| 研究生: |
殷彰賢 Yin, Zhang-Xian |
|---|---|
| 論文名稱: |
進氣處加氫對密閉式循環柴油引擎燃燒特性之實驗與模擬研究 Study of Experiment and Simulation of Hydrogen Added at the Inlet Port on the Combustion Characteristics of Closed Cycle Diesel Engines |
| 指導教授: |
吳鴻文
Wu, Horng-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 進氣處加氫 、密閉式循環柴油引擎 、燃燒特性 、實驗與數值模擬 |
| 外文關鍵詞: | hydrogen added at the inlet port, close cycle diesel engine, combustion characteristics, experiment and numerical simulation |
| 相關次數: | 點閱:119 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文將單缸直噴式柴油引擎與CO2吸收系統結合成密閉式循環柴油引擎(CCDE),並加裝乾、濕式防爆設備,於引擎進氣岐管導入ECU自動噴氫系統。引擎實驗操作參數將氧氣濃度固定於23%,ECU噴射角度為10°ATDC,採用三種KOH水溶液重量百分比濃度(CO2吸收藥劑)10%、15%、20%,四種氫氣預混合比0%、5%、10%、20%,在不同引擎之轉速和負載進行交叉實驗。量測引擎之排氣污染、經CO2吸收系統後之引擎進氣組成與缸內壓力,探討氫氣和KOH濃度對於CCDE系統燃燒特性之影響。
使用KIVA3V-RELEASE2為程式主體,藉由加入程式的詳細化學反應進行數值運算,分析不同氫輔助燃料對柴油引擎的影響。將數值模擬與實驗結果相互比較,證實模擬之可靠性,進而探討氣缸內之溫度場變化和汙染物之生成。
模擬與實驗結果皆顯示於柴油引擎添加輔助燃料氫氣,可增加預混合燃燒期之熱釋放率,進而有效降低CO2、CO和Smoke等排氣污染,增加KOH藥劑之使用壽命。然而,較高的峰值壓力與溫度會促使有害之NOX生成。
This thesis combines a single DI diesel engine with CO2 absorption system and installs the hydrogen injected automatically system, anti-explosion-burning system to form a closed cycle diesel engine. Operating parameters of the oxygen concentration are fixed at 23%, ECU injection at 10ATDC, KOH weight percentage concentration of 10%, 15%, and 20% (CO2 absorbent), and hydrogen pre-mixing ratio of 0%, 5%, 10%, and 20%. Engine exhaust pollution, gas content which before and after CO2 absorption system, cylinder pressure are measured to investigate the combustion characteristics of hydrogen and the concentration of KOH for the CCDE system.
The numerical simulation by KIVA3V is used as the main of the program modifying some sub-models with additional detailed chemical reaction, and the results between the simulation and the experiment will be identified. Then the temperature fields within the cylinder and pollutant generation are realized.
The simulation and experimental results show that a diesel engine is better with premixed hydrogen than without premixed hydrogen in decreasing exhaust emissions, and the result is conspicuous for the reduction of carbon-monoxide, carbon-dioxide and soot emission, so as to increase the life of CCDE system. However, a higher peak pressure and temperature will lead to NOX generation.
[1] Ura T., Obara T., “Development of Depth Independent Closed Cycle Diesel Engine for an Autonomous Underwater Vehicle”, Proc, Unmanned Untethered Submersible Tech. PP. 1-9, 1991.
[2] Horng-Wen Wu, and Chin-Tsung Shu, “Effects of Operating Parameters on Steady and Transient Behaviors of A Closed Cycle Diesel Engine”, Energy Conversion and Management, Vol. 47, PP. 2070-2080, 2006.
[3] 吳鴻文,“密閉式循環柴油引擎發電系統之研究與性能分析(II)”,第十五屆中國造船暨輪機工程研討會暨國科會成果發表會,C2-02場次,2003。
[4] 吳鴻文,密閉式循環柴油引擎發電系統之研發與性能分析 (Ⅲ),第十六屆中國造船暨輪機工程研討會暨國科會成果發表會,C2-02場次,2004。
[5] Saravanan N, Nagarajan G, Dhanasekaran C, “Experimental Investigation of Hydrogen Port Fuel Injection in DI Diesel Engine ” , International Journal of Hydrogen Energy, Vol.32, PP.4071-4080, 2007.
[6] 許志聰,“閉式循環柴油引擎之建立與運轉性能研究”,國立成功大學造船暨船舶機械工程研究所碩士論文,2002。
[7] 楊佳穎,“長時間運轉型密閉式循環柴油引擎系統之建立、燃燒性能分析與單人自動化操控之研究” ,國立成功大學造船暨船舶機械工程研究所碩士論文,2002。
[8] 王仁宏,“密閉式循環柴油引擎發電系統機組化之性能、噪音與振動之研究” ,國立成功大學造船暨船舶機械工程研究所碩士論文,2003。
[9] 林文輝,“人造空氣對密閉式循環柴油引擎之性能影響分析” ,國立成功大學系統及船舶機電工程學系研究所碩士論文, 2005。
[10] Asada, T., Nagai, M., “Investigations on Recycle and Closed-Cycle Diesel Engines”, SAE, Vol.800964, pp33-52, 1980.
[11] Fowler, A.; Thompson, Raymond V., “Development of a Depth Independent Closed Cycle Diesel Engine”, Proceedings-Annual Offshore Technology Conference, Vol.4031-4043-MS, 1981.
[12] Fowler, A., “Closed-Cycle Diesel Engine for Underwater Work”, Marine Engineers Review Oct 1983, pp26-27 0047-5955.
[13] Fowler, A., “Closed-Cycle Diesel Engine for Underwater Power”, Transactions Institute of Marine Engineers, (Series) TM Vol.96 1984 13p.
[14] Potter I. J., “Evaluation of the Performance of a Diesel Engine when Operating on Non-Air Mixtures”, Proceedings of the Intersociety Energy Conversion Engineering Conference v 5 Aug 4-9 1991, published by IEEE pp 539-544 0146-955X
[15] Gopal G., Srinivasa Rao P., K. V. Gopalakrishnan and B. S. Murthy, “Use of Hydrogen in Dual-Fuel Engines” , International Journal of Hydrogen Energy, vol. 7, Vol. 3, pp. 267-272, 1982.
[16] Salvador M. Aceves, “A Multi-Zone Model for Prediction of HCCI Combustion and Emissions”, SAE 2000 World Congress, March 2000, Detroit, MI, USA.
[17] Ogink R., Golovitchev V., “Gasoline HCCI Modeling: Computer Program Combining Detailed Chemistry and Gas Exchange Processes”, SAE, 01-3614, 2001.
[18] Lars Kucka, Eugeny Y. Kenig, and Andrzej Go´rak, “Kinetics of the Gas-Liquid Reaction between Carbon Dioxide and Ydroxide Ions” , Ind. Eng. Chem, Vol.41, pp. 5952-5957, 2002.
[19] Mohammadi A., Shioji M., Nakai Y., Ishikura W., Tabo E., “Performance and Combustion Characteristics of a Direct Injection SI Hydrogen Engine” , International Journal of Hydrogen Energy, Vol.32, pp.296-304, 2007.
[20] Yousufuddin S., Mehdi SN., Masood M., “Performance and Combustion Characteristics of a Hydrogen- Ethanol- Fuelled Engine”, Energy & Fuels, Vol.22, pp.3355-3362, 2008.
[21] Saravanan N., Nagarajan G., “An Experimental Investigation of Hydrogen-Enriched Air Induction in a Diesel Engine System,” International Journal of Hydrogen Energy, Vol.33, pp.1769-1775, 2008.
[22] Saravanan N., Nagarajan G., Kalaiselvan KM, “An Experimental Investigation on Hydrogen as a Dual Fuel for Diesel Engine System with Exhaust Gas Recirculation Technique,” Renewable Energy, Vol.33,pp.422-427, 2008.
[23] 吳鴻文,吳展易,“氫輔助燃料柴油引擎之污染物排放研究”,第五屆全國氫能與燃料電池學會研討會,2010。
[24] 陳登裕, “柴油引擎使用氫輔助燃料之燃燒特性模擬研究”, 國立成功大學系統及船舶機電工程學系研究所碩士論文,2011
[25] 歐祥程,“數值模擬應用於均質進氣柴油引擎之排氣污染研究”,國立成功大學系統及船舶機電工程學系研究所碩士論文, 2007。
[26] John B. Heywood著,蘇金佳譯,“內燃機”,美商麥格羅.希爾國際股份有限公司出版,pp.4-6,pp. 645-717, 1996。
[27] Anderton D. and Waters P. E., “Effect of Fuel Composition on Diesel Engine Noise and Performance”, SAE 820235, 1982.
[28] Svend Henningsen, “Hydrocarbon Emissions from the Ignition-Delay Period in a Direct-Ignition Diesel Engine”, SAE 841381, 1984.
[29] Murayama T., Yamada T., Miyamoto N. , and Chikashisa T., “Nature and Reduction of Cycle-to-Cycle Combustion Variation in an IDI Diesel Engine with Ethanol-Diesel Fuel Blends”, SAE 831352, 1983.
[30] Cloutman L.D., Dukowicz J.K., Ramshaw J.D., & Amsden, A.A.,“CONCAS-SPRAY: A Computer Code for Reactive Flow with Fuel Sprays,”Los Alamos Scientific Laboratory Report, LA-9294-MS, 1982.
[31] Amsden, A.A., Butler T.D., O’Rourke P.J., &. Ramshaw J.D, “KIVA-AComprehensive Model for 2-D and 3-D Engine Simulation,” SAE 850554, 1985.
[32] Amsden, A. A. , “KIVA-3V, Release 2, Improvments to KIVA-3V,” Los Alamos National Laboratory report LA-13608-MS, May, 1999.
[33] Liu, C.,“An Experimental and Analytical Investigation into the Combustion Characteristics of HCCI and Dual Fuel Engines with Pilot Injection”, Ph.D. diss., Dept. of Mechanical and Manufacturing Engineering, Calgary Univ , 2006 .
[34] Yongfeng Liu and Pucheng Pei, “Asymptotic Analysis on Autoignition and Explosion Limits of Hydrogen-Oxygen Mixtures in Homogeneous Systems”, International Journal of Hydrogen Energy 31(5), 639-647, 2006
[35] Seshadri K, Peters N and Paczko G, “Rate-ratio asymptotic analysis of autoignition of n-heptane in laminar non-premixed flows”, Comb. & Flame Vol 146, No. 1-2, 131-141, 2006.
[36] S. Liu, J.C. Hewson, J.H. Chen, “Nonpremixed n-heptane autoignition in unsteady counterflow”, Combustion and Flame 145, pp. 730-739, 2006.
[37] J.B. Holman,“Experimental Methods for Engineers”, McGraw Hill Publications, 2003.
[38] Puttick, J. R., “Recycle Diesel Underwater Power plants”, presented at SAE National Combined Fuels and Lubricants, Power plant and Truck Meeting, St. Louis, Mo. October, Paper 710827, 1971.
[39] Pekalski, A.A., Zevenbergen, J.F., Pasman, H.J., Lemkowitz, S.M., Dahoe, A.E., and Scarlett, B. (2002) The relation of cool flames and auto-ignition phenomena to process safety at elevated pressure and temperature. J. Hazard. Mater., 93, 93–105.