校內:立即公開
    校外:2012-08-31公開
    QR CODE