簡易檢索 / 詳目顯示

研究生: 王敏歡
Wang, Min-Huan
論文名稱: 低成本電子束微影奈米製程的開發與應用
Development and Application of Low-cost Electron-beam Nanofabrication Method
指導教授: 張允崇
Chang, Yun-Chorng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 76
中文關鍵詞: 電子束微影電子束模板微影術奈米柱
外文關鍵詞: E-beam lithography, E-beam stencil lithography, Direct scanning-electron microscope lithography, Nanorod
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,以低成本的電子束微影為基礎的奈米製程方法已被發展出來。這個技術可以相對地低成本製作大規模的奈米結構,在本論文中將此技術分為兩部分做討論,首先我們將介紹E-beam stencil lithography (EBSL),使用桌上型SEM取代電子槍進行電子束微影,我們預先將圖形定義在利用奈米球鏡微影術所製作的free-standing金屬膜上, 將金屬膜放置在未曝光的電子束光阻上,並將其放入SEM中進行曝光,曝光後得到與預期相同的圖形,我們也可以使用沒有聚焦的電子束來製作以提高其產量。
    此外,我們還發現市售的掃描式電子顯微鏡可以不使用任何的模板(stencil),即可製作出奈米網狀陣列結構,我們將此方法稱為Direct scanning-electron microscope lithography (DSEML)。使用DSEML可以很容易的製作出週期為280nm小的奈米網狀陣列結構。
    在論文的最後一部分,我們使用奈米球鏡微影術與二次蝕刻製作InGaN/GaN奈米柱發光二極體陣列,我們可以製作出圓盤直徑約225nm小的奈米柱LED,運用奈米球鏡微影術還可以製作出橢圓狀的奈米柱LED,其長短軸比(aspect ratio)約為2.67。
    在電子束微影的研究中,我們已經成功的證實了E-beam stencil lithography(EBSL)與Direct scanning-electron microscope lithography (DSEML)可以被用來製作奈米圖樣於電子阻上;我們還證實了使用奈米球鏡微影術與二次蝕刻製作InGaN/GaN奈米柱LED,未來我們將使用電子束微影為基礎的方法製作奈米結構結合二次蝕刻製作InGaN/GaN奈米柱LED。

    In this dissertation, low-cost electron-beam-based nanofabrication methods have been developed. These techniques can be used to fabricate large-scale nanostructures with relative low cost. The first method we developed is referred as Electron-beam stencil lithography (EBSL). The electron beam source is a commercial scanning electron microscope(SEM). The nano-pattern is pre-defined on a free-standing metal membrane fabricated using Nanospherical-lens lithography(NLL) also developed in our research group. The metal membrane is placed on top of the unexposed electron-beam resist thin film inside the SEM and the exposure is achieved after regular image scans. We can also use a unfocused electron beam to improve the fabrication throughput.
    In addition, we also discovered that a commercial table-top SEM can also be used to fabricate nano-hole arrays without using any stencil to block the electron beam. We referred this method as “Direct scanning-electron microscope lithography”(DSEML). Using this method, metal nano-hole arrays with periodicity as small as “263 nm” can be easily fabricated.
    In the final part of the thesis, we have fabricated InGaN/GaN nanorod LED using NLL and the two-step etching method. We can fabricate nanorod LEDs with diameters as small as “225” nm. The method can be also used to fabricated nano-LEDs with elliptical shape. The aspect ratio is around “2.67”. We will also look to fabricate nano-LED arrays using the proposed electron-beam-based methods.

    摘要 I Abstract III 誌謝 VII 本文目錄 VIII 表目錄 XII 圖目錄 XII 第一章 簡介 1 1-1研究動機 1 1-2 電子束微影( E-beam Lithography,EBL) 2 1-2.1 基本原理 2 1-2.2 E-beam Lithography的機制 3 1-2.3 聚甲基丙烯酸甲酯 ( polymethyl methacrylate,PMMA ) 5 1-3奈米線與奈米柱 ( Nanowires & nanorods ) 8 1-3.1ㄧ維奈米線╱奈米柱 8 1-3.2 Thin-film-fracture-based Nanowire 9 1-3.3奈米柱LED特性 10 1-3.4二次蝕刻 12 1-4奈米球鏡微影術 15 1-4.1 自組裝排列裝置 15 1-4.2 奈米球鏡微影術 16 1-4.3奈米球鏡微影術之結構應用 20 1-5結論 22 第二章 實驗儀器與裝置 23 2-1奈米球自組裝排列裝置 23 2-2製程儀器 25 2-2.1電漿蝕刻機 25 2-2.2高真空熱蒸鍍機(High Vacuum Thermal Evaporator) 25 2-2.3電子束蒸鍍機(E-beam Evaporator) 26 2-2.4汞氙燈曝光系統、手提式紫外燈 27 2-2.5感應耦合式電漿蝕刻系統( ICP) 28 2-2.6掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 28 2-3量測儀器 30 2-3.1場發射掃描式電子顯微鏡 30 2-3.2分光光譜儀 30 第三章 電子束微影奈米製程與其結構分析 32 3-1電子束微影之奈米製程 32 3-1.1電子束微影─使用TM-1000進行曝光 32 3-1.2 Free-standing mask 34 3-1.3 E-beam stencil lithography 36 3-2 電子束模板微影術其結構分析 39 3-2.1 結構分析 39 3-2.2 週期分析 43 3-2.3 曝光劑量分析 47 第四章 奈米柱發光二極體之製作與特性分析 53 4-1發光二極體結構 53 4-2 二次蝕刻製作奈米柱陣列 53 4-2.1 InGaN/GaN奈米柱製程 53 4-2.2 n-GaN與p-GaN的蝕刻選擇比 55 4-2.3 ITO薄膜對奈米柱陣列的影響 56 4-3 奈米球鏡微影術(Nanospherical-lens lithography) 57 4-3.1 對稱光源與非對稱光源 57 4-3.2 NLL製作InGaN/GaN奈米柱 59 4-3.3 乾蝕刻遮罩的選擇 60 4-3.4 金屬圓盤奈米柱陣列 62 4-3.5 金屬橢圓奈米柱陣列 64 4-4 InGaN/GaN奈米柱的光學特性 68 第五章 結論與未來展望 70 5-1 Direct Scanning-Electron Microscope Lithography 70 5-2 InGaN/GaN 奈米柱LED 70 5-3未來展望 71 參考文獻 73

    [1]Bob Hahner, “Scanning Electron Microscopy Primer.,” Characterization Facility,University of Minnesota,Twin Cities, 2007.
    [2]邱燦賓, “電子束微影技術之鄰近效應修正(I) .,” NDL奈米通訊7卷3期, 2000.
    [3]“MicriChen Crop-PMMA Data Sheet.,” 2001.
    [4]Kuan-I Chena, b, 1, Bor-Ran Li a, b, 1, Yit-Tsong Chena, “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation.” 2011.
    [5]S. E. Seid Jebril, Mady Elbahri, Getachew Titazu, Kittitat Subannajui, O. A. Florentina Niebelschu¨ tz, Claus-Christian Ro¨hlig, Volker Cimalla, and and R. A. Bernd Schmidt, Debdulal Kabiraj, Devesh Avasti, “Integration of thin-film-fracture-based nanowires into microchip fabrication.,” Small Weinheim an der Bergstrasse Germany, vol. 4, no. 12, pp. 2214–2221, Dec. 2008.
    [6]M.-L. Kuo,Y.-S. Lim, M.-L. Hsieh, S.-Y. Lin, “Efficient and Directed Nano-LED Emission by Complete Elimination of Transverse-Electric Guided Mode.”, Nano Lett. 11(2), 476-481, 2011.
    [7]Y.-J. Lu, H.-W. Lin, H.-Y. Chen, Y.-C. Yang, S. Gwo, “Single InGaN nanodisk light emittimg diodes as full-color subwavelength light sources.”, Apllied Physics Letters 98, 233101, 2011.
    [8]Q. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, Saeed Fathololoumi, Z. Mi, and G. T. Wang, “Optical performance of top-down fabricated InGaN/Ga nanorod lighr emitting diode arrays.”, Optics Express, Vol. 19, Issue 25, pp. 25528-25534, 2011.
    [9]A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere Lithography : Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy.,” Langmuir, vol. 20, no. 16, pp. 6927–6931, 2004.
    [10]A. J. Haes, C. L. Haynes, A. D. Mcfarland, and G. C. Schatz, “Plasmonic Materials for Surface-Enhanced Sensing and Spectrosopy.,” MRS BULLETIN, vol. 30, no. May, 2005.
    [11]A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser Fabrication of Large-Scale Nanoparticle Arrays for Sensing Applications.,” ACSNANO, vol. 5, no. 6, pp. 4843–4849, 2011.
    [12]L. S. Live and O. R. Bolduc, “Propagating Surface Plasmon Resonance on Microhole Arrays.,” Analytical Chemistry, vol. 82, no. 9, pp. 3780–3787, 2010.
    [13]Y. Choi, S. Hong, and L. P. Lee, “Shadow overlap ion-beam lithography for nanoarchitectures.,” Nano letters, vol. 9, no. 11, pp. 3726–31, Nov. 2009.
    [14]W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “A Novel Self-aligned and Maskless Process for Formation of Highly Uniform Arrays of Nanoholes and Nanopillars.,” Nanoscale Research Letters, vol. 3, no. 3, pp. 123–127, Mar. 2008.
    [15]W. Wu, D. Dey, A. Katsnelson, O. G. Memis, and H. Mohseni, “Large areas of periodic nanoholes perforated in multistacked films produced by lift-off.,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 26, no. 5, p. 1745, 2008.
    [16]W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “Fabrication of Large Area Periodic Nanostructures Using Nanosphere Photolithography.,” Nanoscale Research Letters, vol. 3, no. 10, pp. 351–354, Sep. 2008.
    [17]W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars.,” Nanotechnology, vol. 18, no. 48, p. 485302, Dec. 2007.
    [18]J.-B. Yeo and H.-Y. Lee, “Realization of multi-paired photonic crystals by the multiple-exposure nanosphere lithography process.,” Scripta Materialia, vol. 66, pp. 311–314, 2012.
    [19]Y.-C. Chang, H.-C. Chung, S.-C. Lu, and T.-F. Guo, “A large-scale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor.,” Nanotechnology, vol. 24, no. 9, p. 095302, Mar. 2013.
    [20]S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates.,” ACS nano, vol. 6, no. 1, pp. 979–85, Jan. 2012.
    [21]Y.-C. Chang, S.-C. Lu, H.-C. Chung, S.-M. Wang, T.-D. Tsai, T.-F. Guo, “High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography.,” Scientific Reports 3(3339), 2013.
    [22]Christie R. K. Marrian1, Elizabeth A. Dobisz1 and John A. Dagata2, “Electron‐beam lithography with the scanning tunneling microscope.,” JVSTB 10, 2877 , 1992.
    [23]羅聖全, “科學基礎研究之重要利器─掃描式電子顯微鏡(SEM) .,” 科學研習No.52-5, 2013

    下載圖示 校內:2024-07-16公開
    校外:2024-07-16公開
    QR CODE