| 研究生: |
吳政翰 Wu, Cheng-Han |
|---|---|
| 論文名稱: |
半固態鎂合金與模具鋼SKD61界面熱傳導係數之量測 Measurement of the Interfacial Heat Transfer Coefficient between Semi-solid Magnesium Alloy and Mold |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 逆推法 、半固態鎂合金 |
| 外文關鍵詞: | semi-solid magnesium alloy, inverse method |
| 相關次數: | 點閱:136 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的在量測半固態鎂合金在壓鑄過程中,鑄件與模具間的界面熱傳導係數(h)。最初利用CA-CCA法 ( Computer Aided- Cooling Curve Analysis)來求得固相率對溫度的關係,並將此數據代入Inverse Method中處理潛熱釋放的模式。並依照所求得的固相率溫度,在適合半固態壓鑄的固相率下進行半固態鎂合金界面熱傳導係數的量測,來求得一系列h-T的數據。
本實驗為符合J.V. Beck提出的Inverse Method理論,發展出一維熱傳密閉式的模具,來提供鎂合金等活性大的金屬或合金做界面熱傳導係數的量測。將量測所得T-t的數值代入Inverse Method程式中計算,得到h-T的關係,藉由圖表分析鑄件與模具間在降溫過程中的熱傳行為。
本研究首先以CA-CCA的方式計算求出鎂合金固相率對溫度的關係,再根據此數據所提供的固相率溫度進行半固態鎂合金界面熱傳導係數的量測。在界面熱傳導係數量測方面,液態AZ91D鎂合金凝固過程中,h值在1600~2900 W/m2•℃之間,經歷五個階段的轉折變化;而固相率30%的AZ91D鎂合金,其h值在最初下降過程中,有與純液態AZ91D第三階段相似的熱傳行為,之後保持穩定平緩下降的趨勢,其值約在1300~1500 W/m2•℃之間;而隨著固相率的增加,半固態AZ91D的h值則些微降低,固相率50% AZ91D鎂合金的h值比30% AZ91D鎂合金低約100 W/m2•℃左右。
本研究歸納出半固態鎂合金的界面熱傳行為主要受到半固態形態的影響,所以在h值上無太大的轉折變化;且固相率越低,與模具的接觸效果越好,h值也較高。
The main object of this research is to measure the interfacial heat transfer coefficient (h) between semi-solid magnesium alloy and mold during die casting process. In the beginning,CA-CCA method is used to obtain the relationship between solid fraction and temperature,and then,these data are taken into Inverse Method program to deal with mode of releasing latent heat. The experiment of measurement of interfacial heat transfer coefficient is done under suitable solid fraction which is usually taken in semi-solid process to obtain series of h-T data.
In order to accord with Inverse Method proposed by J.V. Beck,this experiment develops the mold with one-dimensional airtight system to offer the measurement of interfacial heat transfer coefficient in big activation metal such as magnesium alloy. After calculating the Inverse Method program with measured T-t values and receiving h-T relations,the h-T diagrams are analyzed to describe the behavior between casting and mold.
First,CA-CCA method is used to calculate the relationship between solid fraction and temperature. According to these data,temperature of semi-solid magnesium alloy is taken in the measurement of interfacial heat transfer coefficient. In the measurement of interfacial heat transfer coefficient,the h values of liquid AZ91D are in the range between 1600~2900 W/m2•℃ and experience five stages. And the behavior of the h values of AZ91D with 30% solid fraction is similar to the third stage of h-T curve of liquid AZ91D in the beginning of falling down,and then, go downward steadily with the values between 1300~1500 W/m2•℃. With increasing in solid fraction,the h values of semi-solid magnesium alloy are lower;the h values of AZ91D with 30% solid fraction are 100 W/m2•℃ lower than that with 50% solid fraction.
It is concluded that because of the effect of semi-solid magnesium alloy morphology,there is not so much change in h values;and the lower solid fraction,the higher h value.
1.J.W. Liaw, J.D. Hwang, J.F. Moisan, C.K. Jen and T.F. Chen, ”Ultrasonic Monitoring of Thermal Contact Resistance During Magnesium Die-casting”, Proc. 1st Int’ Conf. Light Metal Technology, Brisbane, Austrilia, pp.187-190, Sept.18-20, 2003.
2.曾樺玲,”合金鋼與高溫陶瓷間界面熱傳行為研究”,國立成功大學材料科學及工程研究所碩士論文,中華民國九十一年六月.
3.J.P. Holman, ”Thermal Contact Resistance”, Heat Transfer, 8th edition, p56-59.
4.C.G. Kang, J.S. Choi, D.W. Kang, "A filling analysis of the forging process of semi-solid aluminum materials considering solidification phenomena", Journal of Materials Processing Technology 73, pp. 289–302, 1998.
5.N.S. Kim, C.G. Kang, "An investigation of flow characteristics considering the effect of viscosity variation in the thixoforming process", Journal of Materials Processing Technology 103, pp. 237-246, 2000.
6.J.C. Gebelin, M. Suery, D. Favier, "Characterisation of the rheological behaviour in the semi-solid state of grain-refined AZ91 magnesium alloys", Materials Science and Engineering A272, pp. 134–144, 1999.
7.D.N. Li, J.R.Luo, S.S Wu, Z.H. Xiao, Y.W. Mao, X.J. Song, G.Z. Wu, "Study on the semi-solid rheocasting of magnesium alloy by mechanical stirring", Journal of Materials Processing Technology 129, pp.431-434, 2002.
8.M. Krishnan, D.G.R. Sharma, "Determination of the interfacial heat transfer coefficient h in unidirectional heat flow by beck's non linear estimation procedure", Int. Comm. Heat Mass Transfer, Vol. 23, No. 2, pp.203-214, 1996.
9.F. lau, W.B. lee, S.M. Xiong, B.C. Liu , "A study of the interfacial heat transfer between an iron casting and a metallic mould",Journal of Materials Processing Technology 79, pp.25-29, 1998.
10.C.A. Santos, J.M.V. Quaresma, A. Garcia, "Determination of transient interfacial heat transfer coefficients in chill mold castings", Journal of Alloys and Compounds 319, pp.174–186, 2001.
11.H.K. Kim, S.I. Oh, "Evaluation of heat transfer coefficient during heat treatment by inverse analysis", Journal of Materials Processing Technology 112, pp.157-165, 2001.
12.陳瑞琴,”鋁合金消失模鑄造法灌模過程之流場模擬及界面熱傳係數之量測與其在凝固模擬上之應用”,國立成功大學材料科學及工程研究所碩士論文,中華民國八十七年六月.
13.許豐麟,”塗模劑對鋁合金金屬模鑄造之界面熱傳係數影響之研究”,國立成功大學材料科學及工程研究所碩士論文,中華民國八十八年八月.
14.J.V. Beck and B. Blackwell, ”Inverse Problems”, Handbook of Numerical Heat Transfer, p787-834.