簡易檢索 / 詳目顯示

研究生: 黃家晟
Huang, Jia-Sheng
論文名稱: 利用第一原理模擬應變對矽超導臨界溫度之影響
A Study on the Impacts of Strain on Silicon Superconducting Critical Temperature Using Ab Initio Simulations
指導教授: 高國興
Kao, Kuo-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 64
中文關鍵詞: 超導體半導體製程第一原理計算電子-聲子交互作用
外文關鍵詞: superconductor, semiconductor process, Ab Initio, electron-phonon interactions
相關次數: 點閱:77下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著量子電腦的發展,有越來越多的新穎方法在製作量子電腦,若能滿足疊加以及糾纏狀態就可以應用於量子處理器上,目前主流是應用超導體做成的量子位元,而為了其中超導體製作而成的元件目前大多是由鋁和鈮,但異質接面的非理想鍵結會影響超導體元件以及量子處理器的性能,然而在2006時,與成熟半導體製程兼容的重摻雜矽超導體已經被證實開發出來,技術已經可以達到精準控制矽超導中的硼濃度摻雜以及應變。
    電子與聲子交互作用在超導體中的BCS理論佔據很重要的作用,在本研究中使用密度微擾理論計算,此方法的正確性與可靠度提供了很好的辦法來研究與預測矽超導體的特性。
    對於摻雜硼的濃度以及對矽的應變都是已經可以控制的,因此本研究發展一套模擬流程,使用第一原理計算分析不同摻雜情況與施加應變的情況下對矽超導臨界溫度的影響。
    首先我們先建構出不同形狀及大小的矽單位晶胞,並設定不同的摻雜情況以及不同程度的應變,使用第一原理計算電子¬、聲子的交互作用強度與臨界溫度,並且分析其中的物理變化如電子能帶、聲子能帶以及結構變化。

    In recent years, with the development of quantum computers, there have been increasingly novel methods in their fabrication. If superposition and entanglement states can be achieved, they can be used in quantum processors. Currently, the mainstream approach is to use superconducting qubits to create quantum processors. Most of the superconducting devices are made of aluminum and niobium. But the non-ideal bonds of heterojunctions affect superconducting devices and quantum processors. Therefore, heavily doped silicon superconductors compatible with mature semiconductor processes have been demonstrated in 2006. Semiconductor technology has advanced to the point where both boron doping concentrations and strain on silicon can be practically controlled.
    This research develops a simulation process to analyze the impact of different doping conditions and strains on the critical temperature of silicon superconductors using first-principles calculations. For superconductors of the BCS type, the electron-phonon interactions play an essential role. In this study, the electron-phonon interactions are calculated using density functional perturbation theory. The accuracy and reliability of this method provide a powerful means to study and predict superconductors of the BCS type.
    First, we construct silicon unit cells of different shapes and sizes, set various doping conditions and strain, then use first-principles to calculations the electron-phonon interaction strength and critical temperatures. Additionally, we analyze the resulting physical changes

    摘要 I Abstract II 致謝 III Contents IV List of Figures VI Chapter 1 Introduction and Motivation 1 1.1 Quantum Computing 2 1.2 Superconductor 4 1.2.1 Superconductor Properties 5 1.2.2 BCS Theory 7 1.2.3 Superconductor Device – Josephson Junction 8 1.2.4 Superconducting Qubit 11 1.3 Silicon 13 1.3.1 Material Properties 13 1.3.2 Silicon Superconductivity 16 1.4 Motivation and Approach 18 1.4.1 Ab Initio Calculation 18 Chapter 2 Simulation Procedure 20 2.1 Atomic Model Building 20 2.1.1 Select Substitutional Si Atom 20 2.1.2 Strain on Fully Relaxed Structure 23 2.2 Structure Relaxation 24 2.3 Electronic and Phonon Calculating 25 2.4 Tc and Electron-Phonon Coupling Calculating 25 Chapter 3 Result and Discussion 27 3.1 Impact of Concentration on Tc 27 3.1.1 The Atomic Models 27 3.1.2 Structures Properties versus Tc and EPC 29 3.1.3 Phonon-Dispersion with EPC Parameters Extraction 30 3.2 Effect of Strain on Tc of Doped-Silicon 34 3.2.1 Strain on Doped-Silicon Structures 34 3.2.2 Strain Effect on EPC of Doped Silicon 37 3.2.3 Analyze Electronic DOS at Fermi Level 40 Chapter 4 Conclusion and Future Work 42 4.1 Conclusion 42 4.2 Future Work 42 Appendix 43 Reference 52

    1. 量子電腦的原理、挑戰與未來衝擊. Available from: https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0M103505917643100370&sq=%E9%87%8F%E5%AD%90%E9%9B%BB%E8%85%A6.
    2. Honeywell Announced World’s Highest Performing Quantum Computer. Available from: https://ml2quantum.com/2020/06/20/honeywell-quantum-computer/.
    3. Charbon, E., et al. Cryo-CMOS for quantum computing. in 2016 IEEE International Electron Devices Meeting (IEDM). 2016. IEEE.
    4. Kittel, C. and P. McEuen, Introduction to solid state physics. 2018: John Wiley & Sons.
    5. Kesgin, I., Processing and Electromagnetic Properties of Low AC Loss, Multifilamentary Rare Earth-barium-copper-oxide Superconductor Tapes. 2013.
    6. Bardeen, J., L.N. Cooper, and J.R. Schrieffer, Theory of superconductivity. Physical review, 1957. 108(5): p. 1175.
    7. Fuentes, P., Error correction for reliable quantum computing. arXiv preprint arXiv:2202.08599, 2022.
    8. Ergül, A., Nonlinear dynamics of josephson junction chains and superconducting resonators. 2013, KTH Royal Institute of Technology.
    9. Patel, H., et al., d-Mon: a transmon with strong anharmonicity based on planar c-axis tunneling junction between d-wave and s-wave superconductors. Physical Review Letters, 2024. 132(1): p. 017002.
    10. Neamen, D.A., Semiconductor physics and devices: basic principles. 2003.
    11. Hoyt, J., et al. Strained silicon MOSFET technology. in Digest. International Electron Devices Meeting. 2002. IEEE.
    12. Shim, Y.-P. and C. Tahan, Bottom-up superconducting and Josephson junction devices inside a group-IV semiconductor. Nature communications, 2014. 5(1): p. 4225.
    13. Marcenat, C., et al., Low-temperature transition to a superconducting phase in boron-doped silicon films grown on (001)-oriented silicon wafers. Physical Review B—Condensed Matter and Materials Physics, 2010. 81(2): p. 020501.
    14. Lee, W., et al., Mobility enhancement of strained Si transistors by transfer printing on plastic substrates. NPG Asia Materials, 2016. 8(3): p. e256-e256.
    15. Giannozzi, P., et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 2009. 21(39): p. 395502.
    16. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964. 136(3B): p. B864.
    17. Baroni, S., et al., Phonons and related crystal properties from density-functional perturbation theory. Reviews of modern Physics, 2001. 73(2): p. 515.
    18. Moun, M. and G. Sheet, Superconductivity in silicon. Superconductor Science and Technology, 2022. 35(8): p. 083001.
    19. People, R., Physics and applications of Ge x Si 1-x/Si strained-layer heterostructures. IEEE Journal of Quantum Electronics, 1986. 22(9): p. 1696-1710.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE