簡易檢索 / 詳目顯示

研究生: 林哲平
Lin, Ger-Pin
論文名稱: 錫-鋅-銀-鋁-鎵無鉛銲錫 球柵式陣列構裝之電/熱遷移研究
Electromigration and Thermomigration in Ball Grid Array Sn-Zn-Ag-Al-Ga Lead-Free Solders
指導教授: 林光隆
Lin, K. L.
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 87
中文關鍵詞: 熱遷移無鉛銲錫電遷移
外文關鍵詞: solder, electromigration, BGA, thermomigration
相關次數: 點閱:128下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 錫鉛銲錫合金在電子構裝上的主要應用是在電子元件和印刷電路板的連接,但鉛對環境造成污染和人體健康的傷害已被許多國家所重視,無鉛銲錫合金之研發已成為目前最重要以及刻不容緩的重要課題。已研發的無鉛銲錫合金以錫鋅合金價格最低廉,但須藉由添加其它元素來改善其抗氧化性與潤濕性等性質。
    本研究係探討本實驗室所開發的Sn8.5Zn0.5Ag0.01Al0.1Ga五元銲錫錫球實際應用在BGA (Ball Grid Array) 構裝上,當錫球受到電遷移(electromigration)與熱遷移(thermomigration)效應影響下所產生的變化。在本實驗每組測試試片中共觀察三個銲錫接點,先將試片研磨至觀察面,把試片放置烘箱內(120℃),再於其中兩個接點通以電流密度相同而方向相反的電流,實驗中施加電流密度共有6.11×103A/cm2,4.07×103A/cm2和3.06×103A/cm2三組,另一個銲錫接點則是不施加電流只進行熱處理做為通電實驗的對照組。
    外加電流密度4.07×103A/cm2實驗試片通電114小時後,靠近基板處原本AuZn3與AgZn3所構成的三層介金屬化合物(Intermetallic Compound,IMC),其原本附著在AuZn3的AgZn3已消失,此現象為IMC的分解,而在錫球中生成AgZn3。 電子在撞擊介金屬化合物時產生動量轉移,再加上焦耳效應產生的熱能,加速介金屬化合物分解,造成在電流集中(current crowding)的位置加速介金屬化合物明顯分解。
    外加電流密度3.06×103A/cm2,AgZn3與AuZn3也會有分解的情形發生,伴隨著焦耳效應在銲錫球內部產生熱梯度,使分解後的金屬原子受熱遷移效應而移動,最終在銲錫球內部再生成介金屬化合物,而原本介金屬化合物的位置如果沒有被其它原子(Sn)填補,即會產生孔洞。基板端的三層介金屬化合物與基板有分離的情況,當在電遷移與熱遷移效應同方向作用下,極易造成介金屬化合物與基板間的Sn原子移動,並留下孔洞。
    五元銲錫系統中,基板端的三層介金屬化合物經時效後,此三層介金屬化合物發生相變化而形成Zn-Ag-Au的化合物,此相變化亦會消耗銲錫內大量的針棒狀富鋅相,尤其以原本此三層介金屬化合物附近最為明顯。

    Eutectic Sn-Pb solder are mainly used to connect the electronic devices and printed circuit board. But, many countries have concerned about lead, which would pollute environment and hurt human health. The development of lead-free solders has become the most important issue, oxidation resistance, wettability, and other properties.
    This study investigated Sn8.5Zn0.5Ag0.01Al0.1Ga solder balls, which was developed by our lab. This study investigated the micro-structure of solder balls under electromigration and thermomigration effects. After assembly, we would apply different of current density to solder balls at 120℃.
    Electrons would impact the intermetallic compounds (AuZn3 and AgZn3) seriously in current crowding section. The intermetallic compounds would decompose. The atoms coming from intermetallic compound decomposition would move in the direction of temperature gradient and react to form intermetallic compounds. Without other atom to occupy the site in which intermetallic compounds decomposed, it would be observed voids. If the directions of thermomigration and electromigration were the same, Sn atom would be affected seriously by temperature gradient and electric impaction, and move in the direction.
    In this lead-free solder, the AgZn3-AuZn3-AgZn3 three layers compound would transfer and consume the Zn-rich phase in solder balls.

    中文摘要…………………………………………………………………….Ι 英文摘要……………………………………………………………………III 誌謝………………………………………………………………………. ..IV 總目錄……………………………………………………………………… V 表目錄…………………………………………………………………….. VII 圖目錄……………………………………………………………..…………X 第壹章 簡介……………………………………1 1-1 BGA 電子構裝技術…………………………………………1 1-1-1 BGA電子構裝之元件結構與製程………………………1 1-1-2 BGA 電子構裝技術之特色與應用………………8 1-2 無鉛銲錫之發展………………………………………….8 1-2-1 無鉛銲錫之規範……………………8 1-2-2 常見的無鉛銲錫…………………………………8 1-3 電遷移效應………………………………………………10 1-3-1 電遷移的理論模型……………………………10 1-3-2 有效電荷的計算………………………………14 1-3-3 純金屬之電遷移效應…………………………16 1-3-4 銲錫電遷移效應之相關研究…………………16 1-4 熱遷移效應……………………………………………18 1-4-1 熱遷移的理論模型……………………………18 1-4-2 銲錫熱遷移之相關研究………………………19 1-5 研究目的……………………………………………19 第貳章 實驗方法與步驟……………………………………20 2-1 實驗構想……………………………………………20 2-2 實驗試片之製作……………………………………20 2-2-1 銲錫球與BGA基板及印刷電路板之結合……20 2-2-2 電遷移試片之製作……………………………22 2-3 實驗裝置……………………………………………22 2-4 BGA試片阻抗量測…………………………………28 2-5 BGA基板表面溫度量測……………………………28 2-6 通電實驗………………………………………………28 2-7 試片分析……………………………………………31 2-7-1 電子顯微鏡分析之試片製作…………………31 2-7-2 電子微探儀分析之試片製作…………………31 第參章 結果與討論…………………………………………33 3-1 銲錫球與基板及印刷電路板結合後之微觀結構…33 3-2 外加不同電流密度之電流對銲錫球微觀結構之影響…33 3-2-1 外加電流密度6.11×103A/cm2…………………33 3-2-1-1 電遷移試片電性變化………………………33 3-2-1-2 BGA基板表面溫度變化……………………36 3-2-1-3 失效(failure)試片之觀察………………36 3-2-2 外加電流密度4.07×103A/cm2…………………40 3-2-2-1 介金屬化合物分解與再生成之現象………40 3-2-2-2 部分熔融銲錫球之微觀結構………………51 3-2-3 外加電流密度3.06×103A/cm2……………………51 3-2-3-1 電子流方向對銲錫球微觀結構之影響……51 3-2-3-2 銲錫球經時效實驗後之微觀結構…………56 3-2-3-3 實驗試片再研磨之微觀結構………………62 3-2-3-4 鎵元素之偏析………………………………62 3-2-3-5 針棒狀富鋅相之變化………………………74 3-2-4 外加不同電流密度之電流對試片影響之比較…78 第肆章 結論……………………………………………………79 參考文獻…………………………………………………………80 自述………………………………………………………………87

    1. J. Barrett, “Electronic Systems Packaging: Future Reliability Challenges”, Microelectronics Reliability, Vol. 38, pp. 1277~1286, 1998.
    2. C. T. Su and T. L. Chiang, “Optimal Design for a Ball Grid Array Wire Bonding Process Using a Neuro-Genetic Approach”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, no. 1, pp. 13~18, January 2002.
    3.M. Amagai, “Characterization of Chip Scale Packaging Materials”, Microelectronics Reliability, Vol. 39, 1365~1377, 1999.
    4. T. Shimoto, K. Kikuchi, K. Baba, K. Matsui, H. Honda, and K. Kata, “High-performance FCBGA Based on Multi-layer Thin-substrate Packaging Technology”, Microelectronics Reliability, Vol. 44, pp. 515~520, 2004.
    5.T. Shimoto, K. Baba, K. Matsui, J. Tsukano, T. Maeda, and K. Oyachi, “Ultra-thin High-density LSI Packaging Substrate for Advanced CSPs and SiPs”, Microelectronics Reliability, Vol. 45, pp. 567~574, 2005.
    6.N. C. Lee, “Getting Ready for Lead-free Solders”, Soldering & Surface Mount Technology, Vol. 9, Iss.2, p. 65, 1997.
    7.A. Z. Miric and A. Grusd., “Lead-free Alloys”, Soldering & Surface Mount Technology, Vol. 10, Iss.1, p. 19, 1998.
    8.D. Suraski and K. Seelig, “The Current Status of Lead-free Solder Alloys”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 24, No. 4, pp. 244~248, 2001.
    9.C. M. L. Wu, D. Q. Yu, C. M. T. La, and L. Wang, “Properties of Lead-free Solder Alloys with Rare Earth Element Additions”, Materials Science and Engineering, Vol. 44, pp. 1~44, 2004.
    10.K. Suganuma, “Advances in Lead-free Electronics Soldering”, Current Opinion in Solid State and Materials Science, Vol. 5, pp. 55~64, 2001.
    11.Y. Li and C. P. Wong, “Recent Advances of Conductive Adhesives as a Lead-free Alternative in Electronic Packaging: Materials, Processing, Reliability and Applications”, Materials Science and Engineering, Vol. 51, pp. 1~35, 2006.
    12.J. H. L. Pang, B. S. Xiong, and T. H. Low, “Low Cycle Fatigue Models for Lead-free Solders”, Thin Solid Films, Vol. 462-463, pp. 408~412, 2004.
    13.M. Abtew and G. Selvaduray, “Lead-free Solders in Microelectronics”, Materials Science and Engineering, Vol. 27, pp. 95~141, 2000.
    14. P. G. Kim and K. N. Tu, “Fast Dissolution and Soldering Reactions on Au Foils”, Materials Chemistry and Physics, Vol. 53, pp.165~171, 1998.
    15.S. L. Allen, M. R. Notis, R. R. Chromik, and R. P. Vinci, “Microstructural Evolution in Lead-free Solder Alloys: Part I. Cast Sn-Ag-Cu Eutectic”, Journal of Materials Research, Vol. 19, No. 5, pp. 1417~1424, 2004.
    16.X. Deng, N. Chawla, K. K. Chawla, and M. Koopman, “Deformation Behavior of (Cu, Ag)-Sn Intermetallics by Nanoindentation”, Acta Materialia, Vol. 52, pp. 4291~4303, 2004.
    17. M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-free Solder Alloy with Superior Mechanical Properties”, Applied Physics Letters, Vol. 63, No. 1, pp. 15~17, 1993.
    18.J. Helneder, C. Hoyler, M. Schneegans, and H. Torwesten, “Evaluation of Lead-free SnAg Solder Ball Deposition and Reflow Processes for Flip Chip Applications”, Microelectronic Engineering, Vol. 82, pp. 581~586, 2005.
    19. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Vol. 2, p. 2086, 1986.
    20. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Vol. 2, p. 1848, 1986.
    21.R. A. Islam, B. Y. Wu, M. O. Alam, Y. C. Chan., and W. Jillek, “Investigations on Microhardness of Sn-Zn Based Lead-free Solder Alloys as Replacement of Sn-Pb Solder”, Journal of Alloys and Compounds, Vol. 392, pp. 149~158, 2005.
    22. K. L Lin and T. P. Liu, “High-temperature Oxidation of a Sn-Zn-Al Solder”, Oxidation of Metals, Vol. 50, Nos. 3/4, pp. 255~267, 1998.
    23. J. Zhou., Y. Sun, and F. Xue, “ Properties of Low Melting Point Sn–Zn–Bi Solders”, Journal of Alloys and Compounds, Vol. 397, pp. 260~264, 2005.
    24.Y. L. Tsai and W. S. Hwang, “Solidification Behavior of Sn-9Zn-xAg Lead-free Solder Alloys”, Materials Science and Engineering A, Vol. 413~414, pp. 312~316, 2005.
    25.W. L. Schaich, “Theory of the Driving Force of Electromigration: Weak-charge Solutions”, Physical Review B, Vol. 19, No. 2, pp. 620~630, 1979.
    26.A. Khosla and H. B. Huntington, “Electromigration in Tin Single Crystals”, J. Phys. Chem. Solids, Vol. 36, pp. 395~399, 1975.
    27. H. B. Huntington, “Effect of Driving Forces on Atom Motion”, Thin Solid Films, Vol. 25, pp. 265~280, 1975.
    28.R. S. Sorbello and B. Dasgupta, “Local Fields in Electron Transport: Application to Electromigration”, Physical Review B, Vol. 16, No. 12, pp. 5193~5205, 1977.
    29.R. S. Sorbello, “Landauer Fields in Electron Transport and Electromigration”, Superlattices and Microstructures, Vol. 23, No. 3/4, pp.711~718, 1998.
    30.P. Kumar and R. S. Sorbello, “Linear Response Theory of the Driving Forces for Electromigration”, Thin Solid Films, Vol. 25, pp.25~35, 1975.
    31.I. F. Itskovich and R. S. Sorbello, “Phonon-assisted Diffusion and Electromigration of Light Interstitials in Metals”, Physical Review B, Vol. 45, No. 2, pp. 718~727, 1992.
    32.L. J. Sham, “Microscopic Theory of the Driving Force in Electromigration”, Physical Review B, Vol. 12, No. 8, pp. 3142~3149, 1975.
    33.A. R. Grone, “Current-induced Marker Motion in Copper”, J. Phys. Chem. Solids, Vol. 20, Nos. l/2, pp. 88~93, 1961.
    34. H. B. Huntington and A. R. Grone, “Current-induced Marker Motion in Gold Wires”, J. Phys. Chem. Solids, Vol. 20, Nos. l/2, pp. 76~87, 1961.
    35.H. B. Huntington and M. Y. Hsieh, “Electromigration of Fast Diffusers in Lead”, Journal of Nuclear Materials, Vol. 69~70, pp. 561~563, 1978.
    36. C. K. Hu and H. B. Huntington, “Diffusion and Electromigration of Silver and Nickel in Lead-tin Alloys”, Physical Review B, Vol. 26, No. 6, pp. 2782~2789, 1982.
    37.R. Landauer and J. W. F. Woo, “Driving Force in Electromigration”, Physical Review B, Vol. 10, No. 4, pp. 1266~1271, 1974.
    38. W. L. Schaich, “Driving Forces for Electromigration by Linear Response”, Physical Review B, Vol. 13, No. 8, pp. 3360~3367, 1976.
    39.T. Y. Lee and K. N. Tu, “Electromigration of Eutectic SnPb Solder Interconnects for Flip Chip Technology”, Journal of Applied Physics, Vol. 89, No. 6, pp. 3189~3194, 2001.
    40. E. C. C. Yeh, W. J. Choi, and K. N. Tu, “Current-crowding-induced Electromigration Failure in Flip Chip Solder Joints”, Applied Physics Letters, Vol. 80, No. 4, pp. 580~582, 2002.
    41.Y. H. Lin, Y. C. Hu, C. M. Tsai, C. R. Kao, and K. N. Tu, “ In Situ Observation of the Void Formation-and-propagation Mechanism in Solder Joints under Current-stressing”, Acta Materialia, Vol. 53, pp. 2029~2035, 2005.
    42. Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, “Electromigration Failure in Flip Chip Solder Joints due to Rapid Dissolution of Copper”, Journal of Materials Research, Vol. 18, No. 11, pp.2544~2548, Nov 2003.
    43.T. Y. Lee and K. N. Tu, “Electromigration of Eutectic SnPb and SnAg3.8Cu0.7 Flip Chip Solder Bumps and Under-bump Metallization”, Journal of Applied Physics, Vol. 90, No. 9, pp. 4502~4508, Nov 2001.
    44.C. Y. Liu, C. Chen, and K. N. Tu, “Electromigration in Sn-Pb Solder Strips as a Function of Alloy Composition”, Journal of Applied Physics, Vol. 88, No. 10, pp. 5703~5709, Nov 2000.
    45.J. W. Nah, J. O. Suh, and K. N. Tu, “Effect of Current Crowding and Joule Heating on Electromigration-induced Failure in Flip Chip Composite Solder Joints Tested at Room Temperature”, Journal of Applied Physics, Vol. 98, pp. 013715-1~013715-6, 2005.
    46.A. Kumar, M. He, Z. Chen, and P. S. Teo, “Effect of Electromigration on Interfacial Reactions between Electroless Ni-P and Sn–3.5% Ag Solder”, Thin Solid Films, Vol. 462~463, pp. 413~418, 2004.
    47. C. M. Chen and S. W. Chen, “Electromigration Effect upon the Sn/Ag and Sn/Ni Interfacial Reactions at Various Temperatures”, Acta Materialia, Vol. 50, pp. 2461~2469, 2002.
    48. B. Y. Wu, Y. C. Chan, “Electric Current Effect on Microstructure of Ball Grid Array Solder Joint”, Journal of Alloys and Compounds, Vol. 392, pp. 237~246, 2005.
    49.G. A. Rinne, “Issues in Accelerated Electromigration of Solder Bumps”, Microelectronics Reliability, Vol. 43, pp. 1975~1980, 2003.
    50. H. B. Huntington, “Driving Forces for Thermal Mass Transport”, J. Phys. Chem. Solids, Vol. 29, pp. 1641~1651, 1968.
    51.H. Ye, C. Basaran, and D. Hopkins, “Thermomigration in Pb–Sn Solder Joints under Joule Heating during Electric Current Stressing”, Applied Physics Letters, Vol. 82, No. 7, pp. 1045~1047, 2003.
    52.S. H. Chiu, T. L. Shao, and C. Chen, “Infrared Microscopy of Hot Spots Induced by Joule Heating in Flip-chip SnAg Solder Joints under Accelerated Electromigration”, Applied Physics Letters, Vol. 88, pp. 022110- 1~022110-3, 2006.
    53.黃家緯, “錫鋅系無鉛銲錫之研究”, 博士論文, 成功大學材料系, 74~78頁, 2005。
    54.H. D. Young and R. A. Freedman, University Physics, Addison-Wesley Publishing Company, p. 816, 1996.
    55. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Vol. 1, p. 86, 1986.
    56. R. E. R. Hill and R. Abbaschian, Physical Metallurgy Principles, PWS Publishing Company, pp.360~420, 1994.
    57. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Vol. 1, p. 71, 1986.
    58. W. D. Callister, Materials Science and Engineering: An Introduction, John Wiley & Sons, Inc., p. 267, 2000.
    59.黃家緯, “錫鋅系無鉛銲錫之研究”, 博士論文, 成功大學材料系, 112頁, 2005。
    60. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Vol. 2, p. 1778, 1986.
    61.T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Vol. 2, p. 1150, 1986.
    62.Y. C. Hsu, C. K. Chou, P. C. Liu, and C. Chen, “Electromigration in Pb-free SnAg3.8Cu0.7 Solder Stripes”, Journal of Applied Physics, Vol. 98, pp. 033523-1~033523-6, 2005.
    63.P. H. Rieger, Electrochemistry, Prentice-Hall, Inc., USA, p. 456, 1987.
    64. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Vol. 1, p. 113, 1986.
    65. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Vol. 2, p. 1165, 1986.
    66. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio, USA, Vol. 2, p. 1179, 1986.
    67. K. S. Kim, K. W. Ryu, C. H. Yu, and J. M. Kim, “The Formation and Growth of Intermetallic Compounds and Shear Strength at Sn–Zn Solder/Au–Ni–Cu Interfaces”, Microelectronics Reliability, Vol. 45, pp. 647~655, 2005.

    下載圖示 校內:2007-07-10公開
    校外:2007-07-10公開
    QR CODE