簡易檢索 / 詳目顯示

研究生: 安若瑞
Nurul Aini
論文名稱: 水膠孔洞設計對仿虹膜水膠感應速率的改善
Improvement of Response Time on Artificial Iris Hydrogel Via Pore Size Controlling
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 71
中文關鍵詞: 水凝膠人工智慧制動器孔洞水凝膠熱感應性水凝膠可逆制動器低臨界溶液溫度
外文關鍵詞: Hydrogel, Artificial intelligent actuator, Pore size hydrogel, Thermal responsive hydrogel, Reversible Actuator, The lower critical solution temperature (LCST)
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大自然生物,成為開發制動元件及人工智慧材料的靈感來源。聚(NIPAM-co-AM)水凝膠,利用其熱或光感應性特徵,創造了人工仿虹膜水凝膠。本研究合成了一系列的N-異丙基丙烯醯胺(NIPAM)和丙烯醯胺(AM)的共聚反應,化學交聯劑N,N'-亞甲基雙(丙烯醯胺)(Bis-Am)被用來改善機械性質和控制水凝膠的孔徑大小。為實現光控仿人工虹膜,聚多巴胺(PDA)被塗佈在水凝膠表面。NIPAM的優點是它具有低臨界溫度(LCST),合成的水凝膠能夠在不同溫度下進行膨脹/脫水的運動。為了研究孔徑大小和密度對合成的仿虹膜水凝膠性能的影響,我們合成了一系列具有不同孔隙的水凝膠。透過DMA分析結果,交聯度的增加可使得水凝膠的韌性上升,但卻使膠體減少了彈性。經由SEM分析可以觀察水凝膠的孔隙率,加入更多的交聯劑會使得孔隙變小,並導致體積的擴張受到限制。水凝膠孔徑大小,也會影響水凝膠的含水量和制動特性。 為了進一步研究所合成的水凝膠在制動器上的應用,本研究也合成了密度具有梯度分布的水凝膠條狀薄膜。探討了所合成條狀致動器的可逆性熱感應彎曲,結果顯示致動器具有快速的響應時間。所製備的人工虹膜水凝膠表面,使用聚多巴胺(PDA)塗層後,用近紅外光照射時,可顯示出快速且可逆的內徑和外徑括/縮小運動。在充足的水環境下,人工虹膜水凝膠的反應時間得到了明顯的改善。制動測試的結果顯示,擁有較小孔徑的水凝膠表現出更快的恢復速度。由研究成果顯示,本研究所製備的光/熱感應水凝膠,可期望未來在微型機械人及生物醫學領域中,皆能具有多種潛力的實際應用。

    Our nature becomes a source of inspiration to develop artificial intelligent materials through external stimuli. On the basis of the thermal/photo responsive poly(NIPAM-co-AM) hydrogels, artificial iris-like hydrogels were created. To investigate the pore size effect on the improvement of artificial iris hydrogel, a series of N-isopropyacrylamine (NIPAM) and acrylamide (AM) copolymers was synthesized. Chemical crosslinker N,N'-methylene bis(acrylamide) (Bis-Am) was employed to improve mechanical qualities and also to control the pore size of the hydrogel. Polydopamine (PDA) was coated on the surface of hydrogels to synthesize the light-controllable artificial iris. Based on the lower critical temperature (LCST) of NIPAM hydrogels, the synthesized hydrogel performs swelling/deswelling motion at various temperatures. To investigate the effect of pore size and density on the performance of the synthesized iris-like hydrogels, a series of hydrogels with various porosities was fabricated and investigated. The DMA analysis results reveal that increasing crosslink content enhances the toughness but decreases the elasticity of the hydrogels. Results of SEM show that increase of crosslinker content makes the porosity of hydrogels smaller lead to the restriction of swelling volume. To study the thermal actuation of the synthesized hydrogels, hydrogel strip films with gradient densities were synthesized. Reversible thermally responsive U-shape bending and recovering of the fabricated strip actuators were investigated. Photo sensitive artificial iris hydrogels were achieved via the polydopamine (PDA) coating on the surface of hydrogels. NIR light induced reversible fast widening and closing of the fabricated artificial iris-like hydrogels were investigated. Furthermore, the response time of the artificial iris hydrogels was significantly improved under sufficient water environment. The actuation test concluded that smaller pore size of hydrogel exhibits faster recovery of actuation hydrogel. Based on the results, the predesigned photo/thermal responsive hydrogels are expected to show potential practical applications in micro robot and biomedical fields.

    Abstract I 中文摘要 III Acknowledgments IV Table of Contents V List of Figures VIII List of Tables XII 1. Introduction 1 1-1 Preface 1 1-2 Research Motivation 2 2. Literature Review 3 2-1 Artificial Intelligent Actuator 3 2-1-1 Actuation Based on Plant System 3 2-1-2 Actuation Based on Animal Movement 4 2-1-3 Actuation Based on Human System 5 2-2 Actuator Materials 6 2-3 Introduction of hydrogels 7 2-4 Classifications of Hydrogels 9 2-4-1 Hydrogel based on crosslinking 9 2-4-2 Semi-IPN and IPN hydrogel 13 2-5 Controlling Pore Size of Hydrogel 15 2-5-1 Gas Foaming 15 2-5-2 Solvent casting/Particle Leaching 16 2-5-3 Controlling Molecular weight 17 2-6 Application of Hydrogel 18 2-6-1 Contact lens 18 2-6-2 Agricultural Aspect 20 2-6-3 Actuator 21 2-6-4 Cell Culture 22 2-6-5 Wound Dressing 23 2-6-6 Drug Delivery 24 2-7 Introduction of thermal-responsive NIPAM 26 2-8 Introduction of Polydopamine 31 3. Experiment 33 3-1 Materials 33 3-2 Instruments 33 3-3 Synthesis of Compounds 34 3-3-1 Poly(NIPAM-co-AM) 34 3-3-2 Solid-State 13C-NMR Spectroscopy (ssNMR) 36 3-3-3 Thermal Gravity Analysis for Hydrogels 36 3-3-4 Compressive Test 36 3-3-5 Equilibrium Water Content (EWC) 37 3-3-6 Scanning Electron Microscope (SEM) Analysis 38 3-3-7 Near-Infrared Light Responsive Artificial Iris Hydrogel 38 4. Result and Discussion 40 4-1 PNIPAM/AM Hydrogel Precursor Mixtures 40 4-2 Structure Identification 41 4-3 Characterization of Poly(NIPAM-co-AM) Hydrogels 45 4-4 Thermal Properties of Hydrogels 46 4-5 Mechanical Characteristics of Hydrogels 48 4-6 The Equilibrium Water Content of Hydrogels 50 4-7 Thermally Actuation of Hydrogels 52 4-8 Pore Size Effect on Actuations 53 4-8-1 Gradient Strip Hydrogel Actuator 56 4-8-2 Iris-Like Hydrogels 58 Conclusions 65 Reference 66

    (1) Koetting, M. C.; Peters, J. T.; Steichen, S. D.; Peppas, N. A. Stimulus-responsive hydrogels: Theory, modern advances, and applications. MATERIALS SCIENCE & ENGINEERING R-REPORTS 2015, 93, 1-49.
    (2) Ionov, L. Hydrogel-based actuators: possibilities and limitations. MATERIALS TODAY 2014, 17 (10), 494-503.
    (3) Scarpa, J. S.; Mueller, D. D.; Klotz, I. M. SLOW HYDROGEN-DEUTERIUM EXCHANGE IN A NON-ALPHA-HELICAL POLYAMIDE. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 1967, 89 (24), 6024-&.
    (4) Din, M. I.; Khalid, R.; Akbar, F.; Ahmad, G.; Najeeb, J.; Hussain, Z. U. N. Recent progress of poly (N-isopropylacrylamide) hybrid hydrogels: synthesis, fundamentals and applications - review. SOFT MATERIALS 2018, 16 (3), 228-247.
    (5) Halperin, A.; Kroger, M.; Winnik, F. M. Poly(N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 2015, 54 (51), 15342-15367.
    (6) Xia, L. W.; Xie, R.; Ju, X. J.; Wang, W.; Chen, Q. M.; Chu, L. Y. Nano-structured smart hydrogels with rapid response and high elasticity. NATURE COMMUNICATIONS 2013, 4.
    (7) Ju, G. N.; Cheng, M. J.; Xiao, M.; Xu, J. M.; Pan, K.; Wang, X.; Zhang, Y. J.; Shi, F. Smart Transportation Between Three Phases Through a Stimulus-Responsive Functionally Cooperating Device. ADVANCED MATERIALS 2013, 25 (21), 2915-2919.
    (8) Wang, X. H.; Wu, C. Light-scattering study of coil-to-globule transition of a poly(N-isopropylacrylamide) chain in deuterated water. MACROMOLECULES 1999, 32 (13), 4299-4301.
    (9) Fullbrandt, M.; Ermilova, E.; Asadujjaman, A.; Holzel, R.; Bier, F. F.; von Klitzing, R.; Schonhals, A. Dynamics of Linear Poly(N-isopropylacrylamide) in Water around the Phase Transition Investigated by Dielectric Relaxation Spectroscopy. JOURNAL OF PHYSICAL CHEMISTRY B 2014, 118 (13), 3750-3759.
    (10) Ren, L. Q.; Li, B. Q.; Wei, G. W.; Wang, K. Y.; Song, Z. Y.; Wei, Y. Y.; Ren, L.; Liu, Q. P. Biology and bioinspiration of soft robotics: Actuation, sensing, and system integration. ISCIENCE 2021, 24 (9).
    (11) Tan, Y.; Wang, D.; Xu, H. X.; Yang, Y.; An, W. L.; Yu, L. N.; Xiao, Z. X.; Xu, S. M. A Fast, Reversible, and Robust Gradient Nanocomposite Hydrogel Actuator with Water-Promoted Thermal Response. MACROMOLECULAR RAPID COMMUNICATIONS 2018, 39 (8).
    (12) Reyssat, E.; Mahadevan, L. Hygromorphs: from pine cones to biomimetic bilayers. JOURNAL OF THE ROYAL SOCIETY INTERFACE 2009, 6 (39), 951-957.
    (13) Kim, S.; Laschi, C.; Trimmer, B. Soft robotics: a bioinspired evolution in robotics. TRENDS IN BIOTECHNOLOGY 2013, 31 (5), 23-30.
    (14) Yu, Y.; Li, L. L.; Liu, E. P.; Han, X.; Wang, J. J.; Xie, Y. X.; Lu, C. H. Light-driven core-shell fiber actuator based on carbon nanotubes/ liquid crystal elastomer for artificial muscle and phototropic locomotion. CARBON 2022, 187, 97-107.
    (15) Apsite, I.; Salehi, S.; Ionov, L. Materials for Smart Soft Actuator Systems. CHEMICAL REVIEWS 2022, 122 (1), 1349-1415.
    (16) Zinkovska, N.; Smilek, J.; Pekar, M. Gradient Hydrogels-The State of the Art in Preparation Methods. POLYMERS 2020, 12 (4).
    (17) Aswathy, S. H.; Narendrakumar, U.; Manjubala, I. Commercial hydrogels for biomedical applications. HELIYON 2020, 6 (4).
    (18) Varaprasad, K.; Raghavendra, G. M.; Jayaramudu, T.; Yallapu, M. M.; Sadiku, R. A mini review on hydrogels classification and recent developments in miscellaneous applications. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS 2017, 79, 958-971.
    (19) Ullah, F.; Othman, M. B. H.; Javed, F.; Ahmad, Z.; Akil, H. M. Classification, processing and application of hydrogels: A review. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS 2015, 57, 414-433.
    (20) Zhang, X.; Chen, L. S.; Zhang, C.; Liao, L. Q. Robust Near-Infrared-Responsive Composite Hydrogel Actuator Using Fe3+/Tannic Acid as the Photothermal Transducer. ACS APPLIED MATERIALS & INTERFACES 2021, 13 (15), 18175-18183.
    (21) Ye, X.; Li, X.; Shen, Y. Q.; Chang, G. J.; Yang, J. X.; Gu, Z. W. Self-healing pH-sensitive cytosine- and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding. POLYMER 2017, 108, 348-360.
    (22) Yu, Y.; Moncal, K. K.; Li, J. Q.; Peng, W. J.; Rivero, I.; Martin, J. A.; Ozbolat, I. T. Three-dimensional bioprinting using self-assembling scalable scaffold-free "tissue strands" as a new bioink. SCIENTIFIC REPORTS 2016, 6.
    (23) Feng, W.; Zhou, W. F.; Dai, Z. H.; Yasin, A.; Yang, H. Y. Tough polypseudorotaxane supramolecular hydrogels with dual-responsive shape memory properties. JOURNAL OF MATERIALS CHEMISTRY B 2016, 4 (11), 1924-1931.
    (24) Hennink, W. E.; De Jong, S. J.; Bos, G. W.; Veldhuis, T. F. J.; van Nostrum, C. F. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. INTERNATIONAL JOURNAL OF PHARMACEUTICS 2004, 277 (1-2), 99-104.
    (25) Wang, R.; Both, S. K.; Geven, M.; Calucci, L.; Forte, C.; Dijkstra, P. J.; Karperien, M. Kinetically stable metal ligand charge transfer complexes as crosslinks in nanogels/hydrogels: Physical properties and cytotoxicity. ACTA BIOMATERIALIA 2015, 26, 136-144.
    (26) Masruchin, N.; Park, B. D.; Causin, V. Influence of sonication treatment on supramolecular cellulose microfibril-based hydrogels induced by ionic interaction. JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY 2015, 29, 265-272.
    (27) Ishii-Mizuno, Y.; Umeki, Y.; Onuki, Y.; Watanabe, H.; Takahashi, Y.; Takakura, Y.; Nishikawa, M. Improved sustained release of antigen from immunostimulatory DNA hydrogel by electrostatic interaction with chitosan. INTERNATIONAL JOURNAL OF PHARMACEUTICS 2017, 516 (1-2), 392-400.
    (28) Schulze, J.; Hendrikx, S.; Schulz-Siegmund, M.; Aigner, A. Microparticulate poly(vinyl alcohol) hydrogel formulations for embedding and controlled release of polyethylenimine (PEI)-based nanoparticles. ACTA BIOMATERIALIA 2016, 45, 210-222.
    (29) Liu, Y.; Vrana, N. E.; Cahill, P. A.; McGuinness, G. B. Physically Crosslinked Composite Hydrogels of PVA With Natural Macromolecules: Structure, Mechanical Properties, and Endothelial Cell Compatibility. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS 2009, 90B (2), 492-502.
    (30) Ebrahimi, M. M. S.; Voss, Y.; Schonherr, H. Rapid Detection of Escherichia coli via Enzymatically Triggered Reactions in Self-Reporting Chitosan Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2015, 7 (36), 20190-20199.
    (31) Chaykar, A. S.; Goharpey, F.; Yeganeh, J. K. Volume phase transition of electron beam cross-linked thermo-responsive PVME nanogels in the presence and absence of nanoparticles: with a view toward rheology and interactions. RSC ADVANCES 2016, 6 (12), 9693-9708.
    (32) Wei, Q. C.; Xu, M. C.; Liao, C. A.; Wu, Q.; Liu, M. Y.; Zhang, Y.; Wu, C. T.; Cheng, L. M.; Wang, Q. G. Printable hybrid hydrogel by dual enzymatic polymerization with superactivity. CHEMICAL SCIENCE 2016, 7 (4), 2748-2752.
    (33) Zhao, H.; Gao, J.; Liu, R. N.; Zhao, S. P. Stimulus-responsiveness and methyl violet release behaviors of poly(NIPAAm-co-AA) hydrogels chemically crosslinked with beta-cyclodextrin polymer bearing methacrylates. CARBOHYDRATE RESEARCH 2016, 428, 79-86.
    (34) Varaprasad, K.; Sadiku, R. Development of microbial protective Kolliphor-based nanocomposite hydrogels. JOURNAL OF APPLIED POLYMER SCIENCE 2015, 132 (46).
    (35) Wang, J. J.; Wei, J. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling. APPLIED SURFACE SCIENCE 2016, 382, 202-216.
    (36) Essawy, H. A.; Ghazy, M. B. M.; Abd El-Hai, F.; Mohamed, M. F. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES 2016, 89, 144-151.
    (37) Hong, T. T.; Okabe, H.; Hidaka, Y.; Hara, K. Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting. CARBOHYDRATE POLYMERS 2017, 157, 335-343.
    (38) Abaee, A.; Madadlou, A.; Saboury, A. A. The formation of non-heat-treated whey protein cold-set hydrogels via non-toxic chemical cross-linking. FOOD HYDROCOLLOIDS 2017, 63, 43-49.
    (39) Zoratto, N.; Matricardi, P. Semi-IPN- and IPN-Based Hydrogels. In OSTEOCHONDRAL TISSUE ENGINEERING: CHALLENGES, CURRENT STRATEGIES, AND TECHNOLOGICAL ADVANCES, Oliveira, J. M., Pina, S., Reis, R. L., Roman, J. S. Eds.; Vol. 1059; 2018; pp 155-188.
    (40) Jung, Y. S.; Park, W.; Park, H.; Lee, D. K.; Na, K. Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. CARBOHYDRATE POLYMERS 2017, 156, 403-408.
    (41) Daniele, M. A.; Adams, A. A.; Naciri, J.; North, S. H.; Ligler, F. S. Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. BIOMATERIALS 2014, 35 (6), 1845-1856.
    (42) Annabi, N.; Nichol, J. W.; Zhong, X.; Ji, C. D.; Koshy, S.; Khademhosseini, A.; Dehghani, F. Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2010, 16 (4), 371-383.
    (43) Dehli, F.; Southan, A.; Drenckhan, W.; Stubenrauch, C. Tailoring and visualising pore openings in gelatin-based hydrogel foams. JOURNAL OF COLLOID AND INTERFACE SCIENCE 2021, 588, 326-335.
    (44) Coogan, K. R.; Stone, P. T.; Sempertegui, N. D.; Rao, S. S. Fabrication of micro-porous hyaluronic acid hydrogels through salt leaching. EUROPEAN POLYMER JOURNAL 2020, 135.
    (45) Santo, V.; Prieto, S.; Testera, A.; Arias, F. J.; Alonso, M.; Mano, J. F.; Rodríguez-Cabello, J. Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer. Biomaterials and Biomedical Engineering 2015, 2, 47-59.
    (46) Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. SCIENCE 2017, 356 (6337).
    (47) Efron, N.; Brennan, N. A.; Chalmers, R. L.; Jones, L.; Lau, C.; Morgan, P. B.; Nichols, J. J.; Szczotka-Flynn, L. B.; Willcox, M. D. Thirty years of 'quiet eye' with etafilcon A contact lenses. CONTACT LENS & ANTERIOR EYE 2020, 43 (3), 285-297.
    (48) Tran, N. P. D.; Yang, M. C. Synthesis and Characterization of Silicone Contact Lenses Based on TRIS-DMA-NVP-HEMA Hydrogels. POLYMERS 2019, 11 (6).
    (49) Durpekova, S.; Filatova, K.; Cisar, J.; Ronzova, A.; Kutalkova, E.; Sedlarik, V. A Novel Hydrogel Based on Renewable Materials for Agricultural Application. INTERNATIONAL JOURNAL OF POLYMER SCIENCE 2020, 2020.
    (50) Liu, J.; Xu, W. Z.; Kuang, Z. W.; Dong, P. L.; Yao, Y. X.; Wu, H. P.; Liu, A. P.; Ye, F. M. Gradient porous PNIPAM-based hydrogel actuators with rapid response and flexibly controllable deformation. JOURNAL OF MATERIALS CHEMISTRY C 2020, 8 (35), 12092-12099.
    (51) Shao, Z. J.; Wu, S. S.; Zhang, Q.; Xie, H.; Xiang, T.; Zhou, S. B. Salt-responsive polyampholyte-based hydrogel actuators with gradient porous structures. POLYMER CHEMISTRY 2021, 12 (5), 670-679.
    (52) Wu, J. Y.; Liyarita, B. R.; Zhu, H. S.; Liu, M.; Hu, X.; Shao, F. W. Self-Assembly of Dendritic DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2021, 13 (42), 49705-49712.
    (53) Su, J. J.; Li, J. K.; Liang, J. H.; Zhang, K.; Li, J. A. Hydrogel Preparation Methods and Biomaterials for Wound Dressing. LIFE-BASEL 2021, 11 (10).
    (54) Yang, X.; Zhang, C. Q.; Deng, D. W.; Gu, Y. Q.; Wang, H.; Zhong, Q. F. Multiple Stimuli-Responsive MXene-Based Hydrogel as Intelligent Drug Delivery Carriers for Deep Chronic Wound Healing. SMALL 2022, 18 (5).
    (55) Tang, L.; Wang, L.; Yang, X.; Fen, Y. Y.; Li, Y.; Feng, W. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. PROGRESS IN MATERIALS SCIENCE 2021, 115.
    (56) Chen, M.; Zhou, L.; Guan, Y.; Zhang, Y. J. Polymerized Microgel Colloidal Crystals: Photonic Hydrogels with Tunable Band Gaps and Fast Response Rates. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 2013, 52 (38), 9961-9965.
    (57) Ionov, L. Biomimetic Hydrogel-Based Actuating Systems. ADVANCED FUNCTIONAL MATERIALS 2013, 23 (36), 4555-4570.
    (58) Serizawa, T.; Wakita, K.; Akashi, M. Rapid deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by incorporation of silica particles. MACROMOLECULES 2002, 35 (1), 10-12.
    (59) Kato, N.; Takahashi, F. Acceleration of deswelling of poly(N-isopropylacrylamnide) hydrogel by the treatment of a freeze-dry and hydration process. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1997, 70 (6), 1289-1295.
    (60) Gupta, M. K.; Martin, J. R.; Werfel, T. A.; Shen, T. W.; Page, J. M.; Duvall, C. L. Cell Protective, ABC Triblock Polymer-Based Thermoresponsive Hydrogels with ROS-Triggered Degradation and Drug Release. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 2014, 136 (42), 14896-14902.
    (61) Ryu, J. H.; Messersmith, P. B.; Lee, H. Polydopamine Surface Chemistry: A Decade of Discovery. ACS APPLIED MATERIALS & INTERFACES 2018, 10 (9), 7523-7540.
    (62) Liu, Q.; Wang, N. Y.; Caro, J.; Huang, A. S. Bio-Inspired Polydopamine: A Versatile and Powerful Platform for Covalent Synthesis of Molecular Sieve Membranes. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 2013, 135 (47), 17679-17682.
    (63) Xu, X. H.; Ozden, S.; Bizmark, N.; Arnold, C. B.; Datta, S. S.; Priestley, R. D. A Bioinspired Elastic Hydrogel for Solar-Driven Water Purification. ADVANCED MATERIALS 2021, 33 (18).
    (64) Liu, C. Y.; Chang, C. H.; Thi, T. T.; Wu, G. Y.; Tu, C. M.; Chen, H. Y. Thermal-/Light-Tunable Hydrogels Showing Reversible Widening and Closing Actuations Based on Predesigned Interpenetrated Networks. ACS APPLIED POLYMER MATERIALS 2022, 4 (3), 1931-1939.

    無法下載圖示 校內:2027-07-22公開
    校外:2027-07-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE