簡易檢索 / 詳目顯示

研究生: 吳重霖
Wu, Jhong-Lin
論文名稱: 實驗室廢棄物焚化過程戴奧辛/呋喃之排放特徵
Emission Characteristics of Polychlorinated Dibenzo-p-dioxins and Furans from a Laboratory Waste Incinerator
指導教授: 林達昌
Lin, Ta-Chang
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 110
中文關鍵詞: 戴奧辛/呋喃排放係數記憶效應生物檢知指紋分析
外文關鍵詞: Polychlorinated dibenzo-p-dioxins and dibenzofurans, emission factor, memory effect, bioassay, fingerprint
相關次數: 點閱:125下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 戴奧辛/呋喃(PCDD/Fs)是具毒性的化學物質,會造成生物體的生物累積以及引起內分泌中斷。這項研究透過包括可燃實驗室固體廢棄物(LSW),實驗室塑料廢棄物(LPW)和有機實驗室廢液(LLW)的焚化比較來描述實驗室廢棄物焚化過程,針對焚化爐煙道氣(SFG),底灰(BTA),第一急冷塔灰(FQA),第二急冷塔灰(SQA),和濾袋灰(BHA)進行採樣,並使用高解析氣相譜分析/高解析質譜儀(HRGC / HRMS)測定以及進行生物檢知,來瞭解其戴奧辛/呋喃(PCDD/F)的排放特徵。其中操作時SFG的PCDD/F濃度符合台灣標準,而LPW和LLW的氯含量大致與都市固體廢棄物(MSW)相當,其PCDD/F的分布類似於都市垃圾焚化爐。因LSW有非常高的氯含量(11.4%),其焚化過程整個排放因子為888 ng I-TEQ /噸廢物,這是10倍以上都市生活垃圾焚化的排放量。在此實驗室廢棄物焚化爐其PCDD / F排放重量比主要集中在BTA(31.6%)和飛灰(63.1%),其中飛灰的PCDD/F含量較垃圾焚化爐的飛灰高出十倍。無論HRGC / HRMS分析和生物測定結果,LW在焚化過程中有類似的PCDD / F排放特性。
    實驗室廢棄物為來自實驗、測試或分析過程中排出,含有具有高發熱值和高氯含量(> 9%)、各種有毒的化(混)合物。通常高濃度PCDD / F的排放可能來自於有高氯含量的燃燒,燃燒不完全,和所謂“記憶效應”所造成。其中冷啟爐階段因為時間短,其PCDD/F的污染容易被忽略,但與一個垃圾焚化爐在連續穩定運行時期相比,其PCDD/F排放對人類健康和環境的負面影響卻不容忽視。這項研究針對實驗室廢棄物焚化爐進行調查,該焚化爐為每次運行10天,每年啟爐15至20次的小型焚化爐。在冷啟爐期間(啟爐60.5小時內),收集煙道氣十一個PCDD/F的樣品。主燃燒室的氣體的溫度高於850℃時開始採樣,測試時僅使用柴油且無廢棄物進料的限制下,並將主燃燒室溫度維持 850-900℃之間。結果發現對於開始取樣的第1.5-7.5小時,煙囪氣中的PCDD / F濃度高達0.656-1.15 ng I-TEQ / Nm3。隨後,在第10.5-35.5和54.5-60.5小時區間,分別減少到0.159-0.459和0.218-0.254 ng I-TEQ / Nm3。另依據主成分分析(PCA)獲得H(六,七和八氯數) /L(四和五氯)值,結果顯示32小時前具較低的H/L比值(0.81),說明此時是低氯化PCDD/F同源物為主,而於第32小時之後高氯化PCDD / F同源物有較高的質量濃度(H/L比值昇至2.38)。
    PCDD/F的排放具有獨特模式,可作為戴奧辛/呋喃的指紋,研究大多數集中在各類焚化爐或不同的熱處理行為的排放特性進行比對,本計畫特進行同一焚化爐(同一焚化爐)焚化不同類的廢棄物進行排放源特徵的探討。在這研究中,利用PCDF/PCDD比、總排放因子、輸入/輸出比(O / I比率)、H / L比,描述觀察到空氣污染物控制裝置(APCDs)的設置及冷卻方式將影響PCDD/F的排放特性,進一步利用區別分析(DA)的效果來陳述PCDD/F排放特性並建立污染源的預測參數,來預測污染物來源。
    在本研究使用這儀器分析及生物檢知兩種方法,兩值之間的線性回歸顯示出良好的關係(R2> 0.84),未來利用Ad-DR生物測定用於確定非生物性毒性的PCDD / F毒性當量濃度檢測有前途且快速方法。另一方面,在冷啟爐時的PCDD/F 排放是源於記憶效應和熱脫附所造成。因此,強烈建議起爐階段應於袋濾式集塵器前噴注更多的活性碳量,來減少來自廢棄物焚化爐的煙道氣的PCDD/F排放。

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are extremely toxic chemicals that can bio-accumulate in the biotic materials, cause endocrines disruption. This study describes PCDD/F behavior during the incineration of laboratory waste, including combustible laboratory solid waste (LSW), laboratory plastic waste (LPW), and organic laboratory liquid waste (LLW). Stack flue gas (SFG), input materials, bottom ash (BTA), first quenching tower ash (FQA), secondary quenching tower ash (SQA), and baghouse ash (BHA) were sampled and analyzed using high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) assay and bioassay. The PCDD/F concentration of SFG met the standard in Taiwan. The Cl levels of LPW and LLW were roughly equivalent to that of municipal solid waste (MSW). Therefore, the SFG concentration, content of fly ash, and distribution behavior of PCDD/Fs are reasonably similar to those of MSW incinerators. The LSW had an extremely high Cl level (11.4%). The emission factor of the whole incineration system was 888 μg I-TEQ/ton-waste, which is 10-fold higher than that of MSW. The PCDD/F was mainly in BTA (31.6 wt.%) and fly ash (63.1 wt.%), resulting in higher PCDD/F level of ashes compared with that of MSW ashes.
    Laboratory wastes are discharged from experimental, testing, or analysis processes, and contain various toxic chemical compounds with a high heating-value and a high chlorine content (> 9%). Elevated PCDD/F emissions are caused by combustion of waste with high chlorine contents, incomplete combustion, and so called "memory effects". Even though the duration of cold start-up is short compared with the hours of continuous steady operation in a waste incinerator, its negative effects with regard to PCDD/F emissions on both human health and the environment cannot be neglected. A full-scale laboratory-waste incinerator which is operated for 10 days in each run and has 15 to 20 runs annually was investigated in this study. Eleven PCDD/F samples of stack flue gas were collected during the cold start-up periods (for 60.5 hrs). The gas temperature of the primary combustion chamber was above 850°C, and was maintained at between 850 and 900°C by injecting diesel fuel without waste feed. For first 1.5–7.5 hours, the PCDD/F concentration in the stack flue gas was as high as 0.656–1.15 ng I-TEQ/Nm3. Afterward, during hours 10.5–35.5 and 54.5–60.5, this reduced to 0.159–0.459 and 0.218–0.254 ng I-TEQ/Nm3, respectively. Based on principal component analysis (PCA) and the H/L ratio, the results revealed a lower H/L ratio (0.81) before hour 32, indicating that less chlorinated PCDD/F homologues (tetra- and penta-) dominated, while after hour 32 more chlorinated PCDD/F homologues (hexa-, hepta- and octa-) had a higher concentration and the H/L ratio rises to 2.38. These results indicate that the PCDD/F emissions during cold start-up were caused by memory effects and thermal desorption.
    Most literatures focused on comparison of different thermal processes or emission characteristics in the various types of incinerator, but this study conducts some surveys with various types of wastes feeding in the same incinerator. The whole system emission factor including the PCDD/F emission of stack flue gas, bottom ash, fly ash, wastewater of wet scrubber were distinguished. PCDF/PCDD ratio, emission factor, output/input ratios (O/I ratios), H(hexa-, hepta- and octa-)/L(tetra- and penta-) ratio High-Chlorinated congeners/Low-Chlorinated congeners were observed to demonstrate the emission characteristic of PCDD/Fs. The unique patterns of PCDD/F can be used as PCDD/F “fingerprints”, but limited studies have evaluated significant PCDD/F fingerprint predictors. More available emission characteristics are needed from different types of sources, to discriminate the category of emission sources to which the individual belongs to.
    Both HRGC/HRMS analysis and bioassay results show similar PCDD/F emission characteristics during the incineration of LW. In addition, the linear regression between the values acquired using these two methods show a good relation (R2 >0.84), indicating that Ad-DR bioassay is a promising fast-screen method for determining PCDD/F levels. Additionally, in order to reduce the PCDD/F emissions from the stack flue gas of waste incinerators, is highly recommended that a higher amount of activated carbon injection is used in front of the bag filters.

    摘要 II Abstract IV 誌謝 VII List of Contents IX List of Tables XII List of Figures XIII List of Appendices IVX Chapter 1 Introduction 1 Chapter 2 Literature review 5 2.1 Chemical structures and physical properties of PCDD/Fs 5 2.2 Emission Characteristic of PCDD/Fs 8 2.2.1 Emission Factor of PCDD/Fs 8 2.2.2 Memory Effect of incinerator’s Start-up Process 11 2.2.3 Emission Characteristics of PCDD/Fs 13 2.3 Toxicity Profiles of PCDD/Fs 15 2.3.1 Toxicity property 15 2.3.2 Toxicity Equivalence Factors (TEFs)/ Toxic Equivalents (TEQs) 16 2.3.3 Measure method of PCDD/Fs 19 Chapter 3 Materials and methods 21 3.1 Introduce of Incineration System 21 3.1.1 Introduce of Environment Resource and Management Research Center 21 3.1.2 Processes of Incineration System 22 3.1.3 Characteristics of Laboratory Waste 25 3.2 Sampling for PCDD/Fs 28 3.2.1 Stack, Ash and Wastewater Sampling of Start-up period for PCDD/Fs 28 3.2.2 Sampling of Flue Gas and Solid Specimens for Assay 29 3.3 Analyses and Evaluation Method of PCDD/Fs 30 3.3.1 Chemical Analyses of PCDD/Fs 30 3.3.2 Bioassay of PCDD/Fs 31 3.3.3 Principal Component Analysis (PCA) 34 Chapter 4 Results and Discussion 35 4.1 Comparison of Chemical Assay and Bioassay 35 4.1.1 PCDD/F Composition of Input and Output Materials 35 4.1.2 PCDD/F Emission Factors of Output Materials 39 4.1.3 PCDD/F Distribution of Output Materials 42 4.1.4 Comparison of Chemical Analysis and Bioassay for PCDD/F Measurement 50 4.2 Profiles of Memory Effect 52 4.2.1 PCDD/F Profiles of Flue Gas 52 4.2.2 Application of H/L value 57 4.2.3 Effects of Air Pollution Control Devices (APCDs) on the Formation of PCDD/Fs 65 Chapter 5 Conclusions and Suggestions 71 5.1 Conclusions 71 5.2 Suggestions 73 Appendices 75 References 89 Resume 109

    Aurell, J., & Marklund, S. (2009). Effects of varying combustion conditions on PCDD/F emissions and formation during MSW incineration. Chemosphere, 75(5), 667-673.
    Altarawneh, M., Dlugogorski, B. Z., Kennedy, E. M., & Mackie, J. C. (2009). Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Progress in energy and combustion science, 35(3), 245-274.
    Behnisch, P. A., Hosoe, K., & Sakai, S. I. (2001). Bioanalytical screening methods for dioxins and dioxin-like compounds—a review of bioassay/biomarker technology. Environment International, 27(5), 413-439.
    Briois, C., Ryan, S., Tabor, D., Touati, A., & Gullett, B. K. (2007). Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from a mixture of chlorophenols over fly ash: Influence of water vapor. Environmental science & technology, 41(3), 850-856.
    Bruce, K. R., Beach, L. O., & Gullett, B. K. (1991). The role of gas-phase Cl< sub> 2</sub> in the formation of PCDD/PCDF during waste combustion. Waste Management, 11(3), 97-102.
    Buekens, A., Cornelis, E., Huang, H., & Dewettinck, T. (2000). Fingerprints of dioxin from thermal industrial processes. Chemosphere, 40(9), 1021-1024.
    Cains, P. W., & Dyke, P. (1994). Chlorinated dibenzodioxin and dibenzofuran emissions from waste combustion plants in the UK. Chemosphere, 28(12), 2101-2119.
    Chang, M. B., Huang, H. C., Tsai, S. S., Chi, K. H., & Chang-Chien, G. P. (2006). Evaluation of the emission characteristics of PCDD/Fs from electric arc furnaces. Chemosphere, 62(11), 1761-1773.
    Chang, C. P., Shen, Y. H., Chou, I. C., Wang, Y. F., Kuo, Y. M., & Chang, J. E. (2012). Metal Distribution Characteristics in a Laboratory Waste Incinerator. Aerosol Air Qual. Res, 12(3), 426-434.
    Chao, H. R., Wang, S. L., Lee, C. C., Yu, H. Y., Lu, Y. K., & Päpke, O. (2004). Level of polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls (PCDD/Fs, PCBs) in human milk and the input to infant body burden. Food and chemical toxicology, 42(8), 1299-1308.
    Chao, H. R., Wang, S. L., Su, P. H., Yu, H. Y., Yu, S. T., & Päpke, O. (2005). Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans in primipara breast milk from Taiwan: estimation of dioxins and furans intake for breastfed infants. Journal of hazardous materials, 121(1), 1-10.
    Chao, H. R., Tsou, T. C., Li, L. A., Tsai, F. Y., Wang, Y. F., Tsai, C. H., ... & Lee, W. J. (2006). Arsenic inhibits induction of cytochrome P450 1A1 by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in human hepatoma cells. Journal of hazardous materials, 137(2), 716-722.
    Chao, H. R., Wang, S. L., Lin, L. Y., Lee, W. J., & Päpke, O. (2007). Placental transfer of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in Taiwanese mothers in relation to menstrual cycle characteristics. Food and chemical toxicology, 45(2), 259-265.
    Chao, H. R., Wang, Y. F., Lin, D. Y., Cheng, Y. T., & Tsou, T. C. (2011). Fast cleanup system combined with a dioxin-responsive element-driven luciferase bioassay for analysis of polychlorinated dibenzo-p-dioxins/furans in sediments and soils. Bulletin of environmental contamination and toxicology, 86(3), 278-282.
    Chao, H. R., Wang, Y. F., Wang, Y. N., Lin, D. Y., Gou, Y. Y., Chen, C. Y., ... & Hsieh, L. T. (2012). An improved ahr reporter gene assay for analyzing dioxins in soil, sediment and fish. Bulletin of environmental contamination and toxicology, 89(4), 739-743.
    Chen, W. S., Shen, Y. H., Hsieh, T. Y., Lin, C. W., Wang, L. C., & Chang-Chien, G. P. (2011). Fate and Distribution of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in a Woodchip-fuelled Boiler. Aerosol Air Qual. Res, 11(3), 282-289.
    Chi, K. H., Chang, M. B., Chang-Chien, G. P., & Lin, C. (2005). Characteristics of PCDD/F congener distributions in gas/particulate phases and emissions from two municipal solid waste incinerators in Taiwan. Science of the total environment, 347(1), 148-162.
    Chi, K. H., Chang, S. H., & Chang, M. B. (2006). Characteristics of PCDD/F distributions in vapor and solid phases and emissions from the Waelz process. Environmental science & technology, 40(6), 1770-1775.
    Chiu, J. C., Shen, Y. H., Li, H. W., Lin, L. F., Wang, L. C., & Chang-Chien, G. P. (2011). Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from an electric arc furnace, Secondary Aluminum Smelter, Crematory and Joss Paper Incinerators. Aerosol Air Qual. Res., 11(1), 13-20.
    Choi, K. I., Lee, D. H., Osako, M., & Kim, S. C. (2007). The prediction of PCDD/DF levels in wet scrubbers associated with waste incinerators. Chemosphere, 66(6), 1131-1137.
    Coutinho, M., Pereira, M., Rodrigues, R., & Borrego, C. (2006). Impact of medical waste incineration in the atmospheric PCDD/F levels of Porto, Portugal. Science of the total environment, 362(1), 157-165.
    Cunliffe, A. M., & Williams, P. T. (2009). De-novo formation of dioxins and furans and the memory effect in waste incineration flue gases. Waste Management, 29(2), 739-748.
    Denison, M. S., Zhao, B., Baston, D. S., Clark, G. C., Murata, H., & Han, D. (2004). Recombinant cell bioassay systems for the detection and relative quantitation of halogenated dioxins and related chemicals. Talanta, 63(5), 1123-1133.
    Du, Y., Jin, Y., Lu, S., Peng, Z., Li, X., & Yan, J. (2013). Study of PCDD/Fs distribution in fly ash, ash deposits, and bottom ash from a medical waste incinerator in China. Journal of the Air & Waste Management Association, 63(2), 230-236.
    Everaert, K., & Baeyens, J. (2002). The formation and emission of dioxins in large scale thermal processes. Chemosphere, 46(3), 439-448.
    Gass, H. C., & Neugebauer, F. (1999). Change of PCDD/PCDF profiles in the wet scrubber system of a fluidized-bed incinerator used for municipal solid waste. Organohalogen Compounds, 41, 153-156.
    Gass, H. C., Lüder, K., & Wilken, M. (2002). PCDD/F-emissions during cold start-up and shut-down of a municipal waste incinerator. Organohalogen compounds, 56, 193-196.
    Gass, H., Lüder, K., Sünderhauf, W., & Wilken, M. (2004). Comparison of dioxins and related compounds in the emission during the start-up procedures at a municipal waste incinerator. Organohalogen Compounds, 66, 935-940.
    Gidarakos, E., Petrantonaki, M., Anastasiadou, K., & Schramm, K. W. (2009). Characterization and hazard evaluation of bottom ash produced from incinerated hospital waste. Journal of hazardous materials, 172(2), 935-942.
    Guerriero, E., Bianchini, M., Gigliucci, P. F., Guarnieri, A., Mosca, S., Rossetti, G., ... & Rotatori, M. (2009). Influence of process changes on PCDD/Fs produced in an iron ore sintering plant. Environmental Engineering Science, 26(1), 71-80.
    Hagenmaier, H., Brunner, H., Haag, R., & Kraft, M. (1987). Copper-catalyzed dechlorination/hydrogenation of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and other chlorinated aromatic compounds. Environmental science & technology, 21(11), 1085-1088.
    Hajizadeh, Y., Onwudili, J. A., & Williams, P. T. (2011). Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons. Waste management, 31(6), 1194-1201.
    Hatanaka, T., Kitajima, A., & Takeuchi, M. (2005). Role of chlorine in combustion field in formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during waste incineration. Environmental science & technology, 39(24), 9452-9456.
    Hsi, H. C., Wang, L. C., & Yu, T. H. (2007a). Effects of injected activated carbon and solidification treatment on the leachability of polychlorinated dibenzo-p-dioxins and dibenzofurans from air pollution control residues of municipal waste incineration. Chemosphere, 67(7), 1394-1402.
    Hsi, H. C., & Yu, T. H. (2007b). Evaluation of the leachability of polychlorinated dibenzo-p-dioxins and dibenzofurans in raw and solidified air pollution control residues from municipal waste incinerators. Chemosphere, 67(7), 1434-1443.
    Huang, H., & Buekens, A. (1995). On the mechanisms of dioxin formation in combustion processes. Chemosphere, 31(9), 4099-4117.
    Huang, C. J., Chen, K. S., Lai, Y. C., Wang, L. C., & Chang-Chien, G. P. (2011). Characterization of Atmospheric Dry Deposition of Polychlorinated Dibenzo-p-dioxins/Dibenzofuran in a Rural Area of Taiwan. Aerosol Air Qual. Res, 11(4), 448-459..
    Hunsinger, H., Kreisz, S., & Seifert, H. (1998). PCDD/F behavior in wet scrubbing systems of waste incineration plants. Chemosphere, 37(9), 2293-2297.
    Hunsinger, H., Seifert, H., & Jay, K. (2003). Formation of PCDD/F during start-up of MSWI. Organohalogen compounds, 63, 37-40.
    Jansson, S., Antti, H., Marklund, S., & Tysklind, M. (2009). Multivariate relationships between molecular descriptors and isomer distribution patterns of PCDD/Fs formed during MSW combustion. Environmental science & technology, 43(18), 7032-7038.
    Kakuta, Y., Matsuto, T., Tanaka, N., & Masuda, T. (2005). Influence of residual carbon on the decomposition process of PCDD/Fs in MSWI fly ash. Chemosphere, 58(7), 969-975.
    Kao, J. H., Chen, K. S., Chang-Chien, G. P., & Chou, I. C. (2006). Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from various stationary sources. Aerosol Air Qual Res, 6(2), 170-179.
    Karademir, A., Bakoglu, M., Taspinar, F., & Ayberk, S. (2004). Removal of PCDD/Fs from flue gas by a fixed-bed activated carbon filter in a hazardous waste incinerator. Environmental science & technology, 38(4), 1201-1207.
    Kim, S. C., Lee, K. C., Kim, K. H., Kwon, M. H., & Song, G. J. (2007). Enrichment of PCDDs/PCDFs in the cooling system of municipal solid waste incineration plants. Waste management, 27(11), 1593-1602.
    Kojima, H., Takeuchi, S., Tsutsumi, T., Yamaguchi, K., Anezaki, K., Kubo, K., ... & Nagai, T. (2011). Determination of dioxin concentrations in fish and seafood samples using a highly sensitive reporter cell line, DR-EcoScreen cells. Chemosphere, 83(6), 753-759.
    Kreisz, S., Hunsinger, H., & Vogg, H. (1996). Wet scrubbers—A potential PCDD/F source?. Chemosphere, 32(1), 73-78.
    Kulkarni, P. S., Crespo, J. G., & Afonso, C. A. (2008). Dioxins sources and current remediation technologies—a review. Environment international, 34(1), 139-153.
    Kuo, Y. M., Chang, J. E., Chang, K. Y., Chao, C. C., Tuan, Y. J., & Chang-Chien, G. P. (2010). Stabilization of Residues Obtained from the Treatment of Laboratory Waste. Part 1—Treatment Path of Metals in a Plasma Melting System. Journal of the Air & Waste Management Association, 60(4), 429-438.
    Kuo, Y. M., Tseng, H. J., Chang, J. E., Chao, C. C., Wang, C. T., Chang-Chien, G. P., & Wang, J. W. (2011). Stabilization of Residues Obtained from the Treatment of Laboratory Waste: Part 2—Transformation of Plasma Vitrified Slag into Composites. Journal of the Air & Waste Management Association, 61(1), 78-84.
    Lee, W. S., Chang-Chien, G. P., Wang, L. C., Lee, W. J., Tsai, P. J., & Chen, C. K. (2003). Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from the incinerations of both medical and municipal solid wastes. Aerosol Air Qual. Res, 3(1), 1-6.
    Lee, W. S., Chang-Chien, G. P., Chen, S. J., Wang, L. C., Lee, W. J., & Wang, Y. H. (2004). Removal of polychlorinated dibenzo-p-dioxins and dibenzofurans in flue gases by Venturi scrubber and bag filter. Aerosol Air Qual. Res, 4(1), 27-37.
    Lee, R. G., Coleman, P., Jones, J. L., Jones, K. C., & Lohmann, R. (2005a). Emission factors and importance of PCDD/Fs, PCBs, PCNs, PAHs and PM10 from the domestic burning of coal and wood in the UK. Environmental science & technology, 39(6), 1436-1447.
    Lee, W. S., Chang-Chien, G. P., Wang, L. C., Lee, W. J., Wu, K. Y., & Tsai, P. J. (2005b). Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack gases of electric arc furnaces and secondary aluminum smelters. Journal of the Air & Waste Management Association, 55(2), 219-226.
    Li, X.D., Zhang, J., Yan, J.H., Chen, T., Lu, S.Y., Cen, K.F. (2006). Effect of water on catalyzed de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. J. Hazard. Mater., 137 (1): 57-61.
    Li, H. W., Wu, Y. L., Lee, W. J., & Chang-Chien, G. P. (2007). Fate of polychlorinated dibenzo-p-dioxins and dibenzofurans in a fly ash treatment plant. Journal of the Air & Waste Management Association, 57(9), 1024-1031.
    Li, H. W., Wang, L. C., Chen, C. C., Yang, X. Y., Chang-Chien, G. P., & Wu, E. M. Y. (2011). Influence of memory effect caused by aged bag filters on the stack PCDD/F emissions. Journal of hazardous materials, 185(2), 1148-1155.
    Lin, L. F., Lee, W. J., & Chang-Chien, G. P. (2006). Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from various industrial sources. Journal of the Air & Waste Management Association, 56(12), 1707-1715.
    Lin, L. F., Lee, W. J., Li, H. W., Wang, M. S., & Chang-Chien, G. P. (2007). Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan. Chemosphere, 68(9), 1642-1649.
    Lin, W. Y., Wang, L. C., Wang, Y. F., Li, H. W., & Chang-Chien, G. P. (2008a). Removal characteristics of PCDD/Fs by the dual bag filter system of a fly ash treatment plant. Journal of hazardous materials, 153(3), 1015-1022.
    Lin, Y. S., Chen, K. S., Lin, Y. C., Hung, C. H., & Chang-Chien, G. P. (2008b). Polychlorinated dibenzo-p-dioxins/dibenzofurans distributions in ash from different units in a municipal solid waste incinerator. Journal of hazardous materials, 154(1), 954-962.
    Lin, W. Y., Wu, Y. L., Tu, L. K., Wang, L. C., & Lu, X. (2010). The Emission and Distribution of PCDD/Fs in Municipal Solid Waste Incinerators and Coal-fired Power Plant. Aerosol Air Qual. Res, 10(6), 519-532.
    Lin, Y. M., Zhou, S. Q., Shih, S. I., Lin, S. L., Wang, L. C., & Wu, Z. S. (2011). Fate of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans during the Thermal Treatment of Electric Arc Furnace Fly Ash. Aerosol Air Qual. Res, 11(5), 584-595.
    Lin, Y. S., Caffrey, J. L., Hsu, P. C., Chang, M. H., Faramawi, M. F., & Lin, J. W. (2012). Environmental exposure to dioxin-like compounds and the mortality risk in the US population. International journal of hygiene and environmental health, 215(6), 541-546.
    Lin, D. Y., Shy, C. G., Chen, F. A., Wang, Y. F., Chen, K. C., Hsieh, L. T., ... & Chao, H. R. (2013). Use of a highly sensitive recombinant hepatoma cell method to determine dioxin concentrations in samples of fish and crab from a hotspot area. Environmental Science: Processes & Impacts, 15(6), 1264-1270.
    Liu, W., Tao, F., Zhang, W., Li, S., & Zheng, M. (2012). Contamination and emission factors of PCDD/Fs, unintentional PCBs, HxCBz, PeCBz and polychlorophenols in chloranil in China. Chemosphere, 86(3), 248-251.
    Löthgren, C. J., & van Bavel, B. (2005). Dioxin emissions after installation of a polishing wet scrubber in a hazardous waste incineration facility. Chemosphere, 61(3), 405-412.
    Löthgren, C. J., & Andersson, S. (2008). Numerical modelling of the memory effect in wet scrubbers. Chemosphere, 73(1), S101-S105.
    Lu, S. Y., Yan, J. H., Li, X. D., Ni, M. J., Cen, K. F., & Dai, H. F. (2007). Effects of inorganic chlorine source on dioxin formation using fly ash from a fluidized bed incinerator. Journal of Environmental Sciences, 19(6), 756-761.
    Martinez, M. Angeles; Sanz, Paloina; Ruiz, M. Luisa; Fabrellas, Begona; Abad, Esteban; Rivera, Josep, (2008). Evaluation of the Spanish hot dip galvanising sector as a source of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Chemosphere 71(6): 1127-1134
    McKay, G. (2002). Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chemical Engineering Journal, 86(3), 343-368.
    Milligan, M. S., & Altwicker, E. R. (1995). Chlorophenol reactions on fly ash. 1. Adsorption/desorption equilibria and conversion to polychlorinated dibenzo-p-dioxins. Environmental science & technology, 30(1), 225-229.
    Mininni, G., Sbrilli, A., Braguglia, C. M., Guerriero, E., Marani, D., & Rotatori, M. (2007). Dioxins, furans and polycyclic aromatic hydrocarbons emissions from a hospital and cemetery waste incinerator. Atmospheric Environment, 41(38), 8527-8536.
    Mulholland, J. A., & Ryu, J. Y. (2001). Formation of Polychlorinated Dibenzo-p-Dioxins by CuCl2-Catalyzed Condensation of 2, 6 Chlorinated Phenols. Combustion science and technology, 169(1), 107-126.
    Neuer-Etscheidt, K., Nordsieck, H. O., Liu, Y., Kettrup, A., & Zimmermann, R. (2006). PCDD/F and other micropollutants in MSWI crude gas and ashes during plant start-up and shut-down processes. Environmental science & technology, 40(1), 342-349.
    Ni, Y., Zhang, Z., Zhang, Q., Chen, J., Wu, Y., & Liang, X. (2005). Distribution patterns of PCDD/Fs in chlorinated chemicals. Chemosphere, 60(6), 779-784.
    Ni, Y., Zhang, H., Fan, S., Zhang, X., Zhang, Q., & Chen, J. (2009). Emissions of PCDD/Fs from municipal solid waste incinerators in China. Chemosphere, 75(9), 1153-1158.
    PCDD/F Emission Regulated Standards for Waste Incinerator, Atmospheric Pollution/Air Pollution; 0920059045.
    PCDD/F Emission Regulated Standards for Small and Medium Waste Incinerator, Atmospheric Pollution/Air Pollution; 0940017628.
    Rappe, C., Andersson, R., Bergqvist, P. A., Brohede, C., Hansson, M., Kjeller, L. O., ... & Tysklind, M. (1987). Overview on environmental fate of chlorinated dioxins and dibenzofurans. Sources, levels and isomeric pattern in various matrices. Chemosphere, 16(8-9), 1603-1618.
    Rordorf, B. F. (1989). Prediction of vapor pressures, boiling points and enthalpies of fusion for twenty-nine halogenated dibenzo-p-dioxins and fifty-five dibenzofurans by a vapor pressure correlation method. Chemosphere, 18(1-6), 783-788.
    Ruokojärvi, P. H., Asikainen, A. H., Tuppurainen, K. A., & Ruuskanen, J. (2004). Chemical inhibition of PCDD/F formation in incineration processes. Science of the Total Environment, 325(1), 83-94.
    Ryu, J. Y., Mulholland, J. A., Dunn, J. E., Iino, F., & Gullett, B. K. (2004). Potential role of chlorination pathways in PCDD/F formation in a municipal waste incinerator. Environmental science & technology, 38(19), 5112-5119.
    Ryu, J. Y., Mulholland, J. A., Kim, D. H., & Takeuchi, M. (2005). Homologue and isomer patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans from phenol precursors: Comparison with municipal waste incinerator data. Environmental science & technology, 39(12), 4398-4406.
    Ryu, J. Y., Choi, K. C., & Mulholland, J. A. (2006). Polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofurna (PCDF) isomer patterns from municipal waste combustion: Formation mechanism fingerprints. Chemosphere, 65(9), 1526-1536.
    Sahlberg, C., Pohjanvirta, R., Gao, Y., Alaluusua, S., Tuomisto, J., & Lukinmaa, P. L. (2002). Expression of the mediators of dioxin toxicity, aryl hydrocarbon receptor (AHR) and the AHR nuclear translocator (ARNT), is developmentally regulated in mouse teeth. International journal of developmental biology, 46(3), 295-300.
    Samaras, P., Karagiannidis, A., & Schramm, K. W. (2008, October). Selected engineered thermal processes involving waste streams in Greece and related dioxin emissions. In 1st International Conference on Hazardous Waste Management (pp. 1-3).
    Scheringer, M., Salzmann, M., Stroebe, M., Wegmann, F., Fenner, K., & Hungerbühler, K. (2004). Long-range transport and global fractionation of POPs: insights from multimedia modeling studies. Environmental Pollution, 128(1), 177-188.
    Shaub, W. M., & Tsang, W. (1983). Dioxin formation in incinerators. Environmental science & technology, 17(12), 721-730.
    Shy, C. G., Chao, H. R., Lin, D. Y., Gou, Y. Y., Chuang, C. Y., Chuang, K. P., ... & Chen, F. A. (2016). An AhR-Luciferase Adenovirus Infection System for Rapid Screening of Dioxins in Soils. Bulletin of environmental contamination and toxicology, 96(2), 192-196.
    Srogi, K. (2008). Levels and congener distributions of PCDDs, PCDFs and dioxin-like PCBs in environmental and human samples: a review. Environmental Chemistry Letters, 6(1), 1-28.
    Stanmore, B. R. (2004). The formation of dioxins in combustion systems. Combustion and flame, 136(3), 398-427.
    Su, P. H., Chen, J. Y., Chen, J. W., & Wang, S. L. (2010). Growth and thyroid function in children with in utero exposure to dioxin: a 5-year follow-up study. Pediatric research, 67(2), 205-210.
    Su, P. H., Huang, P. C., Lin, C. Y., Ying, T. H., Chen, J. Y., & Wang, S. L. (2012). The effect of in utero exposure to dioxins and polychlorinated biphenyls on reproductive development in eight year-old children. Environment international, 39(1), 181-187.
    Taiwan Environmental Protection Administration (2003).
    Taiwan Environmental Protection Administration (2005).
    Taiwan Environmental Protection Administration (2011).
    Tejima, H., Nishigaki, M., Fujita, Y., Matsumoto, A., Takeda, N., & Takaoka, M. (2007). Characteristics of dioxin emissions at startup and shutdown of MSW incinerators. Chemosphere, 66(6), 1123-1130.
    Thacker, N., Sheikh, J., Tamane, S. M., Bhanarkar, A., Majumdar, D., Singh, K., ... & Trivedi, J. (2013). Emissions of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (PCBs) to air from waste incinerators and high thermal processes in India. Environmental monitoring and assessment, 185(1), 425-429.
    Takigami, H., Suzuki, G., & Sakai, S. I. (2008). Application of Bioassays for the Detection of Dioxins and Dioxin-like Compounds in Wastes and the Environment. Interdisciplinary Studies on Environmental Chemistry: Biological Responses to Chemical Pollution (Murakami, Y., Nakayama, K., Kitamura, S.-I., Iwata, H., and Tanabe, S., Eds). Terrapub, 87-94.
    Tuan, Y. J., Wang, H. P., & Chang, J. E. (2012). Formation of PCDD/Fs in the Cooling Down Process of Incineration Flue Gas. Aerosol Air Qual. Res, 12(6), 1309-1314.
    UNEP, 2005. Standardized Toolkit for Identification and Quantification of Dioxin and Furan Release.
    van Leeuwen, F. R., Feeley, M., Schrenk, D., Larsen, J. C., Farland, W., & Younes, M. (2000). Dioxins: WHO’s tolerable daily intake (TDI) revisited. Chemosphere, 40(9), 1095-1101
    Walker, M. K., Cook, P. M., Butterworth, B. C., Zabel, E. W., & Peterson, R. E. (1996). Potency of a complex mixture of polychlorinated dibenzo-p-dioxin, dibenzofuran, and biphenyl congeners compared to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in causing fish early life stage mortality. Toxicological Sciences, 30(2), 178-186.
    Wang, L.C. (2003a), Characteristics of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans from Emission Sources and in the Atmosphere; Department of Environmental Engineering, National Cheng Kung University, Ph. D. Thesis.
    Wang, L. C., Lee, W. J., Lee, W. S., Chang-Chien, G. P., & Tsai, P. J. (2003b). Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans. Science of the total environment, 302(1), 185-198.
    Wang, S. L., Chang, Y. C., Chao, H. R., Li, C. M., Li, L. A., Lin, L. Y., & Päpke, O. (2006). Body burdens of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls and their relations to estrogen metabolism in pregnant women. Environmental health perspectives, 114(5), 740-745.
    Wang, H. C., Hwang, J. F., Chi, K. H., & Chang, M. B. (2007a). Formation and removal of PCDD/Fs in a municipal waste incinerator during different operating periods. Chemosphere, 67(9), S177-S184.
    Wang, L. C., & Chang-Chien, G. P. (2007b). Characterizing the emissions of polybrominated dibenzo-p-dioxins and dibenzofurans from municipal and industrial waste incinerators. Environmental science & technology, 41(4), 1159-1165.
    Wang, L. C., Hsi, H. C., Chang, J. E., Yang, X. Y., Chang-Chien, G. P., & Lee, W. S. (2007c). Influence of start-up on PCDD/F emission of incinerators. Chemosphere, 67(7), 1346-1353..
    Wang, S. L., Tsai, P. C., Yang, C. Y., & Guo, Y. L. (2008). Increased Risk of Diabetes and Polychlorinated Biphenyls and Dioxins A 24-year follow-up study of the Yucheng cohort. Diabetes Care, 31(8), 1574-1579.
    Wang, Y. H., Lin, C., & Chang-Chien, G. P. (2009). Characteristics of PCDD/Fs in a particles filtration device with activated carbon injection. Aerosol Air Qual. Res, 9(3), 317-322.
    Wang, L. C., Hsi, H. C., Wang, Y. F., Lin, S. L., & Chang-Chien, G. P. (2010a). Distribution of polybrominated diphenyl ethers (PBDEs) and polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) in municipal solid waste incinerators. Environmental Pollution, 158(5), 1595-1602.
    Wang, Y. F., Hou, H. C., Li, H. W., Lin, L. F., Wang, L. C., Chang-Chien, G. P., & You, Y. S. (2010b). Dry and Wet Depositions of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in the Atmosphere in Taiwan. Aerosol Air Qual. Res, 10(4), 378-390.
    Wang, Y. F., Wang, L. C., Hsieh, L. T., Li, H. W., Jiang, H. C., Lin, Y. S., & Tsai, C. H. (2012). Effect of Temperature and CaO Addition on the Removal of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Fly Ash from a Medical Waste Incinerator. Aerosol Air Qual. Res, 12(2), 191-199.
    Weber, R., Sakurai, T., Ueno, S., & Nishino, J. (2002). Correlation of PCDD/PCDF and CO values in a MSW incinerator––indication of memory effects in the high temperature/cooling section. Chemosphere, 49(2), 127-134.
    Wikström, E., & Marklund, S. (2001). The influence of level and chlorine source on the formation of mono-to octa-chlorinated dibenzo-p-dioxins, dibenzofurans and coplanar polychlorinated biphenyls during combustion of an artificial municipal waste. Chemosphere, 43(2), 227-234.
    Wilken, M., Marsch, F. and Dehoust, G. (2003). Start-up of a Hazardous Waste Incinerator - Impact on the PCDD/PCDF-Emissions. Organohalogen Compd. 63: 29–32.
    Wu, H. L., Lu, S. Y., Yan, J. H., Li, X. D., & Chen, T. (2011). Thermal removal of PCDD/Fs from medical waste incineration fly ash–effect of temperature and nitrogen flow rate. Chemosphere, 84(3), 361-367.
    Wu, J. L., Lin, T. C., Wang, L. C., & Chang-Chien, G. P. (2014). Memory Effects of Polychlorinated Dibenzo-p-dioxin and Furan Emissions in a Laboratory Waste Incinerator. Aerosol Air Qual. Res, 14(4), 1168-1178.
    Xhrouet, C., & De Pauw, E. (2003). Prevention of dioxins de novo formation by ethanolamines. Environmental Chemistry Letters, 1(1), 51-56.
    Sugawara, Y., Gee, S. J., Sanborn, J. R., Gilman, S. D., & Hammock, B. D. (1998). Development of a highly sensitive enzyme-linked immunosorbent assay based on polyclonal antibodies for the detection of polychlorinated dibenzo-p-dioxins. Analytical chemistry, 70(6), 1092-1099.
    Zhang, H. J., Ni, Y. W., Chen, J. P., & Zhang, Q. (2008). Influence of variation in the operating conditions on PCDD/F distribution in a full-scale MSW incinerator. Chemosphere, 70(4), 721-730.
    Zhang, G., Hai, J., Cheng, J. (2012). Characterization and mass balance of dioxin from a large-scale municipal solid waste incinerator in China. Waste Management 32(6), 1156–1162.
    Zhang, G., Hai, J., Cheng, J., Cai, Z., Ren, M., Zhang, S., & Zhang, J. (2013). Evaluation of PCDD/Fs and metals emission from a circulating fluidized bed incinerator co-combusting sewage sludge with coal. Journal of Environmental Sciences, 25(1), 231-235.
    Zimmermann, R., Blumenstock, M., Heger, H. J., Schramm, K. W., & Kettrup, A. (2001). Emission of nonchlorinated and chlorinated aromatics in the flue gas of incineration plants during and after transient disturbances of combustion conditions: delayed emission effects. Environmental science & technology, 35(6), 1019-1030.
    鄒粹軍、趙浩然、王雅玢,2010,污染場址本土戴奧辛生物快速篩選檢測技術開發計畫,環境保護署
    行政院環境保護署環境檢驗所,2010,土壤中類戴奧辛化合物篩檢方法-冷光酵素報導基因法 NIEA 901.60B

    無法下載圖示 校內:2021-10-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE